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Abstract: Fix integers s ≥ 2 and n ≥ 1. Set x̃i := n + i − 1 if 3 ≤ i ≤ s and

x̃2 := max{3, n + 1}. Set x̃1 := 9 if n = 1 and x̃1 = n!(n + 1) − n if n ≥ 2. Fix integers

xi ≥ x̃i, 1 ≤ i ≤ s. Here we prove that the line bundle OPn
×(P1)s−1(x1, . . . , xs) is not

weakly defective, i.e. for every integer z such that z(n + s) + 1 ≤
(

n+x1

n

)
∏

s

i=2(xi + 1)

the linear system |IZ(x1, . . . , xs)| has dimension
(

n+x1

n

)
∏

s

i=2(xi + 1)− z(n + s)− 1 and

a general T ∈ |IZ(x1, . . . , xs)| has an ordinary double point at each point of Zred as only

singularities, where Z ⊂ Pn×(P1)s−1 is a general union of z double points.

1 – Introduction

The main aim of this paper is to use the so-called Horace Method introduced

by A. Hirschowitz to prove the non-defectivity and non-weak defectivity (in the

sense of [10]) of “many” line bundles in Pn×(P1)s−1. See [6], [7], [8] and [13]

for several results on the defectivity or non-defectivity on certain multiprojective

spaces and the linear algebra translation of any non-defectivity result for line

bundles on arbitrary multiprojective spaces. First, we will prove the following

result.
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Theorem 1. Fix integers k > 0, s ≥ 2 and n ≥ 1. Set x̃i := n + i − 1 if

3 ≤ i ≤ s and x̃2 := max{3, n+1}. Set x̃1 := 9 if n = 1 and x̃1 = n! (n+1) − n

if n ≥ 2. Fix integers xi ≥ x̃i, 1 ≤ i ≤ s. Let Z ⊂ Pn × (P1)s−1 be a gene-

ral union of k double points. If k(n + s) ≤
(

n+x1

n

)
∏s

i=2(xi + 1), then

h1(Pn×(P1)s−1, IZ(x1, . . . , xs)) = 0. If k(n + s) ≥
(

n+x1

n

)
∏s

i=2(xi + 1), then

h0(Pn×(P1)s−1, IZ(x1, . . . , xs)) = 0.

With the classical terminogy Theorem 1 says that for all k > 0 the line bundle

OPn×(P1)s−1(x1, . . . , xs) is not (k − 1)-defective, i.e. that this line bundle is not

defective. See Lemma 4 for a conditional inductive approach for an arbitrary

multiprojective space. Theorem 1 was just the only case in which we were able

to prove the initial step to carry over the inductive procedure.

Inspired from [15], Proof of Theorem 4.1, we will prove the following result.

Theorem 2. Fix integers s ≥ 2 and n ≥ 1. Set x̃i := n + i − 1 if 3 ≤ i ≤ s

and x̃2 := max{3, n+1}. Set x̃1 := 9 if n = 1 and x̃1 = n!(n+1)−n if n ≥ 2. Fix

integers xi ≥ x̃i, 1 ≤ i ≤ s. Then the line bundle OPn×(P1)s−1(x1, . . . , xs) is not

weakly defective, i.e. for every integer z such that z(n+s)+1≤
(

n+x1

n

)
∏s

i=2(xi+1)

the linear system |IZ(x1, . . . , xs)| has dimension
(

n+x1

n

)
∏s

i=2(xi+1)−z(n+s)−1

and a general T ∈ |IZ(x1, . . . , xs)| has an ordinary double point at each point of

Zred as only singularities, where Z ⊂ Pn×(P1)s−1 is a general union of z double

points.

Theorem 2 will be an easy corollary of Theorems 1 and 3. To state Theorem 3

we need to introduce the following notation. Fix integers s ≥ 1, n1 ≥ · · · ≥ ns > 0

and ti ≥ 0, 1 ≤ i ≤ s. In some inductive step we will allow the case ns = 0, just

taking a point as Pns . Even if ni = 0 for some i define the integers a(n1,...,ns;t1,...,ts),

b(n1,...,ns;t1,...,ts), c(n1,...,ns;t1,...,ts) and d(n1,...,ns;t1,...,ts) by the following relations:

(1)

(

1 +
s

∑

i=1

ni

)

a(n1,...,ns;t1,...,ts) + b(n1,...,ns;t1,...,ts) =
s

∏

i=1

(

ni + ti
ni

)

,

(2) 0 ≤ b(n1,...,ns;t1,...,ts) ≤
s

∑

i=1

ni ,

(3)

(

1 +

s
∑

i=1

ni

)

c(n1,...,ns;t1,...,ts) + d(n1,...,ns;t1,...,ts) + 1 =

s
∏

i=1

(

ni + ti
ni

)

,

(4) 0 ≤ d(n1,...,ns;t1,...,ts) ≤
s

∑

i=1

ni .
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Notice that

a(n1,...,ns;t1,...,ts) = c(n1,...,ns;t1,...,ts)

and
d(n1,...,ns;t1,...,ts) = b(n1,...,ns;t1,...,ts) − 1

if b(n1,...,ns;t1,...,ts) > 0, while

a(n1,...,ns;t1,...,ts) = c(n1,...,ns;t1,...,ts) + 1

and

d(n1,...,ns;t1,...,ts) =

s
∑

i=1

ni

if b(n1,...,ns;t1,...,ts) = 0.

Notice that

a(n1,...,ns−1,0;t1,...,ts) = a(n1,...,ns−1;t1,...,ts−1) ,

b(n1,...,ns−1,0;t1,...,ts) = b(n1,...,ns−1;t1,...,ts−1) ,

c(n1,...,ns−1,0;t1,...,ts) = d(n1,...,ns−1;t1,...,ts−1) ,

d(n1,...,ns−1,0;t1,...,ts) = d(n1,...,ns−1;t1,...,ts−1) .

Theorem 3. Fix integers k > 0, s ≥ 2, n1 ≥ · · · ≥ ns > 0, xi ≥ 3, 1 ≤ i ≤ s,

such that k(n1 + · · · + ns + 1) ≥
∏s

i=1

(

ni+xi

ns

)

. Fix a hyperplane H of Pnj and

set M :=
∏s

i=1 Pni , E :=
∏j−1

i=1 Pni×H×
∏s

i=j+1 Pni . Assume the existence of

an integer j such that 1 ≤ j ≤ s and the following properties hold:

(a) The line bundles OM (x1, . . . , xj−1, xj , xj+1, . . . , xs), OM (x1, . . . , xj−1,

xj − 1, xj+1, . . . , xs) and OM (x1, . . . , xj−1, xj − 2, xj+1, . . . , xs) are not

defective.

(b) For every integer z > 0 such that

z(n1 + · · · + ns + 1) + a(n1,...,nj−1,nj−1,nj+1,...,ns;x1,...,xs) ≤(5)

≤

j−1
∏

i=1

(

ni + xi

ni

)

·

(

nj + xj − 1

nj

)

·
s

∏

i=j+1

(

ni + xi

ni

)

(6)

and any general union W ⊂ M of z double points of M a general hyper-

surface of multidegree (x1, . . . , xj−1, xj−1, xj+1, . . . , xs) of Pn1×· · ·×Pns

singular at each point of Zred has an isolated singularity at at least one

point of Wred.
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Let Z ⊂ Pn1 × · · · × Pns be a general union of k double points. Then a general

hypersurface of multidegree (x1, . . . , xs) of Pn1 ×· · ·×Pns singular at each point

of Zred has an ordinary node at each point of Zred and no other singularity.

With the terminology of [10], Theorem 2 means that the Segre–Veronese

embedding of Pn1 × · · · × Pns with multidegree (x1, . . . , xs) is not weakly

(k − 1)-defective.

We work over an algebraically closed field K with char(K) = 0. Our proof of

Theorem 1 will be characteristic free, while our proofs of Theorems 2 and 3 depend

heavily from the characteristic zero assumption: a key tool will be [10], Th. 1.4.

To prove Theorems 2 and 3 we will use an idea of Mella ([15], proof of Th. 4.1).

To start the induction we will also use a theorem of weak non-defectivity for

Pn1 ([15], Cor. 4.5).See [1], [2], [3], [4] or [9] for Alexander–Hirschowitz theorem

on non-defectivity of line bundles on Pn. For several results on non-defectivity

for Segre–Veronese embeddings of multiprojective spaces (many of them with

low x1 not covered by Theorem 1), see [6] (which also contain a linear algebra

interpretation of Theorem 1), [7], [8]. For related results for P1× P1× P1 and a

similar inductive proof, see [13]. See [12], [9], Remark 6.2, (which quotes [16]) and

[15], Remark 4.4, for several examples of weak defective line bundles on projective

spaces.

2 – The proofs

For any scheme A and any P ∈ Areg let 2P (or 2{P, A} if there is any dan-

ger of misunderstandings) denote the first infinitesimal neighborhood of P in

A, i.e. the closed zero-dimensional subscheme of A with (IP )2 as its ideal sheaf.

We have length(2P ) = dimP (A)+1. We will say that 2P is the double point of A

with P as its support. For any finite subset S ⊂ Areg set 2{S, A} := ∪P∈S2{P, A}

and write 2S instead of 2{S, A} if there is no danger of misunderstandings.

Let D⊂A be an effective Cartier divisor of A and Z ⊂A any closed subscheme

of A. Let ResD(Z) denote the residual subscheme of Z with respect to D, i.e.

the closed subscheme of A with IZ,A : OA(−D) as its ideal sheaf. For instance,

ResD(2P ) = {P} if P ∈ Dreg and ResD(2P ) = 2P if P /∈ Dred. By the very

definition of residual scheme for any L ∈ Pic(A) we have the following exact

sequence:

(7) 0 → IResD(Z),A ⊗ L → IZ,A ⊗ L → IZ∩D,D ⊗ L|D → 0 .
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From the cohomology exact sequence of the exact sequence (7) we get at once

the following lemma which is a very elementary version of the so-called Horace

Lemma and that we will always call “the Horace Lemma”.

Lemma 1. Let A be a projective scheme, D an effective Cartier divisor of A,

Z a closed subscheme of A and L ∈ Pic(A). Then:

(i) h0(A, IZ,A ⊗ L) ≤ h0(A, IResD(Z),A ⊗ L) + h0(D, IZ∩D,D ⊗ L|D);

(ii) h1(A, IZ,A ⊗ L) ≤ h1(A, IResD(Z),A ⊗ L) + h1(D, IZ∩D,D ⊗ L|D).

The following result is a very particular case of [5], Lemma 2.3 (see in partic-

ular Fig. 1 at p. 308).

Lemma 2. Let A be an integral projective variety, L ∈ Pic(A), D an integral

effective Cartier divisor of A, Z ⊂ A a closed subscheme of A not containing D

and s a positive integer. Let U be the union of Z and s general double points

of A. Let S be the union of s general points of D. Let E ⊂ D be the union

of s general double points of D (not double points of A, i.e. each of them has

length dim(A)). To prove h1(A, IU,A ⊗ L) = 0 (resp. h0(A, IU,A ⊗ L) = 0) it is

sufficient to prove h1(D, I(Z∩D)∪S ⊗ (L|D)) = h1(A, IResD(Z)∪E,A
⊗ L(−D)) = 0

(resp. h0(D, I(Z∩D)∪S ⊗ (L|D)) = h0(A, IResD(Z)∪E,A
⊗ L(−D)) = 0).

Remark 1. Here we assume s = 2 and n2 = 1. The following inequality

(8)

(

n1 + x1

n1

)

≥ (n1 + 2)2

is satisfied if and only if either n1 = 1 and x1 ≥ 8 or n1 ≥ 2 and x1 ≥ 3.

Remark 2. Fix integers s ≥ 2, n1 ≥ · · · ≥ ns > 0 and xi > 0, 1 ≤ i ≤ s.

Here we will discuss when the inequality

(9)

(

ns + xs − 1

ns

) s−1
∏

j=1

(

nj + xj

nj

)

≥

(

1 +

s
∑

i=1

ni

)( s
∑

i=1

ni

)

holds. However, since in all applications of this inequality we will need to use

an induction on s starting from the case s = 2, ns = 1, we will need to assume

also that the inequality (8) is satified, i.e. we need to assume also either n1 = 1

and x1 ≥ 8 or n1 ≥ 2 and x1 ≥ 3. Under these assumptions the inequality (9) is

always satisfied.
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The following lemma will be used implicitly several times in the proofs of

Theorems 1, 2 and 3 to avoid that a certain set has negative cardinality.

Lemma 3. Fix integers s ≥ 2, n1 ≥ · · · ≥ ns > 0 and xi > 0, 1 ≤ i ≤ s, such

that either n1 = 1 and x1 ≥ 8 or n1 ≥ 2 and x1 ≥ 3. Then a(n1,...,ns−1;x1,...,xs
) ≥

n1 + · · · + ns.

Proof: Since a(n1,...,ns−1;x1,...,xs
) − n1 − · · · − ns is a non-decreasing

function of x2, . . . , xs, we may assume x2 = · · · = xs = 1. By the definition

(1) of a(n1,...,ns−1;x1,1,...,xs
) is sufficient to show τ(n1, x1, n2, . . . , ns) :=

(

n1+x1

n1

)
∏s−1

j=1(nj+1)ns−(n1+· · ·+ns)
2 ≥ 0. It is easy to check that function τ is a

non-decreasing function of n2, . . . , ns. One easily verifies that τ(1, 8, 1, . . . , 1) ≥ 0

and τ(2, 3, 1, . . . , 1) ≥ 0, concluding the proof.

Lemma 4. Let X be an integral m-dimensional projective variety and

L, R very ample line bundles on X such that hi(X, L) = hi(X, L ⊗ R) =

hi(X, L⊗R⊗2) = 0 for all i > 0. Fix an integral D ∈ |R|. For all integers i ≥ 0 set

aL⊗R⊗i := ⌊h0(X, L⊗R⊗i)/(m+1)⌋, bL⊗R⊗i := h0(X, L⊗R⊗i)− (m+1)aL⊗R⊗i ,

α := ⌊(h0(X, L⊗R⊗2)−h0(X, L⊗R)/m⌋ and β := h0(X, L⊗R⊗2)−h0(X, L⊗R)−

mα. Assume:

(i) h1(X, I2A ⊗ L ⊗ R) = h1(D, I2{B,D},D ⊗ (L ⊗ R⊗2)|D) = 0 for general

A ⊂ X, B ⊂ D such that ♯(A) = aL⊗R⊗2 − α and ♯(B) = α.

(ii) h0(X, I2S ⊗L) ≤ h0(X, L⊗R)− (m+1)aL⊗R⊗2 +β for a general S ⊂ X

such that ♯(S) = aL⊗R⊗2 − α − β.

Then L is not defective, i.e. for every integer k > 0 we have h0(X, IZ⊗L⊗R⊗2) =

max{0, h0(X, L ⊗ R⊗2) − k(m + 1)} (or, equivalently, h1(X, IZ ⊗ L ⊗ R⊗2) =

max{0, k(m + 1)−h0(X, L⊗R⊗2)}) for a general union of k double points of X.

Proof: We will only check that h1(X, IZ ⊗L⊗R⊗2) = 0 for a general union

Z of aL⊗R⊗2 double points of X, because the proof that h0(X, IW ⊗L⊗R⊗2) = 0

for a general union W of aL⊗R⊗2 +1 double points of X is similar and all cases in

which k ≤ aL⊗R⊗2 (the surjectivity range of the restriction map) follow from the

case k = aL⊗R⊗2 , while all cases with k ≥ aL⊗R⊗2 + 1 (the injectivity range for

the restriction map) follow from the case k = aL⊗R⊗2 +1. Since h1(X, L⊗R) = 0,

we have h0(D, (L ⊗ R⊗2)|D) = h0(X, L ⊗ R⊗2) − h0(X, L ⊗ R). By assumption

h1(D, I2{B,D},D ⊗ (L⊗R⊗2)|D) = 0 (i.e. h0(D, I2{B,D},D ⊗ (L⊗R⊗2)|D) = β)for

a general B ⊂ E such that ♯(B) = α. Hence h1(D, IF∪2{B,D},D ⊗ (L⊗R⊗2)|D) =
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h0(D, IF∪2{B,D},D ⊗ (L ⊗ R⊗2)|D) = 0 for a general F ⊂ E such that ♯(F ) = β.

Fix a general S ⊂ X such that ♯(S) = aL⊗R⊗2 −α−β. To check the vanishing of

h1(X, IZ ⊗L⊗R⊗2) it is sufficient to prove h1(X, I2G∪2S∪2B ⊗L⊗R⊗2), where

G ⊂ X is a general subset such that ♯(G) = β. We have ResD(2B) = B and

2B ∩ D = 2{B, D}. By Lemma 2 it is sufficient to prove h1(X, IB∪2S∪2{G,D} ⊗

L ⊗ R) = 0. First, we will check that h1(X, I2S∪2{G,D} ⊗ L ⊗ R) = 0. Since

2{G, D} ⊂ 2G, it is sufficient to prove h1(X, I2S∪2G ⊗ L ⊗ R) = 0. By assump-

tion we have h1(X, I2S ⊗L⊗R) = 0. Even more is true. Indeed, by assumption

we have h1(X, I2S∪2J ⊗ L ⊗ R) = 0 for a general J ⊂ X such that ♯(J) = β;

more precisely, it is sufficient to assume that S ∪ J is general in X. By semi-

continuity we may assume that our vanishing is true not only for D, but for a

general D′ ∈ |D|. Since R is very ample, there is an integral D′ ∈ |D| pass-

ing through m general points of X. Since β ≤ m and we may choose S after

choosing G, the condition G ⊂ D is not restrictive, i.e. we may take G as J .

Hence h1(X, I2S∪2G ⊗ L ⊗ R) = 0 and thus h1(X, I2S∪2{G,D} ⊗ L ⊗ R) = 0.

Since ResD(2S ∪ B ∪ 2{G, D}) = 2S, h1(X, I2S∪2{G,D} ⊗ L ⊗ R) = 0 and

B is general in D, we have h1(X, IB∪2S∪2{G,D} ⊗ L ⊗ R) = 0 if and only if

h0(X, I2S∪2{G,D}⊗L⊗R)−h0(X, I2S⊗L) ≥ ♯(B) ([9], Lemma 3). i.e. if and only

if h0(X, L⊗R)−(m+1)aL⊗R⊗2 +(m+1)α+(m+1)β−mβ−h0(X, I2S⊗L) ≥ α,

i.e. if and only if h0(X, I2S ⊗L) ≤ h0(X, L⊗R)−(m+1)aL⊗R⊗2 +β for a general

S ⊂ X such that ♯(S) = aL⊗R⊗2 −α− β, which is true by our last assumption.

Proof of Theorem 1: Set M := Pn×(P1)s−1. Fix P ∈ P1 and set E :=

Pn×(P1)s−2×{P} (seen as a hypersurface of multidegree (0, . . . , 0, 1) of M).

We divide the proof into 5 steps.

(a) Here we assume s = 2, n ≥ 2, n2 = 1, x1 = n!(n + 1)− n and x2 = n + 1.

Set α :=
(

n+x1

n

)

/(n + 1) =
(

n!(n+1)
n

)

/(n + 1). Notice that α ∈ Z and that
(

n+x1

n

)

(x2 + 1)/(n + 2) =
(

n+x1

n

)

(n + 2)/(n + 2) = (n1 + 1)α. Fix a general union

S ⊂ E of α points of E. Notice that OE(x, t) ∼= OPn(x) for all x, t. Take n + 1

distinct points Q1, . . . , Qn+1 ∈ P1 and set Ei := Pn × {Qi} ∼= E ⊂ M . Let

Si ⊂ Ei be a general union of α points of Ei. Hence 2Si ∩ Ei = 2{Si, Ei} and

ResEi
(2Si) = Si. Set Z1 := Z := ∪n1+1

i=1 2Si. To prove Theorem 1 it is sufficient

to prove h1(M, IZ(x1, n + 1)) = 0 (or, equivalently, h0(M, IZ(x1, n + 1)) = 0).

For 2 ≤ i ≤ n + 1 set Zi :=
⋃n+1

x=i 2Sx ∪
⋃i−1

y=1 Sy. Hence ResEi
(Zi) = Zi+1 for all

1 ≤ i ≤ n. By Lemma 1 to prove h1(M, IZi
(x1, n + 2 − i)) = 0 it is sufficient to

prove h1(M, IZi+1
(x1, n + 1− i)) = 0. Hence after n + 1 steps we reduce to check

that h1(M, I∪n+1

i=1
Si

(x1, 0)) = 0. Let S be the union of the projections on E of all
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sets Si, 1 ≤ i ≤ n1 + 1. By the generality of each Si the set S is a general union

of (n + 1)α points of E and hence hi(E, IS(x1, 0)) = 0 for i = 0, 1, concluding

the proof in this case.

(b) Here we assume s = 2, n ≥ 2, x1 = n!(n + 1) − n and x2 = n + 2.

Take a general S ⊂ E such that ♯(S) = α and general A, B ⊂ M such that

♯(A) = ⌊(n + 1)α(n + 3)/(n + 2)⌋ − α and ♯(B) = ⌈(n + 1)α(n + 3)/(n + 2)⌉ − α.

To prove Theorem 1 in this case it is sufficient to prove h1(M, I2S∪2A(x1, n+2)) =

h0(M, I2S∪2B(x1, n + 2)) = 0. By the definition of α and Horace Lemma 1 it is

sufficient to prove h1(M, IS∪2A(x1, n + 1)) = h0(M, IS∪2B(x1, n + 1)) = 0. We

will only check h1(M, IS∪2A(x1, n + 1)) = 0, the other vanishing being similar.

By the generality of S in E it is sufficient to prove h1(M, I2A(x1, n + 1)) = 0

and h0(M, I2A(x1, n + 1)) − h0(M, I2A(x1, n)) ≥ ♯(S) = α (see e.g. [9], Lemma

3). Since ⌊(n + 1)α(n + 3)/(n + 2)⌋ − α ≤ (n + 1)α and A is general in M , we

have h1(M, I2A(x1, n + 1)) = 0 by part (a) and hence h0(M, I2A(x1, n + 1)) =

(n + 2)(n + 1)α − (n + 2)⌊(n + 1)α(n + 3)/(n + 2)⌋ − α. Hence it is sufficient

to prove h1(M, I2A(x1, n)) ≤ α. Let J ⊂ M be a general union of nα points.

We repeat the proof of part (a) taking only n hypersurfaces Ej , 1 ≤ j ≤ n, and

obtain h1(M, I2J(x1, n)) = 0. Since ⌊(n + 1)α(n + 3)/(n + 2)⌋ ≥ nα, we have

h0(M, I2A(x1, n)) ≤ h0(M, I2A(x1, n)), concluding this case.

(c) Here we assume s = 2, n ≥ 2, x1 = n!(n + 1) − n and x2 ≥ n + 1.

By parts (a) and (b) and induction on the integer x2 we may assume x2 ≥ n + 2

and that the result is true for all x′
2 such that n + 1 ≤ x′

2 ≤ x2 − 1 and in

particular for x′
2 = x2 − 1 and x′

2 = x2 − 2. We may repeat the proof of part

(b); actually, now this case is easier because we may assume that the lemma

is true for the integer x2 − 2 and hence h1(M, I2A(x1, x2 − 2)) = 0 and hence

h0(M, I2A(x1, x2 − 1)) − h1(M, I2A(x1, x2 − 2)) = (n + 1)α.

(d) Here we assume s = 2, n ≥ 2, x1 ≥ n!(n + 1) − n and x2 ≥ n + 1.

By parts (a), (b) and (c) and induction on the integer x1 we may assume that

the result is true for the integers x2 − 1 and x2 − 2. Hence we may repeat (with

heavy simplifications) the proof of part (b).

(e) Now assume n = 1. By Remarks 1 and 2 the same proof work taking

x̃1 = 9 as starting point, because the integer h0(P1,OP1(9)) = 10 is even, i.e. it

is divible by n + 1.

The proof of the following lemma was suggested from the proofs in [15],

§3 and §4.
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Lemma 5. Let X be an integral m-dimensional projective variety and

L, R very ample line bundles on X such that hi(X, L) = hi(X, L ⊗ R) =

hi(X, L⊗R⊗2) = 0 for all i > 0. Fix an integral D ∈ |R|. For all integers i ≥ 0 set

aL⊗R⊗i := ⌊h0(X, L⊗R⊗i)/(m+1)⌋, bL⊗R⊗i := h0(X, L⊗R⊗i)− (m+1)aL⊗R⊗i ,

α := ⌊(h0(X, L⊗R⊗2)−h0(X, L⊗R)/m⌋ and β := h0(X, L⊗R⊗2)−h0(X, L⊗R)−

mα. Set cL⊗R⊗2 := ⌊(h0(X, L ⊗ R⊗2) − 1)/(m + 1)⌋. Assume:

(i) h1(X, I2A ⊗ L ⊗ R) = h1(D, I2{B,D},D ⊗ (L ⊗ R⊗2)|D) = 0 for general

A ⊂ X, B ⊂ D such that ♯(A) = cL⊗R⊗2 − α and ♯(B) = α.

(ii) h0(X, I2S ⊗L) ≤ h0(X, L⊗R)− (m+1)cL⊗R⊗2 +β for a general S ⊂ X

such that ♯(S) = cL⊗R⊗2 − α − β.

(iii) L⊗R is not (cL⊗R⊗2−α−β−1) weakly defective, i.e. for a general U ⊂ X

such that ♯(U) = cL⊗R⊗2 − α− β a general element of |I2U (L⊗R)| has

an isolated singular point (which is an ordinary double point) at each

point of U and no other singularity contained in Xreg.

Then L is not weakly defective, i.e. it is not defective and for every integer z > 0

such that (m + 1)z + 1 ≤ h0(X, L ⊗ R⊗2) and any general U ⊂ X such that

♯(U) = z a general member of |I2U ⊗ L ⊗ R⊗2| has an isolated singular point at

each point of U and no other singularity contained in Xreg.

Proof: Notice that cL⊗R⊗2 = aL⊗R⊗2 if bL⊗R⊗2 6= 0 and cL⊗R⊗2 = aL⊗R⊗2−1

if bL⊗R⊗2 = 0. Hence the non defectivity of L ⊗ R⊗2 follows from Lemma 4. To

check its non weak defectivity it is sufficient to check the case of cL⊗R⊗2 singular

points. More precisely, by semicontinuity and [10], Th. 1.4, it is sufficient to prove

the existence of W ⊂ Xreg such that ♯(W ) = cL⊗R⊗2 , h1(X, I2W ⊗L⊗R⊗2) = 0

and a general Γ ∈ |I2W ⊗ L ⊗ R⊗2| has an isolated singularity at one point of

W . We will copy the proof of Lemma 4 using the integer cL⊗R⊗2 instead of the

integer aL⊗R⊗2 and use the notation of that proof. By assumption (iii) a general

Y ∈ |I2S∪2G ⊗ L ⊗ R| has an isolated singular point at each point of S for a

general S∪G ⊂ X such that ♯(S∪G) = cL⊗R⊗2 −α. Set Ỹ := Y ∪D ∈ |L⊗R⊗2|.

The proof of Lemma 4 gives that Sing(Ỹ ) contains a finite set W containing S

and such that h1(X, I2W ⊗ L ⊗ R⊗2) = 0. Since D ∩ S = ∅, Ỹ has an isolated

singular point at each point of S, concluding the proof.

Proof of Theorem 3: It is sufficient to prove Theorem 3 for the integer

k = c(n1,...,ns;x1,...,xs). Set M := Pn1 × · · · × Pns . By assumption xi ≥ 3

for all i and there is an integer j such that 1 ≤ j ≤ s and the line bun-

dles OM (x1, . . . , xj−1, xj , xj+1, . . . , xs), OM (x1, . . . , xj−1, xj−1, xj+1, . . . , xs) and
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OM (x1, . . . , xj−1, xj −2, xj+1, . . . , xs) are not defective. Notice that E is a hyper-

surface of M with multidegree (0, . . . , 0, 1, 0, . . . , 0). We want to apply Lemma

4 taking X := M , D := E, L := OM (x1, . . . , xj−1, xj − 2, xj+1, . . . , xs) and

R := OM (0, . . . , 0, 1, 0, . . . 0). Since L × R⊗i is not defective for i = 0, 1, 2, as-

sumptions (i) and (ii) of Lemma 4 are satisfied by our assumptions. Since L is

not defective, the assumption (iii) of Lemma 4 is true by Remarks 1 and 2.

Proof of Theorem 2: Set M := Pn × (P1)s−1. Fix P ∈ P1 and set E :=

Pn × (P1)s−2 × {P} (seen as a hypersurface of multidegree (0, . . . , 0, 1) of M).

Set x̃i := n + i − 1 if 2 ≤ i ≤ s. Set x̃1 := 9 if n = 1 and x̃1 = n!(n + 1) − n if

n ≥ 2. Set α :=
(

n+x̃1

n

)

/(n + 1). Notice that α ∈ Z.

(a) Assume s = 2, n ≥ 2, x1 = x̃1 and fix a general S ⊂ E ∼= Pn such

that ♯(S) = α − 1. By [15], Cor. 4.5, the linear system |I2{S,E},E(x1, 0)| on E

has the expected dimension at its general member has isolated singularities at

each point of S. We immediately get that the linear system |I2S(x1, 1)| on M

has the expected dimension and that it contains hypersurfaces whose singular

locus is S × P1, i.e. hypersurfaces whose singular set has finitely many points

as projection in the first factor Pn of M . Counting dimension we get that a

general Y ∈ |I2{S,E},E(x1, 0)| has not this property and hence that it has an

isolated singularity at at least one point of S. By [10], Th. 1.4, the line bundle

OM (x1, 1) is not weakly (α − 2)-defective. Then we continue as in part (b) of

the proof of Theorem 1, but using Lemma 5 instead of Lemma 4, obtaining that

for every integer t such that 1 ≤ t ≤ x̃2 the line bundle OM (x̃1, t) is not weakly

(tα − 2)-defective.

(b) Assume s = 2, n ≥ 2, x1 = x̃1 and x2 ≥ x̃2. We use part (a), Lemma 5

and induction on the integer x2 to obtain the theorem in this case.

(c) Assume s = 2, n ≥ 2, x1 ≥ x̃1 and x2 ≥ x̃2. Use induction on x2 and

Lemma 5 to check this case.

(d) Assume s = 3 and n ≥ 2. Use the inductive proof of parts (a), (b) and

(c). The starting point of the induction is the line bundle OM (x̃1, . . . , x̃s−1, 0) on

E (whose non weak defectivity when s = 2 was checked at the end of part (a))

instead of [15], Cor. 4.5.

(e) Assume n = 1. The same inductive proof works, since our bounds in the

case s = 2 are very far from being sharp: for instance, the conditions x1 ≥ 3 and

x2 ≥ 3 are sufficient for the non-defectivity of the line bundle OP1×P1(x1, x2)

([14])).
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