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ON THE CONCENTRATION OF SOLUTIONS OF SINGULARLY

PERTURBED HAMILTONIAN SYSTEMS IN R
N

Miguel Ramos and Sérgio H.M. Soares

Abstract: We consider a system of the form −ε2∆u + a(x)u = g(v), −ε2∆v +

a(x) v = f(u) in R
N, N>3 and f and g are power-type nonlinearities having superlinear

and subcritical growth at infinity. We establish that the least energy solutions to such a

system concentrate at global minimum points of a as ε→ 0.

1 – Introduction

We consider

(1.1) −ε2∆u+ a(x)u = g(v) , −ε2∆v + a(x) v = f(u) , u, v ∈ H1(RN ) ,

where a(x) ∈ C(RN ) is such that

(1.2) 0 < a(0) = min
x∈RN

a(x) < lim inf
|x|→∞

a(x) ∈ ]0,+∞] .

Concerning f and g, we will assume the following.

(H) f(0)=0=f ′(0), g(0)=0=g′(0) and there exist real numbers ℓ1, ℓ2 > 0

and p, q > 2 such that 1
p + 1

q >
N−2

N and

(1.3) lim
|s|→∞

f ′(s)

|s|p−2
= ℓ1 , lim

|s|→∞

g′(s)

|s|q−2
= ℓ2 .
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Moreover, for some δ > 0 and every s ∈ R, s 6= 0,

(1.4) f(s)s > (2+δ)F (s) > 0 and f2(s) 6 2 f ′(s)F (s) ,

and

(1.5) g(s)s > (2+δ)G(s) > 0 and g2(s) 6 2 g′(s)G(s) ,

where F (s) :=
∫ s
0 f(σ) dσ and G(s) :=

∫ s
0 g(σ) dσ. We look for positive solutions

of (1.1), and therefore we let f(s) = g(s) = 0 for s 6 0.

Our motivation for the study of such a problem goes back to the works of

Rabinowitz [10] and Wang [13] concerning the single equation

(1.6) −ε2∆u+ a(x)u = f(u) in R
N .

In [10], Rabinowitz uses a mountain-pass type argument to find a ground state

for ε > 0 sufficiently small, when a satisfies the global assumption

lim inf
|x|→∞

a(x) > inf
x∈RN

a(x) > 0 .

In [13], Wang proves that the mountain-pass solutions found in [10] concentrate

around a global minimum of a as ε tends to 0. A local version of these results

was proved by Del Pino and Felmer in [6, 7].

It is known that the extension of these results to systems such as (1.1) presents

some difficulties. Roughly, they are due to the strongly indefinite character of

the energy functional associated to the system, that is
∫

RN

(

ε2〈∇u,∇v〉 + a(x)uv − F (u) −G(v)
)

dx .

Other difficulties have to do with the assumption that 1
P + 1

q >
N−2

N (which is

more general than to assume that p, q < 2N/(N−2)) and to the unclear picture

of the “limit problem” associated to (1.1) (nonexistence and uniqueness results).

We refer the reader to the Introduction in [3, 8] for more details on this.

To the best of our knowledge, a first approach to the singularly perturbed

system in a bounded domain, with Neumann boundary, and a(x)≡ 1 appeared

in [3] by means of a dual variational formulation of the problem (restricted to the

case where f(s) = sp−1, g(s) = sq−1, 2 < p, q < 2N/(N−2)). In [1], the authors

employ a similar variational setting to the system (1.1) in R
N which allows

to consider two different functions a(x) and b(x) in the equations of (1.1).
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Related results for Hamiltonian systems can be found in [2]. A more direct

approach was proposed in [11] and was subsequently developed in [8, 9]; in these

papers the authors extend to system (1.1) (in a bounded domain, with Dirichlet

or Neumann boundary conditions, and a(x) ≡ 1) the elementary point of view of

the paper [6] for the single equation (1.6).

In the present paper our goal is to prove the following.

Theorem 1.1. Under assumptions (1.2) and (H) and for any sufficiently small

ε > 0, the system admits a ground-state solution (uε, vε) ∈ C2(RN ) ∩ H1(RN ),

uε, vε > 0 with the following properties: both functions uε and vε attain their

maximum value at some unique and common point xε ∈ R
N ; the sequence (xε)ε

is bounded and, whenever it converges to x0 ∈ R
N along a subsequence, we have

that a(x0) = a(0) = minx∈RN a(x).

The proof of Theorem 1.1 is postponed to Section 4. Before we prove it

we study some auxiliary problems involving appropriate truncated functions in

the place of a(x); in particular, Section 3 contains the core of the proof of

our main result, where we deal with the indefinite sign of the quadratic term
∫

RN

(

〈∇u,∇v〉 + a(x)uv
)

. We point out that this is in contrast with the single

equation case, where no such problem arises.

2 – Preliminaries

In this section we establish some preliminary results needed for the proof of

Theorem 1.1. Given f, g ∈ C2(R; R) satisfying condition (H), we consider the

system

(2.1) −∆u+ a(x)u = g(v) , −∆v + a(x) v = f(u) , u, v ∈ H1(RN ) .

Let X be the Hilbert space defined by X = H1(RN ) ∩
{

u :
∫

a(x)u2 < ∞
}

with

the inner product

〈u, v〉 =

∫

(

〈∇u,∇v〉 + a(x)uv
)

,

whose associated norm we denote by ‖ · ‖. Under the hypothesis (1.2), X is

continuously embedded in H1(RN ).

For (u, v) ∈ E
.
= X×X we define the energy functional

(2.2) I(u, v) =

∫

〈∇u,∇v〉 +

∫

a(x)uv −

∫

F (u) −

∫

G(v) ,



160 MIGUEL RAMOS and SÉRGIO H.M. SOARES

where F (s)
.
=

∫ s
0 f(t) dt and G(s)

.
=

∫ s
0 g(t) dt. Under our assumptions, it can

happen that, for instance, q > 2N/(N−2) > p and so I may not be well defined

for (u, v) ∈ E. In order to overcome this problem, as explained in [8] and [11],

we may assume without loss of generality that the numbers p, q in (H) are such

that 2 < p = q < 2N/(N−2). This is due to the fact that in our case we will

always work with ground-states having a bounded Morse index; these solutions

are a priori bounded for the L∞ norm and this bound is unchanged whenever

we truncate f and g in a neighborhood of infinity in such a way that (H) is still

satisfied for the modified functions with 2 < p = q < 2N/(N−2) in condition (1.3)

(see Theorem 1.1 in [11] for details). Taking this remark into account, the energy

functional I is well defined and belongs to C2(E,R). Furthermore,

I ′(u, v)(φ, ψ) = 〈u, ψ〉 + 〈v, φ〉 −

∫

(

f(u)φ+ g(v)ψ
)

, ∀ (φ, ψ) ∈ E .

Thus, every critical point of I corresponds to a solution of problem (2.1).

We start by proving a lemma which will play a significant role in the sequel.

Lemma 2.1. Let (un, vn) be a Palais–Smale sequence for the functional I,

namely

I(un, vn) → c ∈ R
+

and

µn := sup
{

∣

∣I ′(un, vn)(φ, ψ)
∣

∣, φ, ψ ∈ X, ‖φ‖ + ‖ψ‖ 6 1
}

→ 0 .

Then (un, vn) is bounded and

sup
{

I
(

s(un, vn) + (φ,−φ)
)

: s ∈ R
+
0 , φ ∈ X

}

= I(un, vn) + O(µ2
n) .

Proof: 1. Since

2 I(un, vn) = I ′(un, vn)(un, vn) +

∫

(

f(un)un−2F (un)
)

+

∫

(

g(vn)vn−2G(vn)
)

we have from (1.4) and (1.5) that

(2.3)

∫

(

f(un)un + g(vn)vn

)

6 C + µn

(

‖un‖ + ‖vn‖
)

.

From (1.4) and (1.5) again, for any δ > 0 we have

(2.4)

∫

(

|un|
p + |vn|

p
)

6 δ

∫

(

|un|
2 + |vn|

2
)

+ Cδ + µn

(

‖un‖ + ‖vn‖
)

.
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Now, since

(2.5) ‖un‖
2 + ‖vn‖

2 = I ′(un, vn)(vn, un) +

∫

(

f(un)vn + g(vn)un

)

we have by (H) that, for any given δ′ > 0,

‖un‖
2 + ‖vn‖

2
6 δ′

∫

(

|un|
2 + |vn|

2
)

+ Cδ′

∫

(

|un|
p−1 |vn| + |vn|

p−1 |un|
)

+ µn

(

‖un‖ + ‖vn‖
)

.(2.6)

Combining (2.4) and (2.6) yields that

‖un‖
2 + ‖vn‖

2
6 δ

∫

(

|un|
2 + |vn|

2
)

+ Cδ + µn

(

‖un‖ + ‖vn‖
)

.

For a sufficiently small δ, this implies that ‖un‖ + ‖vn‖ 6 C.

2. Let sn > 0, tn ∈ R and φn ∈ X be such that ‖φn‖ = 1 and

sup
{

I
(

s(un, vn) + (φ,−φ)
)

: s ∈ R
+
0 , φ ∈ X

}

= I
(

sn(un, vn) + tn(φn,−φn)
)

.

We show next that the sequences (sn) and (tn) are bounded. In view of a con-

tradiction, assume first that both sequences are unbounded along a subsequence.

We observe that

In := I
(

sn(un, vn) + tn(φn,−φn)
)

= s2nO(1) − t2n + tnsnO(1) −

∫

F (snun + tnφn) −

∫

G(snvn − tnφn) .(2.7)

Case a). Suppose |tn|/sn→∞. Then we see from (2.7) that In 6 t2n(o(1)−1) →

−∞ and this contradicts the fact that lim inf In > 0.

Case b). Suppose |tn|/sn→ 0. From (2.7) we have that

0 < In 6 sp
n

(

o(1) −

∫

F (snun+ tnφn)

sp
n

)

.

This implies that
∫ F (snun+tnφn)

sp
n

→ 0. We decompose
∫

=
∫

An
+

∫

RN\An
where

An =
{

x : |snun(x) + tnφn(x)| > 1}. From (1.3),

∫

An

F (snun+ tnφn)

sp
n

> C

∫

An

∣

∣

∣

∣

un +
tn
sn
φn

∣

∣

∣

∣

p

,
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for some positive constant. Thus,
∫

An
|un + tn

sn
φn|

p → 0. Consequently,

(2.8)

∫

An

|un|
p → 0 .

On the other hand, over R
N\An we have that |un| 6

1
sn

+ |tn|
sn

|φn| and so

(2.9)

∫

RN\An

|un|
p → 0 .

Hence, from (2.8) and (2.9) we have
∫

|un|
p → 0. In a similar way we deduce that

∫

|vn|
p → 0. It then follows from (2.5) that ‖un‖+‖vn‖ → 0 and this contradicts

the fact that lim inf I(un, vn) > 0.

Case c). Suppose |tn|/sn→ ℓ ∈ R
+. Similarly to case b) we deduce that

∫
∣

∣

∣

∣

un +
tn
sn
φn

∣

∣

∣

∣

p

+

∫
∣

∣

∣

∣

vn −
tn
sn
φn

∣

∣

∣

∣

p

→ 0

and so
∫

|un + vn|
p → 0. As a consequence, since

∫

(u2
n + v2

n) is bounded,
∫

∣

∣f(un) (un + vn)
∣

∣ +

∫

∣

∣g(vn) (un + vn)
∣

∣ → 0 .

Since I ′(un, vn)(un+ vn, un+ vn) → 0 this implies that ‖un+ vn‖ → 0. But then

2 I(un, vn) = ‖un + vn‖
2 −

(

‖un‖
2 + ‖vn‖

2 + 2

∫

(

F (un) +G(vn)
)

)

6 o(1)

and this contradicts the fact that lim inf I(un, vn) > 0.

In any of the cases a), b) and c) we arrive at a contradiction and so either

(tn) or (sn) is bounded. Now, assume that one (and only one) of these sequences

is unbounded. In case |tn|/sn → ∞ we must have that |tn| → ∞ and we arrive

at a contradiction as in case a) above; while if |tn|/sn is bounded then sn → ∞,

tn/sn→ 0 and again we get a contradiction arguing as in case b). In conclusion,

both sequences (tn) and (sn) are bounded.

3. Once we know that (tn) and (sn) are bounded sequences, the rest of the

proof follows as in [11] and [8]. Indeed, since µn→ 0 and since lim inf
∫ (

f(un)un+

g(vn)vn

)

> 0, it follows from Theorem 3.5 in [11] or Lemma 3.3 in [8] that sn→ 1.

Then, as explained in [8] (cf. Lemma 3.3), we have in fact that |sn− 1| + |tn| =

O(µn). It remains to observe that, by Taylor’s formula,

In = I(un, vn) + (sn− 1) I ′(un, vn) (un, vn) + tn I
′(un, vn) (φn,−φn)

+ O
(

(sn− 1)2 + t2n)
)
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yielding that
∣

∣In − I(un, vn)
∣

∣ 6 C µ2
n .

This completes the proof of Lemma 2.1.

3 – Continuous dependence of the ground-state critical levels

For any constant λ > 0 we denote by c(λ) > 0 the ground-state critical level

associated to the problem

−∆u+ λu = g(v), −∆v + λv = f(u) , u, v ∈ H1(RN ) .

Lemma 3.1. The map λ 7→ c(λ) is continuous and increasing, and we have

that limλ→∞ c(λ) = ∞.

Proof: 1. Let Iλ denote the energy functional associated to the above sys-

tem. By Theorem 3 in [12], Iλ admits indeed a least positive critical level c(λ).

By the maximum principle, any nonzero solutions u, v of the system are positive

in R
N . Moreover, according to Theorem 2 in [5], u and v are radially symmetric

with respect to some (common) point of R
N . We also recall that, as a conse-

quence of Benci–Rabinowitz’s linking theorem [4], c(λ) is positive, uniformly in λ,

as long as λ remains bounded away from the origin, and that

(3.1) c(λ) 6 sup
{

Iλ
(

s(u0, v0) + (φ,−φ)
)

: s ∈ R
+
0 , φ ∈ H1(RN )

}

,

for any given functions u0, v0 ∈ H1(RN ) such that v0 6= −u0; the required

compactness property of the problem is obtained by using the invariance by

translation.

2. For a given λ > 0, suppose λn → λ. Let (un, vn) be ground-state solu-

tions for Iλn
with un > 0, vn > 0. Fix any functions u0, v0 ∈ H1(RN ) such that

v0 6= −u0. According to (3.1) we have that

c(λn) 6 Iλn

(

sn(u0, v0) + tn(φn,−φn)
)

for some sn ∈ R
+
0 , tn ∈ R, φn ∈ H1(RN ) with ‖φn‖ = 1. By using an argument

similar (in fact, easier, since u0 and v0 are fixed) to the one in step 2 of the proof

of Lemma 2.1, this implies that (sn) and (tn) are bounded sequences, and thus
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so is (c(λn)). Then, as in step 1 of the proof of Lemma 2.1, this implies that (un)

and (vn) are bounded. In particular, we have that

Iλ(un, vn) = c(λn) + (λ− λn)

∫

unvn = c(λn) + o(1)

and, for any φ, ψ ∈ H1(RN ),

∣

∣I ′λ(un, vn)(φ, ψ)
∣

∣ = |λ− λn|

∣

∣

∣

∣

∫

(unψ + vnφ)

∣

∣

∣

∣

6 o(1)
(

‖φ‖ + ‖ψ‖
)

.

Thus, it follows from (3.1) (with u0 = un and v0 = vn) and Lemma 2.1 that

c(λ) 6 Iλ(un, vn) + C (λ− λn)2 = c(λn) + o(1) ,

yielding that

(3.2) c(λ) 6 lim inf c(λn) .

Concerning now the reversed inequality, let (u, v) be the ground-state solution

associated to Iλ, with u > 0, v > 0. Then

Iλn
(u, v) = Iλ(u, v) + (λn− λ)

∫

uv

and, for any φ, ψ ∈ H1(RN ),

I ′λn
(u, v)(ψ,ψ) = (λn− λ)

∫

(uψ + vφ) .

Then (3.1) (with u0 = u and v0 = v) and a minor modification of the proof of

Lemma 2.1 implies that

c(λn) 6 Iλn
(u, v) + C(λn− λ)2 .

As a consequence,

(3.3) c(λn) 6 c(λ) + (λn− λ)

(

C|λn− λ| +

∫

uv

)

.

In particular,

(3.4) lim sup c(λn) 6 c(λ) .

By combining (3.2) and (3.4) we conclude that c(λn) → c(λ).
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3. The inequality in (3.3) also shows that c(λn) < c(λ) whenever λn< λ and

λ is close enough to λ, that is, the map λ 7→ c(λ) is locally increasing. Since this

map is continuous, we conclude that this map is increasing in R
+.

4. Finally, assume by contradiction that c(λn) = In(un, vn) remains bounded

for some sequence λn→ ∞. The argument in the first step of the proof of

Lemma 2.1 shows that
∫

|∇un|
2 + λn

∫

u2
n is bounded and similarly for vn.

Thus
∫

(u2
n + v2

n) → 0 and
∫

(|un|
2⋆

+ |vn|
2⋆

) is bounded. By interpolation,
∫

(|un|
p + |vn|

p) → 0. Thus

2 In(un, vn) =

∫

(

f(un)un − 2F (un)
)

+

∫

(

g(vn)vn − 2G(vn)
)

→ 0 ,

and this contradicts the fact that lim inf I(un, vn) > 0.

We would like to state a result similar to Lemma 3.1 in the case where λ

is no longer a constant function. To that purpose, we consider first the case where

we deal with functions having a finite limit at infinity. Namely, let b ∈ C(RN )

be such that

(3.5) b(x) > b > 0 ∀x and b∞ := lim
|x|→∞

b(x) ∈ R .

We let

Ib(u, v) =

∫

〈∇u,∇v〉 +

∫

b(x)uv −

∫

F (u) −

∫

G(v)

and we denote by I∞ the corresponding functional with b∞ in place of b(x).

Of course, here we work in the space X = H1(RN ) ∩
{

u :
∫

b(x)u2 <∞
}

.

Lemma 3.2. Under assumptions (3.5), the Palais–Smale condition holds

for Ib at any level 0 < c < c(b∞).

Proof: This follows from standard arguments. Indeed, let (un, vn) be such

that Ib(un, vn) → c ∈ ]0, c(b∞)[ and I ′b(un, vn) → 0. Arguing as in the first step

of the proof of Lemma 2.1 we see that, up to a subsequence, un ⇀ u, vn ⇀ v

weakly in X. Clearly, I ′b(u, v) = 0. In particular,

2 Ib(u, v) =

∫

(

f(u)u− 2F (u)
)

+

∫

(

g(v)v − 2G(v)
)

> 0 .

Next we observe that

(3.6)

∫

F (un − u) =

∫

F (un) −

∫

F (u) + o(1)
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and similarly for
∫

G(vn− v). Indeed, we have strong convergence un → u in

H1
loc(R

N ), while, for any given R > 0,

∫

|x|>R

∣

∣F (un− u) − F (un)
∣

∣ 6 C

∫

|x|>R

(

|unu| + u2 + |un|
p−1|u| + |u|p

)

= o(1)

as R → ∞. Similarly, since
∣

∣f(un− u) − f(un) + f(u)
∣

∣

p/(p−1)
→ 0 in L1

loc(R
N ),

we have that, for any φ ∈ X,

(3.7)

∣

∣

∣

∣

∫

f(un− u)φ −

∫

f(un)φ +

∫

f(u)φ

∣

∣

∣

∣

6 o(1) ‖φ‖

and similarly for

∣

∣

∣

∣

∫

g(vn− v)φ −

∫

g(vn)φ +

∫

g(v)ψ

∣

∣

∣

∣

.

(A similar argument can be found for instance in [14], Lemma 8.1.)

Now, let un = un− u and vn = vn− v. It follows from (3.6) that

Ib(un, vn) = Ib(un, vn) − Ib(u, v) + o(1) 6 c+ o(1) ,

while (3.7) implies that

I ′b(un, vn)(φ, ψ) = I ′b(un, vn)(φ, ψ) − I ′b(u, v)(φ, ψ) + o(1) = o(1) ,

uniformly for bounded φ and ψ. Since moreover un ⇀ 0, vn ⇀ 0 weakly in X

and since b∞= lim|x|→∞ b(x), a similar conclusion holds for I∞(un, vn) and

I ′∞(un, vn). Thus, in case lim inf I∞(un, vn) > 0, Lemma 2.1 and (3.1) imply

that

c(b∞) 6 I∞(un, vn) + o(1) 6 c+ o(1) .

This contradicts the assumption that c < c(b∞). Thus lim inf I∞(un, vn) 6 0

and then the argument in the first step of the proof of Lemma 2.1 shows that

lim inf(‖un‖ + ‖vn‖) = 0.

Lemma 3.3. Under assumptions (3.5), suppose there exist u 6=−v such that

(3.8) sup
{

Ib
(

s(u, v) + (φ,−φ)
)

: s ∈ R
+
0 , φ ∈X

}

< c(b∞) .

Then Ib admits a ground-state critical level cb and c(b) 6 cb.



SINGULARLY PERTURBED HAMILTONIAN SYSTEMS 167

Proof: It follows from Lemma 3.2 and [4] that Ib admits a critical point

(u1, v1) such that

0 < Ib(u1, v1) 6 sup
{

Ib
(

s(u, v) + (φ− φ)
)

: s ∈ R
+, φ ∈X

}

.

In particular,

(3.9) cb := inf
{

Ib(u, v) : (u, v) 6= (0, 0), I ′b(u, v) = 0
}

< c(b∞) .

But then, again by Lemma 3.2 and Theorem 3 in [12] (namely, its argument in

page 1460), the infimum in (3.9) is actually a minimum, and it follows that Ib
admits a ground-state critical level cb.

Assume by contradiction that c(b)>cb. For t∈ [0, 1], let bt(x) :=(1−t) b(x)+tb

and denote by ct the corresponding ground-state level. As in Lemma 3.1, for t

close to zero, ct is well-defined and ct < c((1−t)b∞ + tb); moreover, ct decreases

with t. As a consequence, using Lemma 3.1, if t is close to zero,

ct 6 cb < c(b) 6 c
(

(1−t) b∞ + tb
)

.

Using a continuation argument we conclude that ct < c((1−t) b∞ + tb) for every

t ∈ [0, 1]. This is a contradiction for t = 1, since c1 = c(b).

Lemma 3.4. Let b(x) > b > 0 and suppose (un, vn) is a Palais–Smale

sequence for Ib with lim inf Ib(un, vn) > 0. Then c(b) 6 Ib(un, vn) + o(1).

Proof: Denote

In := sup
{

Ib
(

s(un, vn) + (φ,−φ)
)

: s ∈ R
+
0 , φ ∈X

}

.

We know from Lemma 2.1 that In = Ib(un, vn)+o(1) and that (un, vn) is bounded.

Moreover, according to Lemma 3.1, we can fix M so large that In < c(M) for

every n. For a given sequence Rn→ ∞, let bn(x) be a continuous function such

that bn(x) = b(x) if |x| 6 Rn and bn(x) = M if |x| > Rn + 1; we can take Rn so

large that Ibn
(un, vn) = Ib(un, vn) + o(1) and I ′bn

(un, vn)(φ, ψ) = o(1) uniformly

for all bounded functions φ and ψ. It follows then as in Lemma 2.1 that

In := sup
{

Ibn

(

s(un, vn) + (φ,−φ)
)

: s ∈ R
+
0 , φ ∈X

}

= Ibn
(un, vn) + o(1) .

On the other hand, we see from Lemma 3.3 (applied to bn(x)) that

c(b) 6 cbn
6 In

and the conclusion follows.
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4 – Existence and concentration of ground state solutions

Now we come back to our original problem. According to (1.2), we fix a ∈ R

such that

0 < a(0) = min
x∈RN

a(x) < a < lim inf
|x|→∞

a(x) .

Lemma 4.1. Suppose (un, vn) is a Palais–Smale sequence for the functional I

such that lim inf I(un, vn) > 0. If un⇀ 0 and vn⇀ 0 weakly in X then c(a) 6

I(un, vn) + o(1).

Proof: Fix R0 such that a(x) > a for every |x| > R0 and let b(x) be any

continuous function such that b(x) = a(x) for every |x| > R0 and b(x) > a for

every x ∈ R
N . Since un⇀ 0 and vn⇀ 0, we see that Ib(un, vn) = I(un, vn)+o(1)

and (un, vn) is a Palais–Smale sequence for Ib. The conclusion follows then from

Lemma 3.4.

Lemma 4.2. The Palais–Smale condition holds for I at any level 0<c<c(a).

Proof: The proof follows as in Lemma 3.2, by using also Lemma 4.1.

For any small ε > 0, we denote by Iε (resp. I0) the energy functional defined

in (2.2) with a(εx) (resp. a(0)) in place of a(x).

Lemma 4.3. The functional Iε admits a ground-state critical level cε and

cε → c0 as ε→ 0.

Proof: Let (u, v) be a ground-state solution for I0. Since Iε(u, v) = I0(u, v)+

o(1) as ε→ 0 and also I ′ε(u, v)(φ, ψ) = I ′0(u, v)(φ, ψ)+o(1) uniformly for bounded

φ and ψ, a minor modification of the proof of Lemma 2.1 shows that

dε := sup
{

Iε
(

s(u, v) + (φ,−φ)
)

: s ∈ R
+
0 , φ ∈ X

}

= Iε(u, v) + o(1) ;

in particular,

(4.1) dε = c0 + o(1) as ε→ 0 .

Moreover, according to Lemma 3.1, we know that c0 < c(a); in particular, it fol-

lows from Lemma 4.2 that Iε satisfies the Palais–Smale condition at any positive
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level not larger than dε. It follows then as in Theorem 3 in [12] that Iε admits

a ground-state critical level cε 6 dε. Clearly, (4.1) shows that lim sup cε 6 c0.

Similarly we can show that c0 6 lim inf cε.

According to the above lemma, for any sufficiently small ε > 0 we can find

least energy positive solutions uε and vε for the system

(4.2) −ε2∆u+ a(x)u = g(v) , −ε2∆v + a(x) v = f(u) , u, v ∈ H1(RN ) ,

By elliptic estimates, uε, vε ∈ C2(RN ) and they decay at infinity. Moreover, using

standard elliptic estimates we have that ‖uε‖L∞ + ‖vε‖L∞ 6 C uniformly in ε.

Lemma 4.4. Both functions uε and vε can be chosen in such a way that

they attain their maximum value at some unique and common point xε ∈ R
N ;

the sequence (xε)ε is bounded and, whenever it converges to x0 ∈ R
N along a

subsequence, we have that a(x0) = minx∈RN a(x).

Proof: As explained in Theorem 4.1 in [11], uε and vε can be chosen with

the further property that their relative Morse index is less or equal than 1.

Now, suppose that for some sequence εj → 0 we have that ‖uεj
‖L∞ = u(xj)

with |xj | → ∞. By letting uj(x) := uεj
(εjx+ xj) and vj(x) := vεj

(εjx+ xj),

by usual arguments we have that, up to a subsequence, uj ⇀ u, vj ⇀ v weakly

in X, for some nonzero functions u, v ∈ X. We also recall that

(4.3) 0 < lim inf Ij(uj , vj) 6 lim sup Ij(uj , vj) < c(a)

where

(4.4) Ij(uj , vj) :=

∫

〈∇uj ,∇vj〉 +

∫

aj(x)ujvj −

∫

F (uj) −

∫

G(vj)

and aj(x) := a(εjx+ xj). Moreover, as proved in Proposition 1.6 in [11], the

information on the relative Morse index of (uj , vj) yields that

(4.5) ∀ δ > 0 ∃ j0 ∈ N, ∃R > 0:

∫

|x|>R
aj(x) (u2

j + v2
j ) 6 δ , ∀ j > j0 .

So, let bj := max{a, aj} and denote by Ij the corresponding energy functional,

defined as in (4.4) with aj(x) replaced by bj(x). Then (4.5) and our assumption

that |xj | → ∞ imply that (uj , vj) is a Palais–Smale sequence for Ij and that

Ij(uj , vj) = Ij(uj , vj) + o(1). Since bj(x) > a for every x, it follows then from
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(a minor modification of) Lemma 3.4 that c(a) 6 Ij(uj , vj) + o(1). This is in

contradiction with (4.3).

In conclusion, any maximum points xε of uε (and of vε as well) must remain

bounded. Moreover, whenever xε → x0 ∈ R
N , by the preceding argument and

since a(εx+xε) → λ :=a(x0) pointwise, we have that cε→ c(λ). Thus, according

to Lemma 4.3 and Lemma 3.1 we have that λ = a(0).

The uniqueness of the maximum points of uε and vε can be deduced exactly

as in Theorem 2.1 in [11].

Proof of Theorem 1.1: For a given sequence Rn→ ∞, let fn and gn be

C1 functions satisfying our general assumption (H), with the further property

that (H) holds with 2 < p = q < 2N/(N− 2) and moreover fn(s) = f(s) and

gn(s) = g(s) for every |s| 6 Rn. For large n, the ground-state critical levels of

the problems

−∆u+ a u = gn(v) , −∆v + a v = fn(u) , u, v ∈ H1(RN ) ,

are bounded above independently of n. On the other hand, we have proved that

for every n there exists εn such that the conclusions of Theorem 1.1 hold for the

modified problems

−ε2∆u+ a(x)u = gn(v) , −ε2∆v + a(x) v = fn(u) , u, v ∈ H1(RN ) ,

provided 0 < ε 6 εn. Since the corresponding ground-state critical levels remain

bounded independently of ε and n, it follows as in [12], page 1457, that the

H1-norms of the corresponding (rescaled) ground-state solutions are also bounded

independently of ε and n. Thus, by regularity arguments (see Theorem 1 (a) in

[12]), the same holds true for their L∞-norms and the conclusion follows.
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