ON THE NON-DEFECTIVITY AND NON WEAK-DEFECTIVITY OF SEGRE-VERONESE EMBEDDINGS OF PRODUCTS OF PROJECTIVE SPACES

Edoardo Ballico*
Recommended by Arnaldo Garcia

Abstract

Fix integers $s \geq 2$ and $n \geq 1$. Set $\tilde{x}_{i}:=n+i-1$ if $3 \leq i \leq s$ and $\tilde{x_{2}}:=\max \{3, n+1\}$. Set $\tilde{x_{1}}:=9$ if $n=1$ and $\tilde{x_{1}}=n!(n+1)-n$ if $n \geq 2$. Fix integers $x_{i} \geq \tilde{x_{i}}, 1 \leq i \leq s$. Here we prove that the line bundle $\mathcal{O}_{\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}}\left(x_{1}, \ldots, x_{s}\right)$ is not weakly defective, i.e. for every integer z such that $z(n+s)+1 \leq\binom{ n+x_{1}}{n} \prod_{i=2}^{s}\left(x_{i}+1\right)$ the linear system $\left|\mathcal{I}_{Z}\left(x_{1}, \ldots, x_{s}\right)\right|$ has dimension $\binom{n+x_{1}}{n} \prod_{i=2}^{s}\left(x_{i}+1\right)-z(n+s)-1$ and a general $T \in\left|\mathcal{I}_{Z}\left(x_{1}, \ldots, x_{s}\right)\right|$ has an ordinary double point at each point of $Z_{\text {red }}$ as only singularities, where $Z \subset \mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}$ is a general union of z double points.

1 - Introduction

The main aim of this paper is to use the so-called Horace Method introduced by A. Hirschowitz to prove the non-defectivity and non-weak defectivity (in the sense of [10]) of "many" line bundles in $\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}$. See [6], [7], [8] and [13] for several results on the defectivity or non-defectivity on certain multiprojective spaces and the linear algebra translation of any non-defectivity result for line bundles on arbitrary multiprojective spaces. First, we will prove the following result.

[^0]Theorem 1. Fix integers $k>0, s \geq 2$ and $n \geq 1$. Set $\tilde{x_{i}}:=n+i-1$ if $3 \leq i \leq s$ and $\tilde{x_{2}}:=\max \{3, n+1\}$. Set $\tilde{x_{1}}:=9$ if $n=1$ and $\tilde{x_{1}}=n!(n+1)-n$ if $n \geq 2$. Fix integers $x_{i} \geq \tilde{x_{i}}, 1 \leq i \leq s$. Let $Z \subset \mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}$ be a general union of k double points. If $k(n+s) \leq\binom{ n+x_{1}}{n} \prod_{i=2}^{s}\left(x_{i}+1\right)$, then $h^{1}\left(\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}, \mathcal{I}_{Z}\left(x_{1}, \ldots, x_{s}\right)\right)=0$. If $k(n+s) \geq\binom{ n+x_{1}}{n} \prod_{i=2}^{s}\left(x_{i}+1\right)$, then $h^{0}\left(\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}, \mathcal{I}_{Z}\left(x_{1}, \ldots, x_{s}\right)\right)=0$.

With the classical terminogy Theorem 1 says that for all $k>0$ the line bundle $\mathcal{O}_{\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}}\left(x_{1}, \ldots, x_{s}\right)$ is not $(k-1)$-defective, i.e. that this line bundle is not defective. See Lemma 4 for a conditional inductive approach for an arbitrary multiprojective space. Theorem 1 was just the only case in which we were able to prove the initial step to carry over the inductive procedure.

Inspired from [15], Proof of Theorem 4.1, we will prove the following result.
Theorem 2. Fix integers $s \geq 2$ and $n \geq 1$. Set $\tilde{x_{i}}:=n+i-1$ if $3 \leq i \leq s$ and $\tilde{x_{2}}:=\max \{3, n+1\}$. Set $\tilde{x_{1}}:=9$ if $n=1$ and $\tilde{x_{1}}=n!(n+1)-n$ if $n \geq 2$. Fix integers $x_{i} \geq \tilde{x_{i}}, 1 \leq i \leq s$. Then the line bundle $\mathcal{O}_{\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}}\left(x_{1}, \ldots, x_{s}\right)$ is not weakly defective, i.e. for every integer z such that $z(n+s)+1 \leq\binom{ n+x_{1}}{n} \prod_{i=2}^{s}\left(x_{i}+1\right)$ the linear system $\left|\mathcal{I}_{Z}\left(x_{1}, \ldots, x_{s}\right)\right|$ has dimension $\binom{n+x_{1}}{n} \prod_{i=2}^{s}\left(x_{i}+1\right)-z(n+s)-1$ and a general $T \in\left|\mathcal{I}_{Z}\left(x_{1}, \ldots, x_{s}\right)\right|$ has an ordinary double point at each point of $Z_{\text {red }}$ as only singularities, where $Z \subset \mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}$ is a general union of z double points.

Theorem 2 will be an easy corollary of Theorems 1 and 3 . To state Theorem 3 we need to introduce the following notation. Fix integers $s \geq 1, n_{1} \geq \cdots \geq n_{s}>0$ and $t_{i} \geq 0,1 \leq i \leq s$. In some inductive step we will allow the case $n_{s}=0$, just taking a point as $\mathbf{P}^{n_{s}}$. Even if $n_{i}=0$ for some i define the integers $a_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}$, $b_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}, c_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}$ and $d_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}$ by the following relations:

$$
\begin{gather*}
\left(1+\sum_{i=1}^{s} n_{i}\right) a_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}+b_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}=\prod_{i=1}^{s}\binom{n_{i}+t_{i}}{n_{i}} \tag{1}\\
0 \leq b_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)} \leq \sum_{i=1}^{s} n_{i} \tag{2}\\
\left(1+\sum_{i=1}^{s} n_{i}\right) c_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}+d_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}+1=\prod_{i=1}^{s}\binom{n_{i}+t_{i}}{n_{i}}, \tag{3}\\
0 \leq d_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)} \leq \sum_{i=1}^{s} n_{i} \tag{4}
\end{gather*}
$$

Notice that
and

$$
a_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}=c_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}
$$

$$
d_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}=b_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}-1
$$

if $b_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}>0$, while
and

$$
a_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}=c_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}+1
$$

$$
d_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}=\sum_{i=1}^{s} n_{i}
$$

if $b_{\left(n_{1}, \ldots, n_{s} ; t_{1}, \ldots, t_{s}\right)}=0$.
Notice that

$$
\begin{aligned}
& a_{\left(n_{1}, \ldots, n_{s-1}, 0 ; t_{1}, \ldots, t_{s}\right)}=a_{\left(n_{1}, \ldots, n_{s-1} ; t_{1}, \ldots, t_{s-1}\right)}, \\
& b_{\left(n_{1}, \ldots, n_{s-1}, 0 ; t_{1}, \ldots, t_{s}\right)}=b_{\left(n_{1}, \ldots, n_{s-1} ; t_{1}, \ldots, t_{s-1}\right)}, \\
& c_{\left(n_{1}, \ldots, n_{s-1}, 0 ; t_{1}, \ldots, t_{s}\right)}=d_{\left(n_{1}, \ldots, n_{s-1} ; t_{1}, \ldots, t_{s-1}\right)}, \\
& d_{\left(n_{1}, \ldots, n_{s-1}, 0 ; t_{1}, \ldots, t_{s}\right)}=d_{\left(n_{1}, \ldots, n_{s-1} ; t_{1}, \ldots, t_{s-1}\right)} .
\end{aligned}
$$

Theorem 3. Fix integers $k>0, s \geq 2, n_{1} \geq \cdots \geq n_{s}>0, x_{i} \geq 3,1 \leq i \leq s$, such that $k\left(n_{1}+\cdots+n_{s}+1\right) \geq \prod_{i=1}^{s}\binom{n_{i}+x_{i}}{n_{s}}$. Fix a hyperplane H of $\mathbf{P}^{n_{j}}$ and set $M:=\prod_{i=1}^{s} \mathbf{P}^{n_{i}}, E:=\prod_{i=1}^{j-1} \mathbf{P}^{n_{i}} \times H \times \prod_{i=j+1}^{s} \mathbf{P}^{n_{i}}$. Assume the existence of an integer j such that $1 \leq j \leq s$ and the following properties hold:
(a) The line bundles $\mathcal{O}_{M}\left(x_{1}, \ldots, x_{j-1}, x_{j}, x_{j+1}, \ldots, x_{s}\right), \mathcal{O}_{M}\left(x_{1}, \ldots, x_{j-1}\right.$, $\left.x_{j}-1, x_{j+1}, \ldots, x_{s}\right)$ and $\mathcal{O}_{M}\left(x_{1}, \ldots, x_{j-1}, x_{j}-2, x_{j+1}, \ldots, x_{s}\right)$ are not defective.
(b) For every integer $z>0$ such that

$$
\begin{align*}
z\left(n_{1}+\cdots+n_{s}+1\right) & +a_{\left(n_{1}, \ldots, n_{j-1}, n_{j}-1, n_{j+1}, \ldots, n_{s} ; x_{1}, \ldots, x_{s}\right)} \leq \tag{5}\\
\leq & \prod_{i=1}^{j-1}\binom{n_{i}+x_{i}}{n_{i}} \cdot\binom{n_{j}+x_{j}-1}{n_{j}} \cdot \prod_{i=j+1}^{s}\binom{n_{i}+x_{i}}{n_{i}} \tag{6}
\end{align*}
$$

and any general union $W \subset M$ of z double points of M a general hypersurface of multidegree ($x_{1}, \ldots, x_{j-1}, x_{j}-1, x_{j+1}, \ldots, x_{s}$) of $\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}}$ singular at each point of $Z_{\text {red }}$ has an isolated singularity at at least one point of $W_{\text {red }}$.

Let $Z \subset \mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}}$ be a general union of k double points. Then a general hypersurface of multidegree $\left(x_{1}, \ldots, x_{s}\right)$ of $\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}}$ singular at each point of $Z_{\text {red }}$ has an ordinary node at each point of $Z_{\text {red }}$ and no other singularity.

With the terminology of [10], Theorem 2 means that the Segre-Veronese embedding of $\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}}$ with multidegree $\left(x_{1}, \ldots, x_{s}\right)$ is not weakly ($k-1$)-defective.

We work over an algebraically closed field \mathbb{K} with $\operatorname{char}(\mathbb{K})=0$. Our proof of Theorem 1 will be characteristic free, while our proofs of Theorems 2 and 3 depend heavily from the characteristic zero assumption: a key tool will be [10], Th. 1.4. To prove Theorems 2 and 3 we will use an idea of Mella ([15], proof of Th.4.1). To start the induction we will also use a theorem of weak non-defectivity for $\mathbf{P}^{n_{1}}$ ([15], Cor. 4.5).See [1], [2], [3], [4] or [9] for Alexander-Hirschowitz theorem on non-defectivity of line bundles on \mathbf{P}^{n}. For several results on non-defectivity for Segre-Veronese embeddings of multiprojective spaces (many of them with low x_{1} not covered by Theorem 1), see [6] (which also contain a linear algebra interpretation of Theorem 1), [7], [8]. For related results for $\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}$ and a similar inductive proof, see [13]. See [12], [9], Remark 6.2 , (which quotes [16]) and [15], Remark 4.4, for several examples of weak defective line bundles on projective spaces.

2 - The proofs

For any scheme A and any $P \in A_{\text {reg }}$ let $2 P$ (or $2\{P, A\}$ if there is any danger of misunderstandings) denote the first infinitesimal neighborhood of P in A, i.e. the closed zero-dimensional subscheme of A with $\left(\mathcal{I}_{P}\right)^{2}$ as its ideal sheaf. We have length $(2 P)=\operatorname{dim}_{P}(A)+1$. We will say that $2 P$ is the double point of A with P as its support. For any finite subset $S \subset A_{\text {reg }}$ set $2\{S, A\}:=\cup_{P \in S} 2\{P, A\}$ and write $2 S$ instead of $2\{S, A\}$ if there is no danger of misunderstandings. Let $D \subset A$ be an effective Cartier divisor of A and $Z \subset A$ any closed subscheme of A. Let $\operatorname{Res}_{D}(Z)$ denote the residual subscheme of Z with respect to D, i.e. the closed subscheme of A with $\mathcal{I}_{Z, A}: \mathcal{O}_{A}(-D)$ as its ideal sheaf. For instance, $\operatorname{Res}_{D}(2 P)=\{P\}$ if $P \in D_{\text {reg }}$ and $\operatorname{Res}_{D}(2 P)=2 P$ if $P \notin D_{\text {red }}$. By the very definition of residual scheme for any $L \in \operatorname{Pic}(A)$ we have the following exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{D}(Z), A} \otimes L \rightarrow \mathcal{I}_{Z, A} \otimes L \rightarrow \mathcal{I}_{Z \cap D, D} \otimes L_{\mid D} \rightarrow 0 \tag{7}
\end{equation*}
$$

From the cohomology exact sequence of the exact sequence (7) we get at once the following lemma which is a very elementary version of the so-called Horace Lemma and that we will always call "the Horace Lemma".

Lemma 1. Let A be a projective scheme, D an effective Cartier divisor of A, Z a closed subscheme of A and $L \in \operatorname{Pic}(A)$. Then:
(i) $h^{0}\left(A, \mathcal{I}_{Z, A} \otimes L\right) \leq h^{0}\left(A, \mathcal{I}_{\operatorname{ReS}_{D}(Z), A} \otimes L\right)+h^{0}\left(D, \mathcal{I}_{Z \cap D, D} \otimes L_{\mid D}\right)$;
(ii) $h^{1}\left(A, \mathcal{I}_{Z, A} \otimes L\right) \leq h^{1}\left(A, \mathcal{I}_{\operatorname{Res}_{D}(Z), A} \otimes L\right)+h^{1}\left(D, \mathcal{I}_{Z \cap D, D} \otimes L_{\mid D}\right)$.

The following result is a very particular case of [5], Lemma 2.3 (see in particular Fig. 1 at p. 308).

Lemma 2. Let A be an integral projective variety, $L \in \operatorname{Pic}(A), D$ an integral effective Cartier divisor of $A, Z \subset A$ a closed subscheme of A not containing D and s a positive integer. Let U be the union of Z and s general double points of A. Let S be the union of s general points of D. Let $E \subset D$ be the union of s general double points of D (not double points of A, i.e. each of them has length $\operatorname{dim}(A))$. To prove $h^{1}\left(A, \mathcal{I}_{U, A} \otimes L\right)=0\left(\right.$ resp. $\left.h^{0}\left(A, \mathcal{I}_{U, A} \otimes L\right)=0\right)$ it is sufficient to prove $h^{1}\left(D, \mathcal{I}_{(Z \cap D) \cup S} \otimes\left(L_{\mid D}\right)\right)=h^{1}\left(A, \mathcal{I}_{\operatorname{ReS}_{D}(Z) \cup E, A} \otimes L(-D)\right)=0$ $\left(\operatorname{resp} . h^{0}\left(D, \mathcal{I}_{(Z \cap D) \cup S} \otimes\left(L_{\mid D}\right)\right)=h^{0}\left(A, \mathcal{I}_{\operatorname{Res}_{D}(Z) \cup E, A} \otimes L(-D)\right)=0\right)$.

Remark 1. Here we assume $s=2$ and $n_{2}=1$. The following inequality

$$
\begin{equation*}
\binom{n_{1}+x_{1}}{n_{1}} \geq\left(n_{1}+2\right)^{2} \tag{8}
\end{equation*}
$$

is satisfied if and only if either $n_{1}=1$ and $x_{1} \geq 8$ or $n_{1} \geq 2$ and $x_{1} \geq 3$. \square

Remark 2. Fix integers $s \geq 2, n_{1} \geq \cdots \geq n_{s}>0$ and $x_{i}>0,1 \leq i \leq s$. Here we will discuss when the inequality

$$
\begin{equation*}
\binom{n_{s}+x_{s}-1}{n_{s}} \prod_{j=1}^{s-1}\binom{n_{j}+x_{j}}{n_{j}} \geq\left(1+\sum_{i=1}^{s} n_{i}\right)\left(\sum_{i=1}^{s} n_{i}\right) \tag{9}
\end{equation*}
$$

holds. However, since in all applications of this inequality we will need to use an induction on s starting from the case $s=2, n_{s}=1$, we will need to assume also that the inequality (8) is satified, i.e. we need to assume also either $n_{1}=1$ and $x_{1} \geq 8$ or $n_{1} \geq 2$ and $x_{1} \geq 3$. Under these assumptions the inequality (9) is always satisfied. ■

The following lemma will be used implicitly several times in the proofs of Theorems 1, 2 and 3 to avoid that a certain set has negative cardinality.

Lemma 3. Fix integers $s \geq 2, n_{1} \geq \cdots \geq n_{s}>0$ and $x_{i}>0,1 \leq i \leq s$, such that either $n_{1}=1$ and $x_{1} \geq 8$ or $n_{1} \geq 2$ and $x_{1} \geq 3$. Then $a_{\left(n_{1}, \ldots, n_{s}-1 ; x_{1}, \ldots, x_{s}\right)} \geq$ $n_{1}+\cdots+n_{s}$.

Proof: Since $a_{\left(n_{1}, \ldots, n_{s}-1 ; x_{1}, \ldots, x_{s}\right)}-n_{1}-\cdots-n_{s}$ is a non-decreasing function of x_{2}, \ldots, x_{s}, we may assume $x_{2}=\cdots=x_{s}=1$. By the definition (1) of $a_{\left(n_{1}, \ldots, n_{s}-1 ; x_{1}, 1, \ldots, x_{s}\right)}$ is sufficient to show $\tau\left(n_{1}, x_{1}, n_{2}, \ldots, n_{s}\right):=$ $\binom{n_{1}+x_{1}}{n_{1}} \prod_{j=1}^{s-1}\left(n_{j}+1\right) n_{s}-\left(n_{1}+\cdots+n_{s}\right)^{2} \geq 0$. It is easy to check that function τ is a non-decreasing function of n_{2}, \ldots, n_{s}. One easily verifies that $\tau(1,8,1, \ldots, 1) \geq 0$ and $\tau(2,3,1, \ldots, 1) \geq 0$, concluding the proof. -

Lemma 4. Let X be an integral m-dimensional projective variety and L, R very ample line bundles on X such that $h^{i}(X, L)=h^{i}(X, L \otimes R)=$ $h^{i}\left(X, L \otimes R^{\otimes 2}\right)=0$ for all $i>0$. Fix an integral $D \in|R|$. For all integers $i \geq 0$ set $a_{L \otimes R^{\otimes i}}:=\left\lfloor h^{0}\left(X, L \otimes R^{\otimes i}\right) /(m+1)\right\rfloor, b_{L \otimes R^{\otimes i}}:=h^{0}\left(X, L \otimes R^{\otimes i}\right)-(m+1) a_{L \otimes R^{\otimes i}}$, $\alpha:=\left\lfloor\left(h^{0}\left(X, L \otimes R^{\otimes 2}\right)-h^{0}(X, L \otimes R) / m\right\rfloor\right.$ and $\beta:=h^{0}\left(X, L \otimes R^{\otimes 2}\right)-h^{0}(X, L \otimes R)-$ $m \alpha$. Assume:
(i) $h^{1}\left(X, \mathcal{I}_{2 A} \otimes L \otimes R\right)=h^{1}\left(D, \mathcal{I}_{2\{B, D\}, D} \otimes\left(L \otimes R^{\otimes 2}\right)_{\mid D}\right)=0$ for general $A \subset X, B \subset D$ such that $\sharp(A)=a_{L \otimes R^{\otimes 2}}-\alpha$ and $\sharp(B)=\alpha$.
(ii) $h^{0}\left(X, \mathcal{I}_{2 S} \otimes L\right) \leq h^{0}(X, L \otimes R)-(m+1) a_{L \otimes R^{\otimes^{2}}}+\beta$ for a general $S \subset X$ such that $\sharp(S)=a_{L \otimes R^{\otimes 2}}-\alpha-\beta$.
Then L is not defective, i.e. for every integer $k>0$ we have $h^{0}\left(X, \mathcal{I}_{Z} \otimes L \otimes R^{\otimes 2}\right)=$ $\max \left\{0, h^{0}\left(X, L \otimes R^{\otimes 2}\right)-k(m+1)\right\}$ (or, equivalently, $h^{1}\left(X, \mathcal{I}_{Z} \otimes L \otimes R^{\otimes 2}\right)=$ $\left.\max \left\{0, k(m+1)-h^{0}\left(X, L \otimes R^{\otimes 2}\right)\right\}\right)$ for a general union of k double points of X.

Proof: We will only check that $h^{1}\left(X, \mathcal{I}_{Z} \otimes L \otimes R^{\otimes 2}\right)=0$ for a general union Z of $a_{L \otimes R^{\otimes 2}}$ double points of X, because the proof that $h^{0}\left(X, \mathcal{I}_{W} \otimes L \otimes R^{\otimes 2}\right)=0$ for a general union W of $a_{L \otimes R^{\otimes 22}}+1$ double points of X is similar and all cases in which $k \leq a_{L \otimes R^{\otimes 2}}$ (the surjectivity range of the restriction map) follow from the case $k=a_{L \otimes R^{\otimes 2}}$, while all cases with $k \geq a_{L \otimes R^{\otimes 2}}+1$ (the injectivity range for the restriction map) follow from the case $k=a_{L \otimes R^{\otimes 2}}+1$. Since $h^{1}(X, L \otimes R)=0$, we have $h^{0}\left(D,\left(L \otimes R^{\otimes 2}\right)_{\mid D}\right)=h^{0}\left(X, L \otimes R^{\otimes 2}\right)-h^{0}(X, L \otimes R)$. By assumption $h^{1}\left(D, \mathcal{I}_{2\{B, D\}, D} \otimes\left(L \otimes R^{\otimes 2}\right)_{\mid D}\right)=0$ (i.e. $h^{0}\left(D, \mathcal{I}_{2\{B, D\}, D} \otimes\left(L \otimes R^{\otimes 2}\right)_{\mid D}\right)=\beta$)for a general $B \subset E$ such that $\sharp(B)=\alpha$. Hence $h^{1}\left(D, \mathcal{I}_{F \cup 2\{B, D\}, D} \otimes\left(L \otimes R^{\otimes 2}\right)_{\mid D}\right)=$
$h^{0}\left(D, \mathcal{I}_{F \cup 2\{B, D\}, D} \otimes\left(L \otimes R^{\otimes 2}\right)_{\mid D}\right)=0$ for a general $F \subset E$ such that $\sharp(F)=\beta$. Fix a general $S \subset X$ such that $\sharp(S)=a_{L \otimes R^{\otimes 2}}-\alpha-\beta$. To check the vanishing of $h^{1}\left(X, \mathcal{I}_{Z} \otimes L \otimes R^{\otimes 2}\right)$ it is sufficient to prove $h^{1}\left(X, \mathcal{I}_{2 G \cup 2 S \cup 2 B} \otimes L \otimes R^{\otimes 2}\right)$, where $G \subset X$ is a general subset such that $\sharp(G)=\beta$. We have $\operatorname{Res}_{D}(2 B)=B$ and $2 B \cap D=2\{B, D\}$. By Lemma 2 it is sufficient to prove $h^{1}\left(X, \mathcal{I}_{B \cup 2 S \cup 2\{G, D\}} \otimes\right.$ $L \otimes R)=0$. First, we will check that $h^{1}\left(X, \mathcal{I}_{2 S \cup 2\{G, D\}} \otimes L \otimes R\right)=0$. Since $2\{G, D\} \subset 2 G$, it is sufficient to prove $h^{1}\left(X, \mathcal{I}_{2 S \cup 2 G} \otimes L \otimes R\right)=0$. By assumption we have $h^{1}\left(X, \mathcal{I}_{2 S} \otimes L \otimes R\right)=0$. Even more is true. Indeed, by assumption we have $h^{1}\left(X, \mathcal{I}_{2 S \cup 2 J} \otimes L \otimes R\right)=0$ for a general $J \subset X$ such that $\sharp(J)=\beta$; more precisely, it is sufficient to assume that $S \cup J$ is general in X. By semicontinuity we may assume that our vanishing is true not only for D, but for a general $D^{\prime} \in|D|$. Since R is very ample, there is an integral $D^{\prime} \in|D|$ passing through m general points of X. Since $\beta \leq m$ and we may choose S after choosing G, the condition $G \subset D$ is not restrictive, i.e. we may take G as J. Hence $h^{1}\left(X, \mathcal{I}_{2 S \cup 2 G} \otimes L \otimes R\right)=0$ and thus $h^{1}\left(X, \mathcal{I}_{2 S \cup 2\{G, D\}} \otimes L \otimes R\right)=0$. Since $\operatorname{Res}_{D}(2 S \cup B \cup 2\{G, D\})=2 S, h^{1}\left(X, \mathcal{I}_{2 S \cup 2\{G, D\}} \otimes L \otimes R\right)=0$ and B is general in D, we have $h^{1}\left(X, \mathcal{I}_{B \cup 2 S \cup 2\{G, D\}} \otimes L \otimes R\right)=0$ if and only if $h^{0}\left(X, \mathcal{I}_{2 S \cup 2\{G, D\}} \otimes L \otimes R\right)-h^{0}\left(X, \mathcal{I}_{2 S} \otimes L\right) \geq \sharp(B)([9]$, Lemma 3). i.e. if and only if $h^{0}(X, L \otimes R)-(m+1) a_{L \otimes R^{\otimes 2}}+(m+1) \alpha+(m+1) \beta-m \beta-h^{0}\left(X, \mathcal{I}_{2 S} \otimes L\right) \geq \alpha$, i.e. if and only if $h^{0}\left(X, \mathcal{I}_{2 S} \otimes L\right) \leq h^{0}(X, L \otimes R)-(m+1) a_{L \otimes R^{\otimes 2}}+\beta$ for a general $S \subset X$ such that $\sharp(S)=a_{L \otimes R^{\otimes 2}}-\alpha-\beta$, which is true by our last assumption.

Proof of Theorem 1: Set $M:=\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}$. Fix $P \in \mathbf{P}^{1}$ and set $E:=$ $\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-2} \times\{P\}$ (seen as a hypersurface of multidegree $(0, \ldots, 0,1)$ of M). We divide the proof into 5 steps.
(a) Here we assume $s=2, n \geq 2, n_{2}=1, x_{1}=n!(n+1)-n$ and $x_{2}=n+1$. Set $\alpha:=\binom{n+x_{1}}{n} /(n+1)=\binom{n!(n+1)}{n} /(n+1)$. Notice that $\alpha \in \mathbb{Z}$ and that $\binom{n+x_{1}}{n}\left(x_{2}+1\right) /(n+2)=\binom{n+x_{1}}{n}(n+2) /(n+2)=\left(n_{1}+1\right) \alpha$. Fix a general union $S \subset E$ of α points of E. Notice that $\mathcal{O}_{E}(x, t) \cong \mathcal{O}_{\mathbf{P}^{n}}(x)$ for all x, t. Take $n+1$ distinct points $Q_{1}, \ldots, Q_{n+1} \in \mathbf{P}^{1}$ and set $E_{i}:=\mathbf{P}^{n} \times\left\{Q_{i}\right\} \cong E \subset M$. Let $S_{i} \subset E_{i}$ be a general union of α points of E_{i}. Hence $2 S_{i} \cap E_{i}=2\left\{S_{i}, E_{i}\right\}$ and $\operatorname{Res}_{E_{i}}\left(2 S_{i}\right)=S_{i}$. Set $Z_{1}:=Z:=\cup_{i=1}^{n_{1}+1} 2 S_{i}$. To prove Theorem 1 it is sufficient to prove $h^{1}\left(M, \mathcal{I}_{Z}\left(x_{1}, n+1\right)\right)=0$ (or, equivalently, $h^{0}\left(M, \mathcal{I}_{Z}\left(x_{1}, n+1\right)\right)=0$). For $2 \leq i \leq n+1$ set $Z_{i}:=\bigcup_{x=i}^{n+1} 2 S_{x} \cup \bigcup_{y=1}^{i-1} S_{y}$. Hence $\operatorname{Res}_{E_{i}}\left(Z_{i}\right)=Z_{i+1}$ for all $1 \leq i \leq n$. By Lemma 1 to prove $h^{1}\left(M, \mathcal{I}_{Z_{i}}\left(x_{1}, n+2-i\right)\right)=0$ it is sufficient to prove $h^{1}\left(M, \mathcal{I}_{Z_{i+1}}\left(x_{1}, n+1-i\right)\right)=0$. Hence after $n+1$ steps we reduce to check that $h^{1}\left(M, \mathcal{I}_{\cup_{i=1}^{n+1} S_{i}}\left(x_{1}, 0\right)\right)=0$. Let S be the union of the projections on E of all
sets $S_{i}, 1 \leq i \leq n_{1}+1$. By the generality of each S_{i} the set S is a general union of $(n+1) \alpha$ points of E and hence $h^{i}\left(E, \mathcal{I}_{S}\left(x_{1}, 0\right)\right)=0$ for $i=0,1$, concluding the proof in this case.
(b) Here we assume $s=2, n \geq 2, x_{1}=n!(n+1)-n$ and $x_{2}=n+2$. Take a general $S \subset E$ such that $\sharp(S)=\alpha$ and general $A, B \subset M$ such that $\sharp(A)=\lfloor(n+1) \alpha(n+3) /(n+2)\rfloor-\alpha$ and $\sharp(B)=\lceil(n+1) \alpha(n+3) /(n+2)\rceil-\alpha$. To prove Theorem 1 in this case it is sufficient to prove $h^{1}\left(M, \mathcal{I}_{2 S \cup 2 A}\left(x_{1}, n+2\right)\right)=$ $h^{0}\left(M, \mathcal{I}_{2 S \cup 2 B}\left(x_{1}, n+2\right)\right)=0$. By the definition of α and Horace Lemma 1 it is sufficient to prove $h^{1}\left(M, \mathcal{I}_{S \cup 2 A}\left(x_{1}, n+1\right)\right)=h^{0}\left(M, \mathcal{I}_{S \cup 2 B}\left(x_{1}, n+1\right)\right)=0$. We will only check $h^{1}\left(M, \mathcal{I}_{S \cup 2 A}\left(x_{1}, n+1\right)\right)=0$, the other vanishing being similar. By the generality of S in E it is sufficient to prove $h^{1}\left(M, \mathcal{I}_{2 A}\left(x_{1}, n+1\right)\right)=0$ and $h^{0}\left(M, \mathcal{I}_{2 A}\left(x_{1}, n+1\right)\right)-h^{0}\left(M, \mathcal{I}_{2 A}\left(x_{1}, n\right)\right) \geq \sharp(S)=\alpha$ (see e.g. [9], Lemma 3). Since $\lfloor(n+1) \alpha(n+3) /(n+2)\rfloor-\alpha \leq(n+1) \alpha$ and A is general in M, we have $h^{1}\left(M, \mathcal{I}_{2 A}\left(x_{1}, n+1\right)\right)=0$ by part (a) and hence $h^{0}\left(M, \mathcal{I}_{2 A}\left(x_{1}, n+1\right)\right)=$ $(n+2)(n+1) \alpha-(n+2)\lfloor(n+1) \alpha(n+3) /(n+2)\rfloor-\alpha$. Hence it is sufficient to prove $h^{1}\left(M, \mathcal{I}_{2 A}\left(x_{1}, n\right)\right) \leq \alpha$. Let $J \subset M$ be a general union of $n \alpha$ points. We repeat the proof of part (a) taking only n hypersurfaces $E_{j}, 1 \leq j \leq n$, and obtain $h^{1}\left(M, \mathcal{I}_{2 J}\left(x_{1}, n\right)\right)=0$. Since $\lfloor(n+1) \alpha(n+3) /(n+2)\rfloor \geq n \alpha$, we have $h^{0}\left(M, \mathcal{I}_{2 A}\left(x_{1}, n\right)\right) \leq h^{0}\left(M, \mathcal{I}_{2 A}\left(x_{1}, n\right)\right)$, concluding this case.
(c) Here we assume $s=2, n \geq 2, x_{1}=n!(n+1)-n$ and $x_{2} \geq n+1$. By parts (a) and (b) and induction on the integer x_{2} we may assume $x_{2} \geq n+2$ and that the result is true for all x_{2}^{\prime} such that $n+1 \leq x_{2}^{\prime} \leq x_{2}-1$ and in particular for $x_{2}^{\prime}=x_{2}-1$ and $x_{2}^{\prime}=x_{2}-2$. We may repeat the proof of part (b); actually, now this case is easier because we may assume that the lemma is true for the integer $x_{2}-2$ and hence $h^{1}\left(M, \mathcal{I}_{2 A}\left(x_{1}, x_{2}-2\right)\right)=0$ and hence $h^{0}\left(M, \mathcal{I}_{2 A}\left(x_{1}, x_{2}-1\right)\right)-h^{1}\left(M, \mathcal{I}_{2 A}\left(x_{1}, x_{2}-2\right)\right)=(n+1) \alpha$.
(d) Here we assume $s=2, n \geq 2, x_{1} \geq n$! $(n+1)-n$ and $x_{2} \geq n+1$. By parts (a), (b) and (c) and induction on the integer x_{1} we may assume that the result is true for the integers $x_{2}-1$ and $x_{2}-2$. Hence we may repeat (with heavy simplifications) the proof of part (b).
(e) Now assume $n=1$. By Remarks 1 and 2 the same proof work taking $\tilde{x}_{1}=9$ as starting point, because the integer $h^{0}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(9)\right)=10$ is even, i.e. it is divible by $n+1$.

The proof of the following lemma was suggested from the proofs in [15], $\S 3$ and $\S 4$.

Lemma 5. Let X be an integral m-dimensional projective variety and L, R very ample line bundles on X such that $h^{i}(X, L)=h^{i}(X, L \otimes R)=$ $h^{i}\left(X, L \otimes R^{\otimes 2}\right)=0$ for all $i>0$. Fix an integral $D \in|R|$. For all integers $i \geq 0$ set $a_{L \otimes R^{\otimes i}}:=\left\lfloor h^{0}\left(X, L \otimes R^{\otimes i}\right) /(m+1)\right\rfloor, b_{L \otimes R^{\otimes i}}:=h^{0}\left(X, L \otimes R^{\otimes i}\right)-(m+1) a_{L \otimes R^{\otimes i}}$, $\alpha:=\left\lfloor\left(h^{0}\left(X, L \otimes R^{\otimes 2}\right)-h^{0}(X, L \otimes R) / m\right\rfloor\right.$ and $\beta:=h^{0}\left(X, L \otimes R^{\otimes 2}\right)-h^{0}(X, L \otimes R)-$ $m \alpha$. Set $c_{L \otimes R^{\otimes 2}}:=\left\lfloor\left(h^{0}\left(X, L \otimes R^{\otimes 2}\right)-1\right) /(m+1)\right\rfloor$. Assume:
(i) $h^{1}\left(X, \mathcal{I}_{2 A} \otimes L \otimes R\right)=h^{1}\left(D, \mathcal{I}_{2\{B, D\}, D} \otimes\left(L \otimes R^{\otimes 2}\right)_{\mid D}\right)=0$ for general $A \subset X, B \subset D$ such that $\sharp(A)=c_{L \otimes R^{\otimes 2}}-\alpha$ and $\sharp(B)=\alpha$.
(ii) $h^{0}\left(X, \mathcal{I}_{2 S} \otimes L\right) \leq h^{0}(X, L \otimes R)-(m+1) c_{L \otimes R^{\otimes 2}}+\beta$ for a general $S \subset X$ such that $\sharp(S)=c_{L \otimes R^{\otimes 2}}-\alpha-\beta$.
(iii) $L \otimes R$ is not $\left(c_{L \otimes R^{\otimes 2}}-\alpha-\beta-1\right)$ weakly defective, i.e. for a general $U \subset X$ such that $\sharp(U)=c_{L \otimes R^{\otimes 22}}-\alpha-\beta$ a general element of $\left|\mathcal{I}_{2 U}(L \otimes R)\right|$ has an isolated singular point (which is an ordinary double point) at each point of U and no other singularity contained in $X_{\text {reg }}$.
Then L is not weakly defective, i.e. it is not defective and for every integer $z>0$ such that $(m+1) z+1 \leq h^{0}\left(X, L \otimes R^{\otimes 2}\right)$ and any general $U \subset X$ such that $\sharp(U)=z$ a general member of $\left|\mathcal{I}_{2 U} \otimes L \otimes R^{\otimes 2}\right|$ has an isolated singular point at each point of U and no other singularity contained in $X_{\text {reg }}$.

Proof: Notice that $c_{L \otimes R^{\otimes 2}}=a_{L \otimes R^{\otimes 2}}$ if $b_{L \otimes R^{\otimes 2}} \neq 0$ and $c_{L \otimes R^{\otimes 2}}=a_{L \otimes R^{\otimes 2}}-1$ if $b_{L \otimes R^{\otimes 2}}=0$. Hence the non defectivity of $L \otimes R^{\otimes 2}$ follows from Lemma 4. To check its non weak defectivity it is sufficient to check the case of $c_{L \otimes R^{\otimes 2}}$ singular points. More precisely, by semicontinuity and [10], Th. 1.4, it is sufficient to prove the existence of $W \subset X_{\text {reg }}$ such that $\sharp(W)=c_{L \otimes R^{\otimes 2}}, h^{1}\left(X, \mathcal{I}_{2 W} \otimes L \otimes R^{\otimes 2}\right)=0$ and a general $\Gamma \in\left|\mathcal{I}_{2 W} \otimes L \otimes R^{\otimes 2}\right|$ has an isolated singularity at one point of W. We will copy the proof of Lemma 4 using the integer $c_{L \otimes R^{\otimes 2}}$ instead of the integer $a_{L \otimes R^{\otimes^{2}}}$ and use the notation of that proof. By assumption (iii) a general $Y \in\left|\mathcal{I}_{2 S \cup 2 G} \otimes L \otimes R\right|$ has an isolated singular point at each point of S for a general $S \cup G \subset X$ such that $\sharp(S \cup G)=c_{L \otimes R^{\otimes 2}}-\alpha$. Set $\tilde{Y}:=Y \cup D \in\left|L \otimes R^{\otimes 2}\right|$. The proof of Lemma 4 gives that $\operatorname{Sing}(\tilde{Y})$ contains a finite set W containing S and such that $h^{1}\left(X, \mathcal{I}_{2 W} \otimes L \otimes R^{\otimes 2}\right)=0$. Since $D \cap S=\emptyset, \tilde{Y}$ has an isolated singular point at each point of S, concluding the proof.

Proof of Theorem 3: It is sufficient to prove Theorem 3 for the integer $k=c_{\left(n_{1}, \ldots, n_{s} ; x_{1}, \ldots, x_{s}\right)}$. Set $M:=\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}}$. By assumption $x_{i} \geq 3$ for all i and there is an integer j such that $1 \leq j \leq s$ and the line bundles $\mathcal{O}_{M}\left(x_{1}, \ldots, x_{j-1}, x_{j}, x_{j+1}, \ldots, x_{s}\right), \mathcal{O}_{M}\left(x_{1}, \ldots, x_{j-1}, x_{j}-1, x_{j+1}, \ldots, x_{s}\right)$ and
$\mathcal{O}_{M}\left(x_{1}, \ldots, x_{j-1}, x_{j}-2, x_{j+1}, \ldots, x_{s}\right)$ are not defective. Notice that E is a hypersurface of M with multidegree $(0, \ldots, 0,1,0, \ldots, 0)$. We want to apply Lemma 4 taking $X:=M, D:=E, L:=\mathcal{O}_{M}\left(x_{1}, \ldots, x_{j-1}, x_{j}-2, x_{j+1}, \ldots, x_{s}\right)$ and $R:=\mathcal{O}_{M}(0, \ldots, 0,1,0, \ldots 0)$. Since $L \times R^{\otimes i}$ is not defective for $i=0,1,2$, assumptions (i) and (ii) of Lemma 4 are satisfied by our assumptions. Since L is not defective, the assumption (iii) of Lemma 4 is true by Remarks 1 and 2.

Proof of Theorem 2: Set $M:=\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-1}$. Fix $P \in \mathbf{P}^{1}$ and set $E:=$ $\mathbf{P}^{n} \times\left(\mathbf{P}^{1}\right)^{s-2} \times\{P\}$ (seen as a hypersurface of multidegree $(0, \ldots, 0,1)$ of M). Set $\tilde{x_{i}}:=n+i-1$ if $2 \leq i \leq s$. Set $\tilde{x_{1}}:=9$ if $n=1$ and $\tilde{x_{1}}=n!(n+1)-n$ if $n \geq 2$. Set $\alpha:=\binom{n+\tilde{x_{1}}}{n} /(n+1)$. Notice that $\alpha \in \mathbb{Z}$.
(a) Assume $s=2, n \geq 2, x_{1}=\tilde{x}_{1}$ and fix a general $S \subset E \cong \mathbf{P}^{n}$ such that $\sharp(S)=\alpha-1$. By [15], Cor. 4.5, the linear system $\left|\mathcal{I}_{2\{\{, E\}, E}\left(x_{1}, 0\right)\right|$ on E has the expected dimension at its general member has isolated singularities at each point of S. We immediately get that the linear system $\left|I_{2 S}\left(x_{1}, 1\right)\right|$ on M has the expected dimension and that it contains hypersurfaces whose singular locus is $S \times \mathbf{P}^{1}$, i.e. hypersurfaces whose singular set has finitely many points as projection in the first factor \mathbf{P}^{n} of M. Counting dimension we get that a general $Y \in\left|\mathcal{I}_{2\{S, E\}, E}\left(x_{1}, 0\right)\right|$ has not this property and hence that it has an isolated singularity at at least one point of S. By [10], Th. 1.4, the line bundle $\mathcal{O}_{M}\left(x_{1}, 1\right)$ is not weakly $(\alpha-2)$-defective. Then we continue as in part (b) of the proof of Theorem 1, but using Lemma 5 instead of Lemma 4, obtaining that for every integer t such that $1 \leq t \leq \tilde{x_{2}}$ the line bundle $\mathcal{O}_{M}\left(\tilde{x_{1}}, t\right)$ is not weakly $(t \alpha-2)$-defective.
(b) Assume $s=2, n \geq 2, x_{1}=\tilde{x_{1}}$ and $x_{2} \geq \tilde{x_{2}}$. We use part (a), Lemma 5 and induction on the integer x_{2} to obtain the theorem in this case.
(c) Assume $s=2, n \geq 2, x_{1} \geq \tilde{x_{1}}$ and $x_{2} \geq \tilde{x_{2}}$. Use induction on x_{2} and Lemma 5 to check this case.
(d) Assume $s=3$ and $n \geq 2$. Use the inductive proof of parts (a), (b) and (c). The starting point of the induction is the line bundle $\mathcal{O}_{M}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{s-1}, 0\right)$ on E (whose non weak defectivity when $s=2$ was checked at the end of part (a)) instead of [15], Cor. 4.5.
(e) Assume $n=1$. The same inductive proof works, since our bounds in the case $s=2$ are very far from being sharp: for instance, the conditions $x_{1} \geq 3$ and $x_{2} \geq 3$ are sufficient for the non-defectivity of the line bundle $\mathcal{O}_{\mathbf{P}^{1} \times \mathbf{P}^{1}}\left(x_{1}, x_{2}\right)$ ([14])).

REFERENCES

[1] Alexander, J. - Singularités imposables en position générale aux hypersurfaces de \mathbb{P}^{n}, Compositio Math., 68 (1988), 305-354.
[2] Alexander, J. and Hirschowitz, A. - Un lemme d'Horace différentiel: application aux singularité hyperquartiques de \mathbb{P}^{5}, J. Algebraic Geom., 1 (1992), 411-426.
[3] Alexander, J. and Hirschowitz, A. - La méthode d'Horace éclaté: application à l'interpolation en degré quatre, Invent. Math., 107 (1992), 585-602.
[4] Alexander, J. and Hirschowitz, A. - Polynomial interpolation in several variables, J. Algebraic Geom., 4 (1995), 201-222.
[5] Alexander, J. and Hirschowitz, A. - An asymptotic vanishing theorem for generic unions of multiple points, Invent. Math., 140 (2000), 303-325.
[6] Catalisano, M.V.; Geramita, A.V. and Gimigliano, A. - Rank of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl., 355 (2002), 263-285.
[7] Catalisano, M.V.; Geramita, A.V. and Gimigliano, A. - Higher secant varieties of the Segre varieties, J. Pure Appl. Algebra (to appear).
[8] Catalisano, M.V.; Geramita, A.V. and Gimigliano, A. - Secant defectivity for Segre-Veronese embeddings of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$, preprint, 2003.
[9] Chandler, K. - A brief proof of a maximal rank theorem for generic double points in projective space, Trans. Amer. Math. Soc., 353(5) (2000), 1907-1920.
[10] Chiantini, L. and Ciliberto, C. - Weakly defective varieties, Trans. Amer. Math. Soc., 454(1) (2002), 151-178.
[11] Ciliberto, C. - Geometric aspects of polynomial interpolation in more variables and of Waring's problem, European Congress of Mathematics (Barcelona, 2000), 289-316, Progress in Math. 201, Birkhäuser, Basel, 2001.
[12] Ciliberto, C. and Hirschowitz, A. - Hypercubique de \mathbb{P}^{4} avec sept points singulieres génériques, C. R. Acad. Sci. Paris, 313(I) (1991), 135-137.
[13] Fontanari, C. - On Waring's problem for partially symmetric tensors, e-print arXiv math. AG/040784.
[14] Laface, A. - On linear systems of curves on rational scrolls, Geom. Dedicata, 90 (2002), 127-144.
[15] Mella, M. - Singularities of linear systems and the Waring problem, e-print arXiv math. AG/0406288.
[16] Terracini, A. - Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari, Ann. Mat. Pura e Appl., 24 (1915), 91-100.

Edoardo Ballico,
Dept. of Mathematics, University of Trento, 38050 Povo (TN) - ITALY
E-mail: ballico@science.unitn.it

[^0]: Received: November 22, 2004; Revised: May 11, 2005.
 AMS Subject Classification: 14N05.
 Keywords: Segre-Veronese variety; Segre-Veronese embedding; multiprojective space; products of projective spaces; weakly defective variety; zero-dimensional scheme; double point; fat point.

 * The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

