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Abstract: In this paper, we show that the equality appearing in the title gives the

largest solution of the diophantine equation

Fn1
. . . Fnk

= m1! . . . mt! ,

where 0 < n1 < · · · < nk and 1 ≤ m1 ≤ m2 ≤ . . . ≤ mt are integers.

1 – Introduction

Recall that the Fibonacci sequence denoted by (Fn)n≥0 is the sequence of

integers given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0.

There are many papers in the literature which address diophantine equations

involving Fibonacci numbers. A long standing problem asking whether 0, 1, 8

and 144 are the only perfect powers in the Fibonacci sequence was recently con-

firmed by Bugeaud, Mignotte and Siksek [2]. An extension of such a result to

diophantine equations involving perfect powers in products of Fibonacci numbers

whose indices form an arithmetic progression was obtained in [7]. For example,

the only instance in which a product of consecutive terms in the Fibonacci se-

quence is a perfect power is the trivial case F1F2 = 1.

There are also a few papers in the literature which address diophantine equa-

tions involving members of the Fibonacci sequence and factorials. For example,

in [6] it is shown that the largest solution of the diophantine equation

Fn = m1! . . .mt! in positive integers n and 2 ≤ m1 ≤ m2 ≤ · · · ≤ mt is

F12 = 2!2 3!2 = 3! 4!, while in [4] it is shown that the largest solution of the

diophantine equation Fn = m1! ± m2! is F12 = 3! + 4!.
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2 – Main Result

In this note, we extend the main result from [6] and we prove the following

result.

Theorem 1. The largest solution of the diophantine equation

(1) Fn1Fn2 . . . Fnk
= m1! . . . mt!

with positive integers 3 ≤ n1 < · · · < nk and 2 ≤ m1 ≤ m2 ≤ · · · ≤ mt is

(2) F3F4F5F6F8F10F12 = 11!

In the above theorem, we did not allow the indices nj to be 1 or 2 because

F1 = F2 = 1, and we imposed the restriction mi ≥ 2 for the same reason because

0! = 1! = 1. Note that the numbers mi are not necessarily distinct for i = 1, . . . , t,

while the numbers nj are distinct for j = 1, . . . , k. We imposed the restriction

that the indices nj are distinct, for if not, then the above equation (1) will have

infinitely many solutions (for example, raising the equality (2) to any power will

produce another solution).

By the largest solution in the statement of the above theorem we mean that

if (n1, . . . , nk) are distinct positive integers ≥ 3 such that Fn1 . . . Fnk
is a product

of factorials, then {n1, . . . , nk} ⊆ {3, 4, 5, 6, 8, 10, 12}. That being said, a solution

to (1) is of the form

F ǫ1
3 F ǫ2

4 F ǫ3
5 F ǫ4

6 F ǫ5
8 F ǫ6

10F ǫ7
12 =

∏

i

mi! ,

where ǫi ∈ {0, 1}. For easy writing, we label [ǫ1, ǫ2, . . . , ǫ7] the left hand side of the

previous equation. With this notation, a computer program (assuming Theorem 1)

revealed the following corollary (we do not write every possible product of fac-

torials; for instance, (2!)4(3!)3 is written as 3! (4!)2, that is, we maximize the

involved factorials).
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Corollary 2. The solutions to equation (1) are

[1, 0, 0, 0, 0, 0, 0] = 2! ; [1, 1, 0, 0, 0, 0, 0] = 3! ; [0, 0, 0, 1, 0, 0, 0] = (2!)3 ;

[1, 0, 0, 1, 0, 0, 0] = (2!)4 ; [0, 1, 0, 1, 0, 0, 0] = 4! ; [1, 1, 0, 1, 0, 0, 0] = 2! 4! ;

[0, 1, 1, 1, 0, 0, 0] = 5! ; [0, 0, 0, 0, 0, 0, 1] = 3! 4! ; [1, 1, 1, 1, 0, 0, 0] = 2! 5! ;

[1, 0, 0, 0, 0, 0, 1] = 2! 3! 4! ; [0, 1, 0, 0, 0, 0, 1] = 2! (3!)3 ; [0, 0, 1, 0, 0, 0, 1] = 3! 5! ;

[1, 1, 0, 0, 0, 0, 1] = (3!)2 4! ; [0, 0, 0, 1, 0, 0, 1] = 2! (4!)2 ; [1, 0, 1, 0, 0, 0, 1] = 2! 3! 5! ;

[1, 0, 0, 1, 0, 0, 1] = (2!)2 (4!)2 ; [0, 1, 0, 1, 0, 0, 1] = 3! (4!)2 ; [1, 1, 1, 0, 0, 0, 1] = (3!)2 5! ;

[1, 1, 1, 1, 1, 0, 0] = 7! ; [0, 0, 1, 1, 0, 0, 1] = 2! 4! 5! ; [1, 1, 0, 1, 0, 0, 1] = 2! 3! (4!)2 ;

[1, 0, 1, 1, 0, 0, 1] = (2!)2 4! 5! ; [0, 1, 1, 1, 0, 0, 1] = 3! 4! 5! ; [1, 0, 1, 0, 1, 0, 1] = 3! 7! ;

[1, 1, 1, 1, 0, 0, 1] = 2! 3! 4! 5! ; [0, 0, 1, 1, 1, 0, 1] = 4! 7! ; [1, 0, 1, 1, 1, 0, 1] = 2! 4! 7! ;

[0, 1, 1, 1, 1, 0, 1] = 2! (3!)2 7! ; [1, 1, 1, 1, 1, 0, 1] = 3! 4! 7! ; [1, 1, 1, 1, 1, 1, 1] = 11! .

Throughout this paper, we use p, q and r to denote prime numbers. For a

positive real number x we use log x for its natural logarithm. By pe||n we mean

that pe|n, but pe+16 |n.

3 – The Proof

We assume that 3 ≤ n1 < n2 < · · · < nk and 2 ≤ m1 ≤ · · · ≤ mt are integers

satisfying equation (1). We write N = nk and M = mt. We shall find upper

bounds on N and M .

Recall that if m is any nonnegative integer then the identity

Fm =
αm − βm

α − β

holds, where α = 1+
√

5
2 and β = 1−

√
5

2 . We start by recalling the classical

argument which leads to a proof of the Primitive Divisor Theorem (see, for

example, [3, 9]). We have

Fm =
∏

1≤k<m

(

α − e
2πik

m β
)

.

Write

Φm =
∏

1≤k<m
gcd(k,m)=1

(

α − e
2πik

m β
)

.
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By the principle of inclusion and exclusion

(3) Φm =
(αm − βm)

∏

p|m

(

α
m
p − β

m
p

) ·

∏

p<q
pq|m

(

α
m
pq − β

m
pq

)

∏

p<q<r
pqr|m

(

α
m

pqr − β
m

pqr

) · · · .

Using now the trivial fact that the inequalities

αℓ − βℓ ≥ αℓ − |β|ℓ =
(

α − |β|
)

(

αℓ−1 + αℓ−2|β| + · · · + |β|ℓ−1
)

≥ αℓ−1

and

αℓ − βℓ < 2 αℓ < αℓ+2

hold for every positive integer ℓ, we then get, by (3), that the inequality

(4) Φm ≥ α

(

m−
P
p|m

m
p

+
P

p<q

pq|m

m
pq

− ...

)

− 3·2ω(m)−1

= αφ(m)−3·2ω(m)−1

holds, where we use φ(m) and ω(m) to denote the Euler function of m and the

number of distinct prime factors of m, respectively.

In order to get an upper bound on N , it suffices to assume that N is large.

Thus, we assume that N >12. By the cyclotomic criterion (see Theorem 2.4 in [1]),

it follows that we have a representation

Φm = Am Bm

with positive integers Am and Bm where Am≤ m and every prime factor of Bm

is congruent to ±1 (mod m). Thus,

(5) Bm ≥ 1

m
· αφ(m)−3·2ω(m)−1

.

We now make the following claim.

Claim 1. There exists N0 such that if N > N0 then one of the following

holds:

(i) M > N
6
5 ;

(ii) If s is the smallest index in {1, . . . , t} such that ms ≥ N−1, then

t − s + 1 > N
1
5 .
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We now prove the above claim and find a suitable value for N0. Well, assume

that M and N are such that the above claim does not hold. In this case,

we let p be an arbitrary prime number ≡ ±1 (mod N) dividing
∏t

j=1mj !. Clearly,

p ≥ N−1, therefore p | ∏t
j=s mj ! | (M !)t−s+1. We compute an upper bound for

the exact order at which p divides (M !)t−s+1. The order at which p divides M !

equals

⌊

M

p

⌋

+

⌊

M

p2

⌋

+ . . . <
M

p
+

M

p2
+ . . . =

M

p − 1
≤ N

6
5

N − 2
< N

1
5 + 2 ,

where in the above inequality we used the fact that M ≤ N6/5 together with

the fact that N > 12. This shows that if p ≥ N−1 and pαp || (M !)t−s+1, then

αp < (N
1
5 +2) (t−s+1) ≤ N

1
5 (N

1
5 +2).

Hence,

∏

pαp ||(M !)t−s+1

p≡±1 (mod N)

pαp ≤ MN
1
5

(

N
1
5 +2

)(

π
(

N
6
5 ,N,−1

)

+π
(

N
6
5 ,N,1

))

,

where, as usual, we write π(x, k, l) for the number of primes p ≤ x which are

congruent to l (mod k). Since clearly π(N
6
5 , N,±1) ≤ N

1
5 + 1, we get that

(6)
∏

pαp ||(M !)t−s+1

p≡±1 (mod N)

pαp ≤ exp
(

2N
1
5
(

N
1
5 + 2

)(

N
1
5 + 1

)

log
(

N
6
5
)

)

.

Since BN obviously divides the number appearing in the left hand side of the

above inequality, we get, from (5) and (6), that

1

N
· αφ(N)−3·2ω(N)−1 ≤ BN

≤
∏

pαp ||(M !)t−s+1

p≡±1 (mod N)

pαp

≤ exp

(

12

5
· N 1

5
(

N
1
5 + 2

)(

N
1
5 + 1

)

log N

)

.

By taking logarithms of both sides the above inequality becomes

(7)
(

φ(N) − 3 · 2ω(N)−1
)

log α − log N <
12

5
· N 1

5
(

N
1
5 + 2

)(

N
1
5 + 1

)

log N .
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We now show that we can choose N0 = 5 · 107. Indeed, assume that N > 5 · 107.

In this case, we show that 3 · 2ω(N)−1 <
√

N . This inequality holds if ω(N) ≤ 12

because

3 · 2ω(N)−1 ≤ 6 · 210 < 7 · 103 <
√

N .

Assume now that ω(N) ≥ 13 and let p1 < p2 < · · · < pℓ be all the prime fac-

tors of N . Here, ℓ = ω(N). Then,
√

N ≥ ∏ℓ
i=1

√
pℓ. Since

√
pℓ ≥

√
41 > 6,√

pℓ−1 ≥
√

37 > 4 and
√

pi > 2 holds for i = 3, . . . , ℓ−2, we get that

√
N > 2ℓ−2−3+1 · 4 · 6 = 3 · 2ℓ−1 = 3 · 2ω(N)−1 ,

which is the desired inequality. Thus, if inequality (7) holds for some N > 5 ·107,

then the inequality

(8)
(

φ(N) −
√

N
)

log α − log N <
12

5
· N 1

5
(

N
1
5 + 2

)(

N
1
5 + 1

)

log N

also holds. By Lemma 4.1 in [9], we know that φ(N) > N/ log N holds for all

N ≥ 2 · 109. Thus, if N ≥ 2 · 109, then inequality (8) leads to

(9)

(

N

log N
−
√

N

)

log α − log N <
12

5
· N 1

5
(

N
1
5 + 2

)(

N
1
5 + 1

)

log N .

We used Mathematica and checked that the largest solution of this inequality is

< 1.6 ·109, which is impossible. Thus, N < 2 ·109. By Lemma 4.2 in [9], we know

that in this range φ(N) > N/6. Thus, inequality (8) leads to the inequality

(10)

(

N

6
−
√

N

)

log α − log N <
12

5
· N 1

5
(

N
1
5 + 2

)(

N
1
5 + 1

)

log N .

With Mathematica, we checked that the largest solution N of inequality (10) is

< 7 · 106. This indeed shows that the claim is true with N0 = 5 · 107.

We now show that, in fact, N ≤N0. Indeed, assume that N >N0. By Claim 1,

it follows that either (i) or (ii) holds. If (i) holds, then the exponent at which

2 appears in the right hand side of equation (1) is

(11) ≥
⌊

M

2

⌋

+

⌊

M

4

⌋

+ . . . ≥ M − log
(

M + 1
)

log 2
> N

6
5 − log

(

N
6
5 + 1

)

log 2
,

while if (ii) holds, then the exponent at which 2 appears in the right hand side

of equation (1) is

(12) ≥
(

t − s + 1
)

(⌊

N − 1

2

⌋

+

⌊

N − 1

4

⌋

+ . . .

)

> N
1
5

(

N − 1 − log N

log 2

)

.
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In is easy to check that in our range the right hand side of (12) is smaller than

the right hand side of (11). Thus, in either case, the order at which 2 appears in

the right hand side of equation (1) is

(13) > N
1
5

(

N − 1 − log N

log 2

)

.

It is known (see [5]) that if ℓ is a positive integer and 2ℓ||Fn then n is an odd

multiple of 3 if ℓ = 1, and n = 2ℓ−2 · 3 · m, where m is coprime to 6 if ℓ ≥ 3

(the instance ℓ = 2 can never occur). This shows that the exponent at which

2 appears in Fn is

≤ 2 +
log(n/3)

log 2
=

log
(

4n
3

)

log 2
.

Since

Fn1Fn2 . . . Fnk

∣

∣

N
∏

n=1

Fn ,

it follows that the order at which 2 appears in the left hand side of equation (1)

does not exceed

(14)
1

log 2

N
∑

n=1

log

(

4n

3

)

≤ N
log

(

4N
3

)

log 2
.

Comparing (13) with (14), we get the inequality

(15) N
1
5

(

N − 1 − log N

log 2

)

< N
log

(

4N
3

)

log 2
,

whose largest solution N is < 7 · 106. This contradicts the fact that N ≥ N0.

In conclusion, any solution of equation (1) has N ≤ N0. We now show that

M < 1014. We clearly have that

N
∏

n=1

Fn ≥ Fn1 . . . Fnk
≥ M ! ≥

(

M

e

)M

,

where the last inequality follows from Stirling’s formula. Since the inequality

Fn < αn holds for all positive integers n, we get that

(

M

e

)M

< α
PN

n=1 n = αN(N+1)/2 ,
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which, after taking logarithms and using the fact that N ≤ N0 = 5 · 107, leads to

M log(M/e) <
N0(N0 + 1) log α

2
.

This inequality implies that M < M0 = 1014.

It now remains to cover the range M ≤ M0. Assume first that M ≥ M1 = 1069.

In this case, 1069 divides the right hand side of equation (1). The entry point

of 1069 (i.e., the smallest positive integer k such that 1069|Fk) is 89. However,

F89 is also divisible with the 16 digit prime 1665088321800481 which exceeds M0.

Thus, M < M1. Assume now that M ≥ M2 = 73. In this case, 73 divides the

right hand side of equation (1). The entry point of 73 is 37. However, F37 is also

divisible with the prime 2221 which exceeds M1. Thus, M < M2. Assume now

that M ≥ M3 = 37. In this case, 37 divides the right hand side of equation (1).

The entry point of 37 is 19. However, F19 is also divisible with the prime

113 which exceeds M2. Thus, M < M3, therefore the largest prime factor of

the number appearing in either side of equation (1) is ≤ 31. By the Primitive

Divisor Theorem (see [1, 3, 9]), it follows that FN has a prime factor ≥ N−1 if

N ≥ 12. Thus, N ≤ 32. A quick computation revealed that the only Fibonacci

numbers Fn whose largest prime factor is ≤ 31 are the ones corresponding to

n ∈ A = {3, 4, . . . , 10, 12, 14, 18, 24}. However, if ni ∈ {9, 14, 18, 24} for some

i = 1, . . . , k, then M ≥ 19. In particular, 53 divides the right hand side of equa-

tion (1). On the other hand, if 5|Fn for some n ∈ A, then n ∈ {5, 10} and 5||Fn

in both cases. This shows that ni ∈ {3, 4, 5, 6, 8, 10, 12} and the product of all

the Fibonacci numbers whose indices are in this last set is 11!, which completes

the proof of Theorem 1.

4 – Comments

Recall that if r and s are coprime integers with rs 6= 0, ∆ = r2 + 4s 6= 0

and such that the roots γ, δ of the quadratic equation

x2 − rx − s = 0

have the property that γ/δ is not a root of 1, then the sequences (un)n≥0 and

(vn)n≥0 of general terms

un =
γn − δn

γ − δ
and vn = γn + δn

are called Lucas sequences of the first and second kind, respectively.
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Arguments similar to the ones used in this paper combined with standard

arguments from the theory of linear forms in logarithms of algebraic numbers

(see [8]) lead to the following generalization of Theorem 1.

Theorem 3. Let (wn)n≥0 be a Lucas sequence of the first or second kind.

Then there exists an effectively computable constant c depending only on the

sequence (wn)n≥0 such that all the solutions of the diophantine equation

wn1 . . . wnk
= m1! . . .mt! ,

in positive integer unknowns 1 < n1 < · · · < nk and 2 ≤ m1 ≤ · · · ≤ mt have

max{nk, mt} < c.

A similar result as the one above holds with the Lucas sequence (wn)n≥0

replaced by a classical Lehmer sequence, for the definition of which we refer the

reader to the papers [1, 9].
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