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Abstract: We introduce three new examples of kinetic models for chemotaxis,

where a kinetic equation for the phase-space density is coupled to a parabolic or elliptic

equation for the chemo-attractant, in two or three dimensions. We prove that these

models have global-in-time existence and rigorously converge, in the drift-diffusion limit

to the Keller–Segel model. Furthermore, the cell density is uniformly-in-time bounded.

This implies, in particular, that the limit model also has global existence of solutions.

1 – Introduction

The slime mold amoebae, Dictyostelium Discoideum, is an important biolog-

ical example both experimentally and theoretically. From the modeling point of

view, its study starts with the work of Patlak [32] and gained maturity with the

Keller–Segel model [23, 24].

Keller and Segel modeled the initiation of the aggregation of the D.Discoi-

deum, using a system of two parabolic partial differential equations, one for the

cell density ρ ≥ 0 and the second for the density of the cyclic adenosine mono-

phosphate (cAMP) S ≥ 0, the chemical substance that mediate aggregation.

The cell movement induced by chemical substances is called chemotaxis, and,

in this particular case, cells move toward higher concentrations of cAMP, pro-

duced by the cell themselves.

A general overview of chemotaxis and a large bibliography on the Keller–Segel

model can be found in [18, 19].
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The blow up phenomena, i.e., the arbitrary increase of L∞-norms of solutions

ρ or S, is an important mathematical question that has some partial answers

in [4, 12, 13, 14, 15, 22, 27, 28] and the surveys [18, 19] Recently, Dolbeault and

Perthame [10], in the two dimensional case and with constant coefficients, were

able to give an optimal critical mass for the blow-up/global existence problem.

For higher dimensions, see [8].

The derivation of the Keller–Segel model in [23, 24] was originally made from

the phenomenological point of view. In [34] this model was derived as limit

dynamics of systems of moderately interacting stochastic many particle process.

In [11] it was derived from a semi-linear differential hyperbolic system.

The Keller–Segel model was also derived from kinetic equations, for the first

time in [3] for a prescribed chemical S (see also [1, 2, 29]). In [17, 30] it is formally

shown that these models converge, in the macroscopic limit, to the Keller–Segel

model. Rigorous derivations appeared in [7], where local-in-time convergence was

proved for turning kernels depending only on S and ∇S and for a elliptic equation

for S (i.e., the limit of high diffusion, when D0≫D), in the 3-dimensional case.

Furthermore, global-in-time existence was proved for turning kernels bounded by

certain functionals of S. In [21] these results were generalized to the 2-dimensional

case and the limit of high diffusion was proved not necessary (i.e., the equation

for S was of parabolic or elliptic type). Global-in-time existence of solutions

was proved under the same bound on the turning kernel. Finally, in [20], the

previous results, concerning global-in-time existence, were extended for turning

kernels with a more general dependence on S. It is important to stress that even

for kinetic models with global existence the limit Keller–Segel model can present

finite-time-blow-up. See [7].

Keller–Segel model with prevention of overcrowding (as in Reference [16])

is given by

(1)

{

∂tρ = ∇·
(

D(S, ρ)∇ρ− V(S, ρ)∇S
)

,

∂tS = D0 ∆S + ϕ(S, ρ) ,

where we consider that D(S, ρ)=D0 is a constant, ϕ(S, ρ) = g1(S, ρ)ρ−g2(S, ρ)S,

with g1≥0 and g2≥δ0>0, V(S, ρ)=χ(S)β(ρ)ρ, where χ>0 and there is a ρ̄ > 0

such that β(ρ)>0 for ρ ∈ [0, ρ̄) and β(ρ) = 0, ρ ≥ ρ̄. Initial conditions are sup-

posed to be non-negative. Hillen and Painter were able to give sufficient condi-

tions for global existence of solutions for this kind of model (see [16]), that we

are able to obtain here also in a slightly different and more general framework.
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Although mathematically interesting, the blow up phenomena representing cell

overcrowding is considered by some authors as unrealistic from a biological con-

text. According to [31] this is so because the finite size of individual cells and

the behavior of cells at higher densities is ignored in the Keller–Segel model.

This work is concerned with kinetic models for chemotaxis with prevention of

overcrowding and is structured as follows: in Section 2, we introduce kinetic mod-

els for chemotaxis and compute formally its macroscopic (drift-diffusion) limits.

In Section 3 we show three new different kinetic models with a threshold that

implies formal convergence to the Keller–Segel model (1), by extending examples

in [7, 30]. Furthermore, the macroscopic density is uniformly-in-time bounded.

Finally, in Section 4 we prove that these three examples rigorously converges to

the Keller–Segel model, and conclude global existence of solutions to the limit

model (1).

Although it may be mathematically not unexpected, we believe these models

with threshold we consider in this work provide a first applied example where

a nonlinear factor in kinetic models may yield in the limit to existence of both

convection/diffusion and pure diffusion (when the threshold is attained) regimes.

The numerical simulation of pattern formation in the limit model of [16] raises

interesting open questions at the kinetic level.

2 – Models and formal asymptotic expansions

We consider a kinetic model for chemotaxis as presented in [7], i.e., we con-

sider the cell density fε(x, v, t) ≥ 0 and the chemo-attractant density Sε(x, t) ≥ 0

in a point (x, v, t) ∈ R
n×V×R+ and (x, t) ∈ R

n×R+, respectively, where V is the

compact and rotationally invariant set of all possible velocities, V⊂Bvmax
⊂R

n,

whereBr is the ball with center in 0 and radius r. We also consider Tε[S,ρ](x,v,v
′,t),

the turning rate from velocity v′ to v in a space-time point (x, t) where (x, v, v′, t) ∈
R

n×V×V×R+ in the presence of cells and chemo-attractants with densities ρ

and S, respectively. Above, ε > 0 is the ratio between the microscopic variables

and macroscopic variables and the limit ε→ 0 corresponds to the drift-diffusion

limit of the model.

We now obtain, formally, the system satisfied by the macroscopic densities

ρ0 = limε→0

∫

V fε dv and S0 = limε→0 Sε, from the one obeyed by the microscopic

densities fε and Sε.
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We introduce the following notation

fε = fε(x, v, t) ,

f ′ε = fε(x, v
′, t) ,

Tε[S, ρ] = Tε[S, ρ](x, v, v
′, t) ,

T ∗
ε [S, ρ] = Tε[S, ρ](x, v

′, v, t) .

We consider the kinetic model in (Rn×V×R+), with n = 2 or 3.

∂tfε +
1

ε
v · ∇fε = − 1

ε2
Tε[Sε, ρε](fε) ,(2)

Tε[S, ρ](f) :=

∫

V

(

T ∗
ε [S, ρ]f − Tε[S, ρ]f

′
)

dv′ ,(3)

ρε :=

∫

V
fε dv ,(4)

δ ∂tSε = ∆Sε + ρε − δ γ Sε ,(5)

with initial conditions given by

fε(x, v, 0) = f I(x, v) ≥ 0 ,(6)

Sε(x, 0) = SI(x) ≥ 0 .(7)

See [7] for the derivation of the system (2–7). Equation (4) defines the macro-

scopic (physical space) density ρε as a function of the microscopic (phase space)

density fε, when integrated over all possible velocities. We assume δ, γ ≥ 0 and

that the ε-independent initial conditions are in suitable spaces. For simplicity,

we also assume SI≡ 0 in most part of this work and in Remark 6 we extend our

results to the more general case given by Equation (7). Of course, if δ = 0 in (5),

the condition (7) is unnecessary.

Remark 1. If the initial condition f I is compactly supported, then fε is

compactly supported for every t. More precisely, if f I ⊂Br, then

supp fε ⊂ Br+vmaxt/ε .
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The formal asymptotic is obtained in the same way as in [7]. Namely, we

impose the expansion

fε = f0 + ε f1 + · · · ,

ρk :=

∫

v
fk dv ,

Sε = S0 + ε S1 + · · · ,

Tε = T0 + ε T1 + · · · .

We assume the kernel T0[S, ρ](x, v, v
′, t) = λ[S, ρ](x, t)F (v), such that

(A1) F = F (|v|) > 0,

(A2) T0[S, ρ]F
′= T ∗

0 [S, ρ]F ,

(A3)
∫

V F dv = 1,

(A4)
∫

V vF dv = 0.

(A5) The turning rate T0[S, ρ] is bounded, and there exists a constant λmin> 0

such that T0[S, ρ]/F ≥ λmin, ∀ (v, v′) ∈ V×V , x ∈ R
n, t ≥ 0.

From Assumption (A2) we see that T0[S, ρ](F )=0, i.e., F is the non-perturbed

equilibrium distribution. This assumption is called “detailed balance”. Assump-

tion (A3) is a unimportant normalization while (A4) means that the equilibrium

distribution does not cause drift. The others one are technical assumptions.

We put the expansions in the System (2–5) and match terms of the same

order in ε. Arguing as in [7], to order 0, we find that

T0[S0, ρ0](f0) = 0 ,

and then f0 = ρ0F . We also find that

v · ∇f0 = −T0[S0, ρ0](f1) − T1[S0, ρ0](f0) .

This implies that

f1(x, v, t) = −κ(x, v, t) · ∇ρ0(x, t) − Θ(x, v, t) ρ0(x, t) + ρ1(x, t)F (v) ,

where

T0[S0, ρ0](κ) = vF ,

T0[S0, ρ0](Θ) = T1[S0, ρ0](F ) .
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We integrate Equation (2) over V and finally find that the macroscopic system

is given by

∂tρ0 = ∇·
(

D[S0, ρ0]∇ρ0 − Γ[S0, ρ0] ρ0

)

,(8)

δ ∂tS0 = ∆S0 + ρ0 − δ γ S0 ,(9)

where

D[S0, ρ0] =

∫

V
v ⊗ κ[S0, ρ0](x, v, t) dv ,(10)

Γ[S0, ρ0] = −
∫

V
vΘ[S0, ρ0](x, v, t) dv .(11)

For simplicity we consider γ = 0, which means that we do not consider the

chemical decay of the chemo-attractant, and we normalize δ = 1 (except in

Remark 5, where δ = 0). Furthermore, the matrix D[S0, ρ0] is symmetric and

positive definite (see Remark 2 in [7]), and Γ[S0, ρ0] is the convection term.

Assumptions (A1–A5) imply that Equations (10) and (11) can be written

simply as

D[S0, ρ0] =
1

nλ[S0, ρ0]

∫

V
|v|2 F (|v|) dv I ,(12)

Γ[S0, ρ0] = − 1

λ[S0, ρ0]

∫

V
v T1[S0, ρ0](F ) dv ,(13)

where I is the n×n identity matrix.

Let us introduce three different models and obtain, formally, their drift-

diffusion limit:

(M1) In the first model we have Tε = T0 + εT1, where T0[S, ρ] = λ[S, ρ]F is a

non-oriented turning kernel and the chemotactical perturbation is given by

T1[S, ρ](x, v, v
′, t) = F (v)

(

a
(

S(x, t), ρ(x, t)
)

v − b
(

S(x, t), ρ(x, t)
)

v′
)

· ∇S(x, t) ,

where a and b are real continuous functions defined in [0,∞) × [0,∞),

such that 0 < a(S, ρ) < ā(S), 0 < b(S, ρ) < b̄(S) for ρ ∈ [0, ρ̄) and a(S, ρ) =

b(S, ρ) = 0, for ρ ≥ ρ̄. We immediately see that if v points in the direction

of ∇S (or, v′ points in the opposite direction) the turning rates increases.

Then, intuitively, the overall effect is to make the cell walk upward the

gradient. Similar kinds of models appear in [7, 17].

In this case we have

Γ[S, ρ] =
1

nλ[S, ρ]

[

a(S, ρ) + b(S, ρ)
]

∫

V
v2 F (|v|) dv∇S ;
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(M2) Let us define, following [17], the “non-local gradient”:

◦

∇
R
S(x, t;R) =

n

Rwn−1

∫

Sn−1

ν S(x+Rν, t) dν ,

where wn−1 is the area of the n−1-dimensional sphere. The turning kernel

is defined by

Tε[S, ρ] = λ[S, ρ]F (v) + F (v)
[

◦
a(S, ρ) v −

◦

b(S, ρ) v
′
]

·
◦

∇
R
S(x, t; εR) ,

where
◦
a and

◦

b are real continuous functions defined in [0,∞) × [0,∞),

such that 0 <
◦
a(S, ρ) <

◦̄
a(S), 0 <

◦

b(S, ρ) <
◦̄

b(S) for ρ ∈ [0, ρ̄) and
◦
a(S, ρ)=

◦

b(S, ρ) = 0, for ρ ≥ ρ̄. From the fact that, at least formally,

lim
R→0

◦

∇
R
S(x, t; εR) = ε∇S(x, t) ,

we see that the “non-local gradient” is an approximation of the gradient

∇S (for small R) and thus the interpretation is similar to the case (M1).

Formally, T0 and T1 are the same as in model (M1) (with a and b replaced

by
◦
a and

◦

b), and so is Γ[S, ρ]; and

(M3) We define a third kernel given by

Tε[S, ρ](x, v, v
′, t) = c+ ψ

(

S(x, t), S(x+ εµ+(ρ)v, t)
)

F (v)

+ c− ψ
(

S(x, t), S(x− εµ−(ρ)v′, t)
)

F (v) ,

where ψ : R+×R+ → R+ is a differentiable, non-decreasing (in the second

variable) function. We interpret εµ±(ρ)vmax as the effective radius of the

cell, with the sign + indicating its ability to access future directions and

− its memory of past directions. These functions µ± are real continuous

functions defined in [0,∞) such that 0 < µ±(ρ) < µmax for ρ ∈ [0, ρ̄) and

µ±(ρ) = 0, for ρ ≥ ρ̄, i.e., if concentration is higher that a certain threshold

the cell becomes “blind”. We write the expansion Tε = T0 + εT1 + O(ε2),

where
T0[S, ρ] = (c++ c−)ψ(S, S)F (v) ,

T1[S, ρ] = ∂2ψ(S, S)F (v)
(

c+µ+(ρ)v − c−µ−(ρ)v′
)

· ∇S ,

where ∂2ψ means differentiation with respect to the second variable.

Finally,

Γ[S, ρ] =
∂2ψ(S, S)

n(c++ c−)ψ(S, S)

(

c+µ+(ρ) + c−µ−(ρ)
)

∫

V
v2 F (|v|) dv∇S .
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So the three models converge formally to Keller–Segel equation (1) with dif-

fusion coefficient given by Equation (12) and chemotactical sensitivity χ(S) given

by

χ(S)β(ρ)∇S = Γ[S, ρ] .

For given functions D, χ, β it is necessary to find new functions λ, a and b,

or
◦
a and

◦

b or ψ, µ+ and µ− which obey the above equation and Equation (12).

Remark 2. In the Keller–Segel model (1), we have that D[S0, ρ0] = D0

is a constant. Then, we find that λ is a constant (see Equation (12)), and then

T0[S, ρ]=λF . In this work, we will consider however the more general dependence

T0[S, ρ](x, v, v
′, t) = λ(t)F (v), where λ(t) ∈ [λmin, λmax], λmin, λmax ∈ (0,∞),

∀t ∈ R+, is a continuous function.

Remark 3. The value ρ̄ is called saturation value. For space-time points

(x, t) such that ρ(x, t) ≥ ρ̄ the movement is purely random, without any chemo-

tactical effect. We will prove in the following sections that this (with some other

assumptions) prevents blow-up. In fact a stronger conclusion holds, that is, the

cell concentration in each point never increases beyond that value, or beyond the

initial condition.

These three models, however, are different in its chemotactical part, i.e., wher-

ever ρ(x, t) < ρ̄. In the first model cells are directly able to measure gradients of

the concentration. It is not clear that they really can do so, see [30]. In the second

case cells measure only concentration on its surface (for all practical purposes,

we consider cells as spheres centered in x and with radius εR) and integrate over

all directions. Finally, in (M3), all they need is to access the concentration value

in some effective radius, but no “integration ability” is required.

3 – Global existence of kinetic solutions

In this section we introduce further restrictions in order to prove the global

existence of solutions for the kinetic models. These assumptions will not be

necessary to prove convergence to the drift-diffusion limit in Section 4.

For kinetic models, local-in-time existence and uniqueness of solutions are

guaranteed, see [5] or [33]. The positivity (≥ 0) of solutions is a simple conse-

quence of the positivity of the turning rate Tε[S, ρ] and of the initial conditions.
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We prove global existence in the kinetic level for the models (M1), (M2) and

(M3) subject to Remark 2 and with some other assumptions to be soon intro-

duced. For simplicity, we omit ε > 0 wherever its omission causes no confusion.

In particular, we write f := fε, ρ := ρε and S := Sε.

We introduce the following assumptions in models (M1), (M2) and (M3)

respectively:

(B1) We assume that b≡0, that a(S, ρ)/(ρ̄−ρ) is a non-increasing function of ρ

and

sup
S≥0,ρ≥0

a(S, ρ)

ρ̄− ρ
≤ amax

ρ̄
,

where

amax := sup
S≥0

a(S, 0) .

(B2) We assume that
◦

b ≡0, that
◦
a(S, ρ)/(ρ̄−ρ) is a non-increasing function of ρ

and

sup
S≥0,ρ≥0

◦
a(S, ρ)

ρ̄− ρ
≤

◦
amax

ρ̄
,

where

◦
a

max
:= sup

S≥0

◦
a(S, 0) .

(B3) We impose c−= 0, c+ = 1 and µ := µ+. We also impose

sup
ρ≥0

µ(ρ)

ρ̄− ρ
≤ µmax

ρ̄
,

with

µmax := sup
ρ≥0

µ(ρ) .

From Remark 2, we have that ψ(S, S) = λ ≥ λmin > 0 and we impose that

sup
S,S′≥0

∂ψ(S, S′)

∂S′
= ψ1 ∈ (0,∞) .
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We define

Λ0 :=
1

n

[

2n−2(n−1)

π1/2 Γ(n)max
{

‖ρI‖L∞(Rn), ρ̄
}

](n−1)/n [

2n+1 πn/2

√
2 e−1/2 ‖ρI‖L1(Rn)

]1/n

,

and our main result reads:

Theorem 1. Let i = 1, 2, 3. Assume ε < εi, where

ε1 :=
λmin

amax vmax
Λ0 ,

ε2 :=
λmin

n
◦
amax vmax

Λ0 ,

ε3 :=
λmin

2ψ1 µmax vmax
Λ0 .

Let us consider the model (Mi), subject to Assumptions (A1–A5), (Bi) and

Remark 2 with initial conditions given by f I(x, v)=ρI(x)F (v), ρI∈L1
+∩L∞(Rn),

SI =0. Then the solution (f, S) of the nonlinear system (2–7) with δ=1 and γ=0

exists globally: f ∈L∞(0,∞;L1
+∩L∞(Rn×V )), S∈L∞(0, t;Lp(Rn)), p∈(n/2,∞],

∀t∈(0,∞). Furthermore,

‖ρ(·, t)‖L∞(Rn) ≤
∥

∥

∥

∥

f(·, ·, t)
F

∥

∥

∥

∥

L∞(Rn×V )

≤ max
{

‖ρI‖L∞(Rn), ρ̄
}

, ∀ t ∈ R+ .

The proof will involve several lemmas. We prove each lemma for i = 1 and

then extend it for i = 2 and 3. Let us first explain the general idea in the proof.

We first start with Lemma 1 where we show that ‖∇S(·, t)‖L∞(Rn) is bounded

by both ‖ρ(·, s)‖L1(Rn) and ‖ρ(·, s)‖L∞(Rn), s ∈ [0, t]. This is identically valid

regardless of the case i. Then, we show that if and while the turning kernel is

positive, then ‖ρ(·, t)‖L∞(Rn) is uniformly-in-time bounded (Lemma 2). Putting

together this two lemmas, we prove that ‖∇S(·, t)‖L∞(Rn) is uniformly-in-time

bounded (Lemma 3). This allows the extension of the turning kernel (Mi) to

all times t ∈ R+ (Lemma 4), and applying Lemmas 2 and 3 once more we finish

the proof.

Lemma 1. Let S be the solution of (5) with δ=1 and γ=0, q∈(n,∞],

SI =0, and let t0>0 be fixed. Then, there are constants c0 =c0(q, n) and c1 =c1(n)

such that

(14) ‖∇S(·, t)‖L∞(Rn) ≤ c0

∫ t

0
(t−s)−

n

2q
− 1

2 ‖ρ(·, s)‖Lq(Rn) ds ,
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(15) ‖∇S(·, t)‖L∞(Rn) ≤ 2 q

q − n
c0 t

(q−n)/(2q) sup
s∈[0,t]

‖ρ(·, s)‖Lq(Rn) ,

for t > 0 and

‖∇S(·, t)‖L∞(Rn) ≤(16)

≤ 2 q

q − n
c0 sup

s∈[0,t0]
‖ρ(·, t−s)‖Lq(Rn) t

(q−n)/(2q)
0 +

c1‖ρI‖L1(Rn)

t
(n−1)/2
0

,

for t > t0. (In the above, if q = ∞, then (q−n)/q = 1.)

Proof: We write S = Υ ∗ ρ, where

Υ(x, t) =
1

(4πt)n/2
e−x2/(4t) ,

and ∗ denotes space and time convolution. Then ∇S = ∇Υ ∗ ρ, where

∇Υ(x, t) = − x e−x2/(4t)

2(4π)n/2 tn/2+1
.

We use the bound |x|e−x2/(4t) ≤
√

2t e−1/2 and prove that

‖∇Υ(·, t)‖L∞(Rn) ≤ 1

2(4π)n/2 t(n+2)/2
sup
x∈Rn

{

|x| e−x2/(4t)
}

≤
√

2 e−1/2

2(4π)n/2

1

t(n+1)/2
.

We also show that

‖∇Υ(·, t)‖p
Lp(Rn) =

∫

Rn

xp e−px2/(4t)

2p(4π)np/2 tp(n+2)/2
dx

=
ωn−1

2p(4π)np/2 tp(n+2)/2

∫ ∞

0
xp+n−1 e−px2/(4t) dx

=
2n−1 ωn−1

(4π)np/2 p(p+n)/2
Γ

(

p+n

2

)

t−(n(p−1)+p)/2 ,

where ωn−1 = |Sn−1| = 2πn/2/Γ(n
2 ). Finally, we have

‖∇Υ(·, t)‖Lp(Rn) = c0(q, n) t
−n

2

�
1− 1

p

�
− 1

2 ,

with

c0(q, n) =

[

Γ
(

n
2

)

Γ
(p+n

2

)

πn(p−1)/2 p(p+n)/2

]1/p

,
1

q
+

1

p
= 1 .
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From the properties of the Gamma functions, we have

c0(∞, n) = Γ

(

n

2

)

Γ

(

n+1

2

)

=
πn/2 Γ(n)

2n−1
.

We use Young’s inequality to prove that

‖∇S(·, t)‖L∞(Rn) ≤
∫ t

0
‖∇Υ(·, t− s)‖Lp(Rn) ‖ρ(·, s)‖Lq(Rn) ds

≤ c0 sup
s∈[0,t]

‖ρ(·, s)‖Lq(Rn)

∫ t

0
(t−s)−

1

2
− n

2q ds

=
2 q c0
q − n

sup
s∈[0,t]

‖ρ(·, s)‖Lq(Rn) t
q−n

2q ,

which proves Equations (14) and (15).

Now, we fix a certain time t0 > 0 and write for t > t0

‖∇S(·, t)‖L∞(Rn) ≤

≤
∫ t0

0
‖∇Υ(·, s)‖Lp(Rn) ‖ρ(·, t− s)‖Lq(Rn) ds

+

∫ t

t0

‖∇Υ(·, s)‖L∞(Rn) ‖ρ(·, t− s)‖L1(Rn) ds

≤ c0 sup
s∈[0,t0]

‖ρ(·, t−s)‖Lq(Rn)

∫ t0

0
s
− n

2q
− 1

2 ds +

√
2 e−1/2

2(4π)n/2
‖ρI‖L1(Rn)

∫ t

t0

ds

s(n+1)/2

≤ 2 q

q−n c0 sup
s∈[0,t0]

‖ρ(·, t−s)‖Lq(Rn) t
(q−n)/(2q)
0 + c1‖ρI‖L1(Rn)

[

1

t
(n−1)/2
0

− 1

t(n−1)/2

]

≤ 2 q

q−n c0 sup
s∈[0,t0]

‖ρ(·, t−s)‖Lq(Rn) t
(q−n)/(2q)
0 + c1‖ρI‖L1(Rn)

1

t
(n−1)/2
0

,

with

c1(n) =

√
2 e−1/2

2n+1 πn/2
.

Remark 4. The central idea in Lemma 1 is to use the estimate

sup
s∈[0,t]

‖∇S(·, s)‖L∞(Rn) ≤ c

(

sup
s∈[0,t]

‖ρ(·, s)‖L∞(Rn) + sup
s∈[0,t]

‖ρ(·, s)‖L1(Rn)

)

,
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for a certain constant c, which is valid in general when

∂tS − ∆S = ρ

for ρ ∈ L1
+∩L∞(Rn). This estimation, however, is unable to provide an explicit

value for εi, i=1, 2, 3 as in Theorem 1.

Lemma 2. Consider a time t∗>0 such that Tε[S, ρ] ≥ 0 for all (x, v, v′, t) ∈
(Rn×V×V×[0, t∗]) and consider the assumptions as in Theorem 1. Then

(17) sup
t∈[0,t∗]

‖ρ(·, t)‖L∞(Rn) ≤ max
{

‖ρI‖L∞(Rn), ρ̄
}

.

Proof: Initially, we prove for i = 1.

Consider first that ‖ρI‖L∞(Rn) ≤ ρ̄. Then, we define

f̃ = ρ̄ F − f ,

ρ̃ =

∫

V
f̃ = ρ̄− ρ ,

S̃ = ρ̄ t− S ,

ã(S̃, ρ̃) =
a(S, ρ)ρ

ρ̄− ρ
.

First we prove that

ã(S̃, ρ̃) ≤ amaxρ̄

ρ̄
≤ amax ,

and conclude that

(18) T̃ε[S̃, ρ̃] := λF + ã(S̃, ρ̃)Fv ·∇S̃ ≥ 0 , ∀(x,v,v′,t) ∈ (Rn×V×V×[0, t∗]) .

We easily see that

∇S̃ = −∇S .

(f, S) is solution of

ε2 ∂tf + ε v · ∇f + λf = λFρ+ ε Fa(S, ρ) v · ∇Sρ ,

∂tS − ∆S = ρ :=

∫

V
f dv ,
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with f I = ρIF , SI = 0, while (f̃ , S̃) satisfies the system

ε2 ∂tf̃ + ε v · ∇f̃ + λ f̃ = λF ρ̃− ε Fa(S, ρ) v · ∇Sρ = λF ρ̃+ ε F ã(ρ̃, S̃) v · ∇S̃ρ̃ ,

∂tS̃ − ∆S̃ = ρ̃ :=

∫

V
f̃ dv ,

with initial conditions given by f̃ I = ρ̃IF = (ρ̄− ρI)F > 0 and S̃I = 0. Using the

positivity of the turning kernel, Equation (18), we conclude the positivity of the

solution f̃ , i.e.,

(19) 0 ≤ ρ̄ F − f

and then

ρ =

∫

V
f dv ≤ ρ̄ .

Now, let us suppose that ‖ρI‖L∞(Rn) > ρ̄. Let x ∈ R
n be such that there is

a neighborhood U of x such that ρI(x) > ρ̄ for x ∈ U , and a time tmax such

that the ball with center in x and radius vmaxtmax is included in U . Then, in

U×V×[0, tmax], we write:

ε2 ∂tf + ε λf + v ·∇f = λFρ ,

or, equivalently,

e
1

ε2

R
t

0
λ(τ)dτf(x, v, t) = f

(

x− v

ε
t, v, 0

)

(20)

+

∫ t

0
e

1

ε2

R
s

0
λ(τ)dτ λ(s)

ε2
F (v) ρ

(

x− v(t− s)

ε
, s

)

ds .

We integrate over V and find that

e
1

ε2

R
t

0
λ(τ)dτρ(x, t) ≤ ‖ρI‖L∞(Rn) +

∫ t

0
e

1

ε2

R
s

0
λ(τ)dτ λ(s)

ε2
‖ρ(·, s)‖L∞(U) ds .

Now, we take the L∞(U)-norm, use Gronwall’s inequality and find that

‖ρ(·, t)‖L∞(U) ≤ ‖ρI‖L∞(Rn) .

Gathering both results, we conclude that

‖ρ(·, t)‖L∞(Rn) ≤ max
{

‖ρI‖L∞(Rn), ρ̄
}

.
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For i = 2 the proof is exactly the same. We need only to see that

◦

∇
R
S̃ = −

◦

∇
R
S .

Now, we prove for i = 3. For simplicity, we define S := S(x, t), S+ :=

S(x+ εµ(ρ)v, t) and S′
+ := S(x+ εµ(ρ)v′, t). We define the function

(21) ψ̃(ρ̄t−S, ρ̄t−S+) :=
1

ρ̄− ρ

[
∫

V
ψ(S, S′

+)F (v′) dv′ ρ̄− ψ(S, S+)ρ

]

.

We immediately note that
∫

V
ψ̃(ρ̄t−S, ρ̄t−S+)F (v) dv =

∫

V
ψ(S, S+)F (v) dv .

We write the kinetic model as

∂t(ρ̄F−f) + v · ∇(ρ̄F−F ) =

= −
∫

V
ψ(S, S′

+)F ′ dv′ (ρ̄F−f) − ψ(S, S+)Fρ +

∫

V
ψ(S, S′

+)F ′ dv′ ρ̄F

= ψ̃(ρ̄t−S, ρ̄t−S+)F (ρ̄−ρ) −
∫

V
ψ̃(ρ̄t−S, ρ̄t−S′

+)F ′ dv′ (ρ̄F−f) .

If the kernel defined by Equation (21) is positive, which is true for sufficiently

short times, as ψ̃|t=0 = λ(0) ≥ λmin > 0, and ‖ρI‖L∞(Rn) ≤ ρ̄, then the bound for

ρ follows. If ‖ρI‖L∞(Rn)>ρ̄, we use the same argument as before and the fact

that ψ(S, S) = λ.

Lemma 3. Consider a time t∗>0 such that Tε[ρ, S] ≥ 0 for all (x, v, v′, t) ∈
(Rn×V×V×[0, t∗]) and consider the assumptions as in Theorem 1 with i=1, 2 or 3.

Then

sup
t∈[0,t∗]

‖∇S(·, t)‖L∞(Rn) ≤(22)

≤ n

(n−1)(n−1)/n

[

π1/2 Γ(n)max
{

‖ρI‖L∞(Rn), ρ̄
}

2n−2

](n−1)/n [√
2 e−1/2 ‖ρI‖L1(Rn)

2n+1 πn/2

]1/n

.

Proof: Let us define

t̄ =

[

(n−1)
√

2 e−1/2‖ρI ‖L1(Rn)

8π(n+1)/2 Γ(n)max
{

‖ρI‖L∞(Rn), ρ̄
}

]2/n

,
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the value that minimizes the function

π1/2 Γ(n)

2n−2
max

{

‖ρI‖L∞(Rn), ρ̄
}

t1/2 +

√
2 e−1/2‖ρI ‖L1(Rn)

2n+1 πn/2 t(n−1)/2
,

restricted to t ∈ R+. If t∗> t̄, then, from Lemma 1, Equation (16), with t0 = t̄,

we conclude Equation (22). Now, consider t∗≤ t̄. Then, from Equation (15),

we have that

sup
t∈[0,t∗]

‖∇S(·, t)‖L∞(Rn) ≤
π1/2 Γ(n)max

{

‖ρI‖L∞(Rn), ρ̄
}

2n−2
t̄1/2 =

= (n−1)1/n

[

π1/2 Γ(n)max
{

‖ρI‖L∞(Rn), ρ̄
}

2n−2

](n−1)/n [√
2 e−1/2 ‖ρI‖L1(Rn)

2n+1 πn/2

]1/n

.

Using that n/(n−1)(n−1)/n > (n−1)1/n, we finish the proof.

Lemma 4. Consider the assumptions of Theorem 1. Then the turning kernel

is always positive, i.e.,

Tε[S, ρ](x, v, v
′, t) ≥ 0 , ∀ (x, v, v′, t) ∈ R

n×V×V×R+ .

Proof: Let us fix ε < εi and apply Lemma 2 to a certain maximum time

( that exists, because solutions exist locally in time and Tε[S, ρ](x, v, v
′, 0) =

λ(0)F (v) > 0 )

t1 = sup
{

t ∈ R+ | Tε[S, ρ] ≥ 0 ∀ (x, v, v′) ∈ R
n×V×V

}

> 0 .

Now, we prove, by contradiction, that t1 = ∞. Let us suppose that t1<∞.

From Lemma 3, with i = 1, we see that

ε amax vmax sup
t∈[0,t1]

‖∇S(·, t)‖L∞(Rn) < ε1 amax vmax sup
t∈[0,t1]

‖∇S(·, t)‖L∞(Rn) ≤ λ .

This implies that Tε[S, ρ](x, v, v
′, t1) > 0 and then sup{t| Tε[S, ρ] ≥ 0} > t1,

contradiction.

For i = 2, we use that, from the Mean Value Theorem,

◦

∇
R
S(x, t; εR) =

n

εRwn−1

∫

Sn−1

ν
(

S(x+εRν, t)−S(x, t)
)

dν ≤ n‖∇S(·, t)‖L∞(Rn) ,

and the same holds true.
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If i=3, we prove the positivity of the turning kernel given by Equation (21),

for ε ≤ ε3.

First of all, note that if ρ > ρ̄, ψ̃(ρ̄t−S, ρ̄t−S+) = ψ(S, S) ≥ λmin > 0.

Consider ρ < ρ̄. Then

ψ(S, S+)ρ −
∫

V
ψ(S, S′

+)F ′ dv′ ρ̄ ≤

≤ ψ(S, S) (ρ−ρ̄) + εψ1 µ(ρ) (ρ̄+ρ) vmax ‖∇S(·, t)‖L∞(Rn) .

This implies that

1

ρ̄−ρ

[

ψ(S, S+)ρ −
∫

V
ψ(S, S′

+)F ′ dv′ ρ̄

]

≤

≤ −ψ(S, S) + εψ1
µ(ρ)

ρ̄−ρ (ρ+ ρ̄) vmax ‖∇S(·, t)‖L∞(Rn) .

From Lemma 3, we conclude that ψ̃ ≥ 0. Finally, we define ψ̃ for ρ = ρ̄ by

continuity (from both sides).

Proof of Theorem 1: From Lemma 4 we know that the model is well-

defined (i.e., the turning kernel is non-negative) for t ≥ 0. Then, we apply

Lemmas 2 and 3 to conclude the boundedness of ρ and ∇S. For the bound

on S, we see that from the Young’s inequality

‖S(·, t)‖Lp(Rn) ≤
∫ t

0
‖Υ(·, s)‖Lq(Rn) ‖ρ(·, t−s)‖L∞(Rn) ds ,

for p−1+1 = q−1. We immediately see that

‖Υ(·, t)‖Lq(Rn) =
1

qn/(2q) (4πt)n(q−1)/2
,

and then

(23) ‖S(·, t)‖Lp(Rn) ≤
max

{

‖ρI‖L∞(Rn), ρ̄
}

qn/(2q) (4π)n(q−1)/(2q)

∫ t

0

ds

sn(q−1)/(2q)
.

For p > n/2, q > n/(2 + n) and, then, the last integral is convergent, as

n(q − 1)/(2q) > −1.

From the Definition (4), we see that

(24) ‖ρ(·, t)‖L∞(Rn) ≤
∥

∥

∥

∥

f(·, ·, t)
F

∥

∥

∥

∥

L∞(Rn×V )

∫

V
F (v) dv =

∥

∥

∥

∥

f(·, ·, t)
F

∥

∥

∥

∥

L∞(Rn×V )

.
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Finally, we use Equation (19) and apply Gronwall’s Lemma to Equation (20) to

conclude that

(25)

∥

∥

∥

∥

f(·, ·, t)
F

∥

∥

∥

∥

L∞(Rn)

≤ max
{

‖ρI‖L∞(Rn), ρ̄
}

.

Remark 5. For models of hyperbolic-elliptic type, i.e., with δ=0 in Equa-

tion (9), Theorem 1 remains valid, possibly with different εi, i = 1, 2, 3, as the

inequality in Remark 4 continues to be true.

Remark 6. We can relax the assumption that SI ≡ 0, replacing it for the

weaker assumption that SI ∈ L1
+∩W 1,∞(Rn), possibly changing the values of εi,

i=1, 2 or 3 in Theorem 1. We need only to add ‖∇SI‖L∞(Rn) on the right

hand side of Equations in Lemmas 1 and 3 and redefine, in Lemma 1, S̃ =

ρ̄t + ‖SI‖L∞(Rn)−S. The left hand side of Equation (21) should also change to

ψ̃
(

ρ̄t+ ‖SI‖L∞(Rn)−S, ρ̄t+ ‖SI‖L∞(Rn)−S+

)

, and we need also to impose that

inf
S,S′≥0

ψ(S, S′) = ψ0 > 0 .

Remark 7. Assumption (M3) can be relaxed to the weaker case where

µ(ρ) → 0, when ρ→ ∞, sufficiently fast. It is proven (see [6]) global existence

of solutions and global-in-time convergence to the drift-diffusion limit (with sen-

sitivity decaying to zero for high cell concentration). That limit model was in-

troduced in [37, 36] and its solutions exist globally.

4 – Convergence to the Drift-diffusion Models

In this section we prove convergence of the kinetic models in the drift-diffusion

limit (i.e., ε→ 0) to the Keller–Segel equations. We will not require particular

models, like in the previous sections, as the theorems to be presented are quite

general. However, for the particular models in Section 3, as a consequence of the

global bound of Theorem 1, we may also obtain global existence of solutions to

the limit models

Let us define the symmetric and anti-symmetric parts of Tε[S, ρ]F , respec-

tively, by:

φS
ε [S, ρ] =

Tε[S, ρ]F
′ + T ∗

ε [S, ρ]F

2
,(26)

φA
ε [S, ρ] =

Tε[S, ρ]F
′ − T ∗

ε [S, ρ]F

2
.(27)
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Theorem 2. Let F ∈ L∞(V ) be a positive velocity distribution satisfying

Assumptions (A1–A5) and let φS
ε [S] and φA

ε [S] be defined as above. Assume

that there exist q > 3, λ0 > 0, and a non-decreasing function Λ ∈ L∞
loc([0,∞)),

such that

f I

F
∈ Xq := L1

+∩ Lq(Rn×V ; F dx dv) ,(28)

φS
ε [S, ρ] ≥ λ0

(

1 − εΛ(‖S‖W 1,∞(Rn))
)

FF ′ ,(29)
∫

V

φA
ε [S, ρ]2

F φS
ε [S, ρ]

dv′ ≤ ε2Λ(‖S‖W 1,∞(Rn)) .(30)

Then there exists t∗ > 0, independent of ε, such that the existence time of

the local mild solution of (2–7) is bigger than t∗, and the solution satisfies,

uniformly in ε,

fε

F
∈ L∞(0, t∗;Xq) ,

Sε ∈ L∞(0, t∗; Lp∩C1,α(Rn)) , α <
q−n
q

, 3<p<∞ ,(31)

rε =
fε − ρεF

ε
∈ L2

(

R
n×V×(0, t∗);

dx dv dt

F

)

.

Proof: The proof is the same as in [7] and extended in [21].

Theorem 3. Let the assumptions of Theorem 2 hold. Assume further

that for families Sε uniformly bounded (as ε → 0) in L∞
loc(0,∞; C1,α(Rn)) for

some 0 < α ≤ 1, such that Sε and ∇Sε converge to S0 and ∇S0, respectively,

in Lp
loc(R

n×[0,∞)) for some p > 3/2 and ρε converges to ρ0 in L2
loc(R

n×[0,∞)),

we have the convergence

Tε[Sε, ρε] → T0[S0, ρ0] in Lp
loc(R

n×V×V×[0,∞)) ,

Tε[Sε, ρε](F )

ε
=

2

ε

∫

V
φA

ε [Sε, ρε] dv
′ → T1[S0, ρ0](F ) in Lp

loc(R
n×V×[0,∞)) .

Then solutions of (2–7) satisfy (possibly after extracting subsequences)

ρε → ρ0 in L2
loc(R

n×(0, t∗)) ,

Sε → S0 in Lq
loc(R

n×(0, t∗)) , 1≤q<∞ ,

∇Sε → ∇S0 in Lq
loc(R

n×(0, t∗)) , 1≤q<∞ .
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The limits are weak solutions of (8–9) subject to the initial condition

ρ0(x, 0) =

∫

V
f I(x, v) dv ,

S0(x, 0) = SI(x) .

Proof: The proof of the convergence of Sε and ∇Sε can be found in [7]

and [21]. There, we found also the weak convergence of fε. Now, we prove the

strong convergence of ρε in L2
loc(R

n×(0, t∗)). We have that fε = ρεF + εrε, then

we take equation (2), multiply by v and integrate over V . We find

∂t

∫

V
vfε dv +

1

ε
λ[S0, ρ0]D[S0, ρ0]∇ρε + ∇·

∫

V
v ⊗ vrε dv =

=
1

ε
ρε

∫

V

Tε[Sε, ρε](F )

ε
v dv +

1

ε

∫∫

V ×V

[

Tε[Sε, ρε]r
′
ε − T ∗

ε [Sε, ρε]rε
]

v dv dv′.

This implies that

λ[S0, ρ0]D[S0, ρ0]∇ρε =

= ρε

∫

V

Tε[Sε, ρε](F )

ε
v dv +

∫∫

V ×V

(

Tε[Sε, ρε]r
′
ε − T ∗

ε [Sε, ρε]rε
)

v dv dv′

− ε∇·
∫

V
v ⊗ vrε dv − ε ∂t

∫

V
vfε dv .

From the estimates obtained in Theorem 3 and Rellich’s Theorem, we have that

λ[S0, ρ0]D[S0, ρ0]∇ρε is in a compact set of H−1
loc (Rn×(0, t∗)). Now use that

λ[S0, ρ0] is bounded from below (Assumption (A5)) and D[S0, ρ0] is positive def-

inite to conclude that ∇ρε lies in a compact set of H−1
loc (Rn×(0, t∗)). We use the

div-curl lemma of L. Tartar [26, 35]. We define

Jε :=
1

ε

∫

V
vfε dv =

∫

V
vrε dv .

Now, consider

Xε = (Jε, ρε) ,

Yε = (0, ρε) .

We have

div(x,t)Xε = ∇· Jε + ∂tρε = 0 ,

curl(x,t)Yε = −curlx ρε .
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The RHS of both equations, lie inH−1
loc (Rn×(0, t∗)), then from the div-curl lemma,

ρ2
ε = Xε ·Yε → X0 ·Y0 = ρ2

0, weak-∗. The convergence is a simple consequence

of the bound in fε in Theorem 2. See [9] for a similar case.

Corollary 1. For i=1, 2 or 3, Models (Mi), subject to Assumptions (A1–5),

(Bi) and Remark 2 with regular initial conditions converge to the Keller–Segel

model (1) in their drift-diffusion limits, for arbitrarily large existence times (if ε

is small enough, according to Theorem 1). The limit model has global existence

of its solutions. In particular

(32) ‖ρ0(·, t)‖L∞(Rn) ≤ max
{

‖ρI‖L∞(Rn), ρ̄
}

.

Proof: For these models, we prove Equations (29–30) and we immediately

see that assumptions in Theorem 3 are satisfied. Then we find that maximum ex-

istence time t∗ in Theorem 2 can be arbitrarily large, as, according to Theorem 1,

solutions are bounded. It is important to note that the bounds (23), (24) and (25)

in Theorem 1 are uniform in ε. From Theorem 3 we have that ρε converges to ρ0

in L2
loc(R

n×(0, t∗)) and, as ‖ρε(·, t)‖L∞(Rn) is uniformly-in-time bounded with a

bound uniform in ε, we conclude Equation (32).

Remark 8. It is important to stress the differences between Corollary 1 and

the global existence results presented in [16]. In the latter, coefficients β and χ

that appear in Equation (1) are supposed to be of class C3. In models (Mi),

i=1, 2, 3, we only need continuity of a,
◦
a and µ, resulting in the same assumption

for the chemotactical sensitivity in the limit. On the other hand, in order to prove

global-in-time existence, we explicitly used assumption (Bi), i=1, 2, 3, imposing

that the decay of these constants in the range ρ ∈ [0, ρ̄) is at most linear. This was

not used in [16]. We also allow the time dependence of the diffusion coefficient D.

This was not considered in [16]. Finally, our result holds for the entire space R
n,

while in [16] the result is valid on a C3-differentiable, compact Riemannian man-

ifold with periodic boundary conditions. In [16], they also consider a positive

chemical decay for S, while we consider only a non-negative one. Other differ-

ences seem to be purely technical.
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