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Abstract: We consider the problem of a rigid body (for example a satellite) moving

in a circular orbit around a fixed gravitational center whose inertia tensor’s components

A,B,C are positive real numbers satisfying 0 < A < B ≤ C = 1. We prove the non

complete meromorphic integrability of the satellite using a criterion based on a theorem

of J.-J. Morales and J.-P. Ramis. This criterion relies on some local and global properties

of a linear differential system, called normal variational system and depending rationally

on A and
√

3 (B − A). Our proof uses tools from computer algebra and proceeds in two

steps: first the satellite with axial symmetry (i.e. 0 < A < B = C = 1) then the satellite

without axial symmetry (i.e. 0 < A < B < C = 1).

1 – Introduction

We consider the problem of a rigid body (the satellite) moving in a circular

orbit around a fixed gravitational center ([15, 16, 17], [18]). This satellite is

characterized by its inertia tensor which is related to the distribution of the mass

throughout the body. Its components A, B and C are positive real numbers which

can be assumed to satisfy the conditions 0 < A < B ≤ C = 1. We want to know

whether there exists values of these parameters such that the satellite may be

completely integrable (with meromorphic first integrals). That means that there

exists a sufficient number of meromorphic first integrals which are functionally

independent and in involution to describe the behavior of the satellite (see [1],

[9] and [21] for precise definitions of these notions).
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In the last twenty years, Ziglin (1982); Baider, Churchill, Rod and Singer

(1996) and Morales and Ramis (1998) established new theories on complete inte-

grability of Hamiltonian systems. They all found necessary conditions of complete

(meromorphic) integrability based on the monodromy group ([25], [26]) or the dif-

ferential Galois group ([10], [21]) of a first order linear differential system, the

normal variational system (or equation) computed along a particular solution of

the Hamiltonian system (see [1], [9]).

In [18], using Ziglin’s theory, A. Maciejewski and K. Gozdziewski gave a nu-

merical proof of the non complete integrability of the problem of the satellite

with axial symmetry (when 0 < A < B = C = 1). Furthermore, A. Maciejewski

([16, 17]) and M. Audin ([2]) also gave independent (formal) proofs of non com-

plete integrability for the satellite with axial symmetry . They both applied J.-J.

Morales and J.-P. Ramis’ theorem to an order two variational equation using two

different approaches.

In this paper we prove that for all initial values of A, B and C, the satel-

lite is not completely integrable. We consider first the satellite with axial sym-

metry (0 < A < B = C = 1) and then the satellite without axial symmetry

(0 < A < B < C = 1). Both parts of the proof (B = 1 and B < 1) rely on a cri-

terion of non complete meromorphic integrability deduced from J.-J. Morales and

J.-P. Ramis’ theorem ([21]) and established in [7, 6]:

Criterion 1 ([7, 6]). Let (S) be a Hamiltonian system and (NV S) be the

normal variational system computed along a particular solution of (S). If

(i) (NV S) is irreducible and has formal solutions with logarithmic terms at

a singular point, or

(ii) (NV S) has an irreducible factor which has formal solutions with loga-

rithmic terms at a singular point,

then (S) is not completely integrable (with meromorphic first integrals).

Unlike Kovacic algorithm, criterion 1 can be applied to normal variational

systems (Y ′(z) = M(z)Y (z), M(z) ∈ Mn,n(Q̄(z))) of size n × n where n can be

greater than 2. For a recent overview of the existing algorithms, see chapter 4

of [22]. Here the normal variational system depends rationally on A and a new

parameter w defined by w2 = 3 (B − A) (M(z) ∈ M4,4(Q̄(A, w)(z))). So one

needs to adapt the algorithms to a parameterized situation and in general it is

not so easy because arithmetic constraints on the parameters may appear, which

creates problems of undecidability (theorem 1 of [5]).
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In section 2, we give the normal variational system computed by A. Maciejew-

ski in [15, 16, 18].

In section 3 we consider the particular case when the satellite has an axial

symmetry i.e. when 0 < A < B = C = 1 or 0 < w2 = 3 (1 − A) < 3. The normal

variational system depends only on w. We prove that this system can be reduced

to a linear differential equation of order 2 which is irreducible and has formal

solutions with logarithmic terms when w is a non zero real number.

In section 4 we deal with the general case of the satellite, the satellite without

axial symmetry i.e. when 0 < A < B < C = 1 or 0 < w2 < 3 (1 − A) < 3.

We first prove that the 4 × 4 normal variational system has two linearly inde-

pendent regular formal solutions with logarithmic terms and that it is irreducible

under the conditions on the parameters. In particular, we used the initial polyno-

mial inequalities and inequations on the parameters A and w to solve arithmetic

problems which appeared in the study of the exponential solutions of the normal

variational system.

In both sections 3 and 4, we conclude that the satellite is not meromorphically

completely integrable.

2 – Normal variational system

In this section we recall the equations which define the problem of the satellite

([15, 16, 18]) and the computation of the normal variational system made by

A. Maciejewski in [15].

The equations of the rotational motion of the body can be written with a

9 × 9 Lie-Poisson system:

x′(t) = J (x(t))∇H(x(t))

where x =t(m, γ, n),

H =
1

2
〈m, I−1m〉 − 〈m, n〉 +

3

2
〈γ, Iγ〉 ,

J (x) is the 9 × 9 matrix

J (x) =





J(m) J(γ) J(n)
J(γ) 0 0
J(n) 0 0
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and for x ∈ {m, γ, n}, J(x) is the 3 × 3 matrix

J(x) =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 .

The vector n is the unit vector normal to the plane of the orbit; the vector

γ is the unit vector in the direction of the radius vector of the center of mass of

the satellite and the vector m is the angular momentum (m = IΩ where Ω is the

angular velocity).

The matrix I is the inertia tensor, it is related to the distribution of the mass

throughout the body:

I =





A 0 0
0 B 0
0 0 C





where the parameters A, B and C are positive real numbers. Without loss of

generality, one can assume that they satisfy

(1) 0 < A < B ≤ C = 1 .

In [15], the author reduces this 9× 9 differential system to a Hamiltonian one

on a symplectic manifold.

He considers new variables p = (p1, p2, p3) and q = (q1, q2, q3) defined by:

m = K−1 p ,

K =





−s2 s3 c2 c3 c2

0 c3 −s3

1 0 0



 ,

n =





−s2

s3 c2

c3 c2



 ,

γ =





c2 c1

s3 s2 c1 − c3 s1

c3 s2 c1 + s3 s1



 ,

∀ i ∈ {1, 2, 3} , ci = cos(qi), si = sin(qi) .

He defines an heteroclinic solution on the invariant manifold
{

(q, p) ∈ R6, q2 = q3 = p2 = p3 = 0
}
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by:

cos(q1) =
1 − z2

1 + z2

sin(q1) =
−2z

1 + z2

p1 = 1 − w
1 − z2

1 + z2

dz

dt
=

w

2
(1 − z2)

where w is a new parameter defined by

(2) w2 = 3 (B − A) .

He gets a normal variational system with coefficients in Q(w, A)(z).

Remark 1. To compute the normal part of the variational system one can

compute the variational system first and make a symplectic transformation on

it. We do not show this computation which leads to the same normal variational

system as in [15].

The normal variational system we work with is then

(3) Y ′(z) = M(z)Y (z)

where

M(z) =

(

M1 M2

M3 −tM1

)

with

M1 =







0 2(w2
−3+3 A)

w (3 A+w2)
(1+w) z2+1−w

(z−1) (z+1) (z2+1)

−2
w

(1+w) z2+1−w

(z+1) (z−1) (z2+1)
0







M2 =







−6
w (3 A+w2)

1
(z+1) (z−1) 0

0 −2
A w

1
(z+1) (z−1)
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M3 =











2
w

(w2+2 w+4−3 A) z4+(6 A−4−2 w2) z2w2
−2 w+4−3 A

(z−1) (z+1) (z2+1)2
−4 (w2

−3+3 A)
w

z
(z2+1)2

−4 (w2
−3+3 A)
w

z
(z2+1)2

−2 (w2
−3+3 A)

w (3 A+w2)
(1+w)2 z4+(12 A+2+2 w2) z2+(w−1)2

(z−1) (z+1) (z2+1)2











.

The conditions (1) and (2) become

0 < w2 ≤ 3 (1 − A) < 3 .

In the following section, we consider the special case when the satellite has

an axial symmetry.

3 – Satellite with axial symmetry

We assume that two of the components of the inertia tensor are equal:

B = C = 1 or

0 < w2 = 3 (1 − A) < 3 .

If we replace A with A = 3−w2

3 , the normal variational system (3) becomes:

Y ′(z) =

























0 0 −2
w

1
(z−1) (z+1) 0

−2
w

(w+1) z2+1−w

(z+1) (z−1) (z2+1)
0 0 6

w (w2
−3)

1
(z−1) (z+1)

2
w

(2w2+2w+1) z4+(2−4 w2) z2+2w2
−2w+1

(z+1) (z−1) (z2+1)2
0 0 2

w
(w+1)z2+1−w

(z+1) (z−1) (z2+1)

0 0 0 0

























Y (z)

where the parameter w is such that 0 < w2 < 3.

This system has the particular solution t(0, 1, 0, 0). We construct a symplectic

matrix P (such that tP J P − J = 0 where J =

(

0 I2

−I2 0

)

) with the vector
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t(0, 1, 0, 0) on its first row:

P =











0
1
0
0

1 0 0
0 0 0
0 0 1
0 1 0











.

We make the Gauge transformation Y = P Z and get the equivalent linear

differential system satisfied by Z whose first column and third row are zero by

construction:

Z ′(z) =









0 0 × ×
0 0 × α(z)
0 0 0 0
0 β(z) 0 0









Z(z)

where

α(z) =
−2

w (z2 − 1)

β(z) = 2
(2w2 + 2w + 1) z4 + (2 − 4w2) z2 + 1 − 2w + 2w2

w(z2 + 1)2 (z2 − 1)
.

We can remove the first and third columns and rows to get the following 2 × 2

reduced system:

ν ′(z) =

(

0 α(z)
β(z) 0

)

ν(z) .

According to [21] (or proposition 4.2 p. 76 of [20]), this symplectic transforma-

tion enables to apply our criterion directly on this reduced 2×2 linear differential

system instead of applying it on the initial 4 × 4 system.

We first transform it into a linear differential equation of order 2 namely the

one satisfied by the first component y of ν:

y′′(z) −
α′(z)

α(z)
y′(z) − α(z)β(z) y(z) = 0

i.e.

(4) y′′(z) +
2 z

(z − 1) (z + 1)
y′(z) −

4
(

(2w2 + 2w + 1) z4 + (2 − 4w2) z2 + 2w2 − 2w + 1
)

w2 (z + 1)2 (z − 1)2 (z2 + 1)2
y(z) = 0 .
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Proposition 1. For each non zero real number w, the equation (4) has

formal solutions with logarithmic terms at the point i and is irreducible.

Proof: The singularities i, −i, 1 and −1 are regular singular points and their

exponents are:

ei, e−i ∈ {−1, 2} at i and − i ;

e1, e−1 ∈ {
i

w
,
−i

w
} at 1 and − 1 .

The point infinity is an ordinary point.

At the points i and −i, the exponents differ from an integer so there may

be a formal solution with logarithmic terms. Using the criterion of detection of

logarithmic terms (16.3, [14]), we prove that under the condition w 6= 0, there is

a formal solution with a logarithm at the point i. One can also use the procedure

formal sol of the package DEtools in Maple which returns the following two

formal solutions:

f1 = h1 and f2 = ln(X)h1 + h2

where

h1 =
i

9w
(X2 +

i (2w − 1)

2 w
X3 −

13 w2 − 15 w + 4

20 w2
X4) + h.o.t.

h2 = −
1

3

1

X
+

i (w − 2)

6 w
−

1

12

(

w2 − 2
)

w2
X −

i
(

27 w3 + 99 + 133w2 − 279 w
)

1080 w3
X2

+

(

387 w − 189 + 9w4 − 661 w2 + 164w3
)

2160 w4
X3

−
i
(

9 w5 − 576 − 5290 w2 + 5274w3 − 631 w4 + 3591w
)

21600 w5
X4 + h.o.t.

with X = z − i.

We will see in section 4.1 a like-Ince criterion to detect logarithmic terms

in regular formal solutions of first order homogeneous linear differential systems

without computing the terms of these solutions.

Now let us prove that the equation is irreducible. As it is of order 2, it suffices

to prove that it has no right factor of degree one ( d
dz

− r, r ∈ Q(w)(z)), i.e. no

exponential solution (y such that y′(z)
y(z) = r ∈ Q(w)(z)).

But an exponential solution can be written

(z − i)ei (z + i)e−i (z − 1)e1 (z + 1)e−1 q(z)
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where q is a polynomial and for x0 in {1,−1, i,−i}, ex0
is an exponent at the

(regular singular) point x0. As the point infinity is an ordinary point for the

equation, the degree of q is −(e1+e−1+ei+e−i) which is at most 2−e1−e−1 where

e2
1 w2 +1 = e2

−1 w2 +1 = 0. So we must have 2− e1 − e−1 ∈ N. As the parameter

w is real, the only possibility for (e1, e−1) is: (e1, e−1) ∈ {( i
w

, −i
w

), (−i
w

, i
w

)} and

then the degree of the polynomial q does not depend on the parameters.

So if there is an exponential solution then it can be written
(

z + 1

z − 1

)e
q(z)

(z2 + 1)

where q = q0 + q1 z + q2 z2 and e2 w2 + 1 = 0.

The coefficients q0, q1, q2 satisfy a linear homogeneous system whose coeffi-

cients depend on e and w and whose size is numerically fixed. More precisely this

system is A t(q0, q1, q2) = 0 where A is a 5 × 3 matrix. A Groebner Basis ([13])

for the polynomial system made of the 3 × 3 sub-determinants of the matrix A

and of the polynomial e2 w2 + 1 is reduced to [1]. So there exists no polynomial

q, no non zero exponential solution and the order two linear differential equation

(4) is irreducible.

Remark 2. One can notice that if an exponential solution exists, then its

valuation at the point i (resp. −i) will be equal to 2. Indeed the valuation of

the only formal solution at the point i (resp. −i) without logarithmic term, f1,

is equal to 2. So an exponential solution would be
(

z+1
z−1

)e

q(z) (z2 + 1)2 and

the degree of the polynomial q(z) would be −4, which is impossible. We thank

Jacques-Arthur Weil for this remark.

From criterion 1 and proposition 1, we can now state:

Proposition 2. The satellite with axial symmetry is not completely inte-

grable.

We now extend the proof to the case of the satellite without axial symmetry.

4 – General case: satellite without axial symmetry

Now we assume that there is no axial symmetry i.e. B 6= C = 1. We get the

conditions

(C) : 0 < w2 < 3 (1 − A) < 3 .
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4.1. Formal solutions with logarithmic terms

We count the number of formal solutions with logarithmic terms at the point

i ([4], [23]) without computing any term of the solutions thanks to the following

lemma:

Lemma 1. Let z Y ′(z) = A(z)Y (z) be a first order linear differential sys-

tem of size n × n (A ∈ Mn,n(C(z)), C field of characteristic 0) with 0 a regular

singular point:

A(z) = A0 + A1 z + · · · + Ak zk + · · · , A0 6= 0 .

Assume that the eigenvalues of the matrix A0 (i.e. the exponents at 0),

ρ0 < · · · < ρn−1, differ each other from non zero integers.

Let m be the biggest difference between two exponents: m = ρn−1 − ρ0 (∈ N)

and let M be the m × m triangular block-matrix (i.e. mn × mn matrix):

M =






















ρ0 In − A0 0 0 0 0 0
−A1 (ρ0 + 1) In − A0 0 0 0 0
−A2 −A1 (ρ0 + 2) In − A0 0 0 0

−A2
...

. . .

−Am−1 −Am−2 −A1 (ρ0 + m − 1) In − A0























.

The number of linearly independent formal solutions with logarithmic terms

at the point 0 is equal to n − N where N is the dimension of the kernel of the

matrix M.

Proof: Let Y (z) be a formal solution without logarithmic term:

Y (z) = zρ0 (Y0 + Y1 z + Y2 z2 + Y3 z3 + · · · ) .

The coefficients Yk satisfy the following recurrence relation:

(

(k + ρ0) In − A0

)

Yk =

k
∑

j=1

Aj Yk−j , k ∈ N .

The coefficient Yk is uniquely determined when k + ρ0 > ρn−1. The m first

equations can be written

MY = 0
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where Y is the vector t(tY0, . . . ,
t Ym−1).

So the number of linearly independent formal solutions without logarithmic

term is equal to the dimension N of the kernel of M, which gives the result.

We notice here that there may be formal solutions with logarithmic terms

even if the matrix A0 is diagonalizable. To detect them we need further terms in

the development at the point 0 of the matrix A as it is the case for the detection

of logarithms in the formal solutions of linear differential equations (16.3, [14]).

From this lemma we deduce the following proposition:

Proposition 3. Under the conditions (C) on the parameters, the normal

variational system (3) has two linearly independent formal solutions with loga-

rithmic terms at the regular singular point i.

Proof: Using a Moser reduction at the point i ([23]) and moving the singu-

larity i to the point 0, one can compute an equivalent linear differential system:

z Y ′(z) = (A0 + A1 z + · · · + Ak zk + · · · )Y (z) .

As the matrix A0 is non zero, the point i is a regular singularity of the system

(3) and its exponents are the eigenvalues of the matrix A0: ρ0 = −2, ρ1 = −1,

ρ2 = 0, ρ3 = 1. They differ each other from non zero integers.

Let us consider the 16 × 16 matrix

M =









−2I4 − A0 0 0 0
−A1 −I4 − A0 0 0
−A2 −A1 −A0 0
−A3 −A2 −A1 I4 − A0









.

Every sub-determinant of order 15 is zero. Among the sub-determinants of order

14, there is at least one which is non zero under the inequations given by (C).

For example the determinant of the sub-matrix obtained after removing the rows

2 and 6 and the columns 12 and 16 from the matrix M is:

2592 (w2 + 3)2 (w2 + 3A − 3)3 (A − 1)

w6 (3A + w2)4
.

So the matrix M is of rank 14 under the inequations given by (C) and according

to lemma 1, there are two linearly independent formal solutions with logarithmic

terms.
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Remark 3. Adapting the function formal sols of the package Isolde ([23])

in Maple to the parameterized situation we deal with, we are able to compute

“generically” formal solutions of parameterized linear differential systems at any

point whose exponents do not depend on the parameters. Generically we get two

formal solutions with logarithmic terms at the point i which are defined for all

values satisfying the conditions (C) except for (A, w) such that 3−w2 − 6A = 0.

This exceptional value of (A, w) does not annihilate the 14× 14 sub-determinant

in the proof of the proposition 3 and we have checked that for A = 3−w2

6 , we get

again two linearly independent formal solutions with logarithmic terms at the

point i.

Remark 4. Another technique to detect logarithms in formal solutions of

linear differential systems will be seen in a forthcoming paper.

4.2. Irreducibility

We prove the following proposition.

Proposition 4. Under the condition (C), the normal variational system (3)

is irreducible.

Proof: We prove that there is no factor of degree one, no factor of degree

three and no factor of degree two in the three following subsections.

4.2.1. Factor of degree one

A factor of degree one corresponds to an exponential solution. Deciding

whether a first order linear differential system has an exponential solution re-

quires looking for polynomial solutions of an auxiliary linear differential system

([3],[23]). But the degree of the searched polynomial solution may depend on the

parameters. Here we meet two situations:

1. When the degree of the searched polynomial depends on the parameters

A and w, then we get an arithmetic condition on A and w and we prove

that it cannot be satisfied under the inequalities and inequations of (C)

(lemma 2). Such a proof uses tools from real algebraic geometry.

2. When the degree of the polynomial does not depend on the parameters,

then we get only algebraic conditions on the parameters and we prove that

they are not satisfied under the inequations given by (C) (lemma 3).
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An exponential solution will be of the form ([23])

(z − 1)e1 (z + 1)e−1 (z − i)ei (z + i)e−i P (z)

where P (z) is a polynomial vector and for x0 in {1,−1, i,−i}, x0 is a regular

singular point whose exponent, ex0
, is a root of the polynomial Ex0

:

Ei(n) = E−i(n) = (n + 2) (n + 1)n (n − 1)

(5) E1(n) = E−1(n) = n4 + a n2 + b

with

(6) a =
(w2 + A + 1) (3 − 3 A − w2) + 3A

w2 A (3A + w2)
and b =

4 (1 − A) (3 − 3 A − w2)

A w4 (3A + w2)
.

As the exponents at the points i and −i are −2,−1, 0 and 1, we can look for

exponential solutions of the form

(z − 1)e1 (z + 1)e−1 (z2 + 1)−2 P (z)

and P (z) satisfies now the linear differential system

Y ′(z) =

(

M(z) −

(

e1

z − 1
+

e−1

z + 1
−

4z

z2 + 1

)

I4

)

Y (z) .

As this system is simple at infinity (see [3]) and of indicial polynomial (n − (4 −

e−1 − e1))
4, the polynomial vector P (z) is of degree at most 4 − e−1 − e1.

We will distinguish two cases: either e−1 + e1 is non zero then with the

conditions (C) on w and A the quantity 4−e−1−e1 cannot be an integer (lemma

2); either e−1 + e1 is equal to zero then there is no value of A and w satisfying

(C) and leading to a polynomial solution of degree 4 (lemma 3).

Lemma 2. Under the conditions (C), the normal variational system (3) has

no non zero exponential solution

(z − 1)e1 (z + 1)e−1 (z2 + 1)−2 P (z)

where P (z) is a non zero polynomial vector and where e1 + e−1 is non zero.
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Proof: If such an exponential solution exists then 4−e−1−e1 (i.e. the degree

of P ) is in N. So a necessary condition is that there exists e1, e−1 such that

E1(e1) = E−1(e−1) = 0 and e1 + e−1 ∈ Z .

The polynomial whose zeroes are the sums of the roots of E1 and E−1 is

Resx(E1(u), Resv(E−1(v), x − (u + v))) where Resx(f(x), g(x)) is the resultant

in x of f(x) and g(x) ∈ C[x]. Taking its squarefree part, we get the necessary

condition:

∃α ∈ Z , E(α) = α (α4 + 4 a α2 + 16 b) (α4 + 2 a α2 + a2 − 4 b) = 0

(in fact a stronger condition is 4 − α ∈ N).

We prove that under the initial constraints (C), the polynomial E has no non

zero real root. It suffices to notice that a, b and a2 − 4 b are positive.

The positivity of a and b is directly deduced from the conditions 1 − A > 0,

A > 0, w2 > 0 and 3 − 3 A − w2 > 0.

Now the expression of a2 − 4 b is given below:

w4 A2 (w2 + 3A)2 (a2 − 4b) =

w8 + 4 (2A − 1)w6 + 2 (3A2 − 3 A − 1)w4 − 12 (2A − 1) (3A2 − 3 A + 1)w2

− 9 (5A2 − 5 A − 1) (3A2 − 3 A + 1) .

Using the algorithm of Cylindric Algebraic Decomposition ([12], [24]) one can

prove that the polynomial

W 4 + 4 (2A − 1)W 3 + 2 (3A2 − 3A − 1)W 2 − 12 (2A − 1) (3A2 − 3A + 1)W−

9 (5A2 − 5A − 1) (3A2 − 3A + 1)

is always positive when

A > 0, W > 0, 1 − A > 0, 3 − 3 A − W > 0 .

This is a simple computation for the specialists, which was made in Magma

by M. Safey ([24]) who also noticed that the condition 0 < A < 1 suffices to

prove the positivity of this polynomial. You can also check it using the function

Experimental‘ImpliesRealQ in Mathematica (version 4.0.1). We conclude that

a2 − 4 b is positive.

So under the conditions (C), the polynomial E has no non zero real root and

in particular it has no non zero integer root.

Now if there is an exponential solution then e1+e−1 = 0 is the only possibility.
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Lemma 3. Under the conditions (C), the normal variational system (3) has

no non zero exponential solution

(z + 1)e (z − 1)−e (z2 + 1)−2 P (z)

where P (z) is a non zero polynomial vector.

Proof: If it exists, the polynomial P will be of degree at most 4 (independent

of the parameters) and will be a solution of the system:

z Y ′(z) = N(z)Y (z)

where N(z) = z (M(z) + ( 2e
z2

−1
+ 4z

z2+1
) I4). This new system can also be written:

z Y ′(z) = (N0 + N1z
−1 + N2 z−2 + N3 z−3 + N4 z−4 + · · · )Y (z) .

The matrix N0 is the scalar matrix 4 I4.

Let us denote P = P4 z4+P3 z3+P2 z2+P1 z+P0. The coefficients P0, P1, P2, P3

and P4 satisfy the following relations:



































(4 I4 − N0)P4 = 0
(3 I4 − N0)P3 = N1 P4

(2 I4 − N0)P2 = N1 P3 + N2 P4

(I4 − N0)P1 = N1 P2 + N2 P3 + N3 P4

−N0 P0 = N1 P1 + N2 P2 + N3 P3 + N4 P4
...

...

As N0 = 4 I4, the first equation gives no condition on P4 and the vectors

P3, P2, P1, P0 are uniquely determined in function of P4 =t (z1, z2, z3, z4) by the

four other equations. Then the equation z P ′(z)−N(z)P (z) = 0 gives five linear

homogeneous systems Mk
t(z1, z2, z3, z4) = 0, k = 1 . . . 5.

The next step consists in proving that the determinants of the matrices Mk

cannot simultaneously cancel under the conditions (C). The following compu-

tations were made in Magma. Let us denote dk the determinant of the matrix

Mk.






















d1 = (3A + w2)9 A4 d̃1

d2 = (3A + w2)w4 A5 d̃2

d3 = (3A + w2)8 A4 d̃3

d4 = 0
d5 = 0
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where d̃1, d̃2 and d̃3 are polynomials of respective total degree 55, 46 and 57 in

the variables A, w and e.

For each k in {1, 2, 3} we compute the resultants rk = Rese(d̃k, numer(e4 +

a e2 + b)) where a and b are given by (6):







r1 = w100 A10 (A − 1)2 (w2 + 3A)10 (w2 + 3A − 3)2 f2
1

r2 = w76 A8 (A − 1)2 (w2 + 3A)10 (w2 + 3A − 3)4 f2
2

r3 = w96 A12 (A − 1)2 (w2 + 3A)12 (w2 + 3A − 3)2 f2
3 .

The polynomials f1, f2 and f3 are of respective degrees 26, 20 and 26 in the

variable A.

Now we compute s1 = ResA(f1, f2) and s2 = ResA(f2, f3):

{

s1 = w25 (w + 1)2 (w2 − 3)154 (w2 + 3)88 t1 t2
s2 = w33 (w + 1) (w2 − 3)143 (w2 + 3)88 t3 t4 .

Lastly the greatest common divisor of the polynomials t1 t2 and t3 t4 is equal to

1. So with the inequations given by (C), the determinants dk cannot be simul-

taneously zero and there is no non zero polynomial P (z) satisfying z P ′(z) =

N(z)P (z).

4.2.2. Factor of degree three

There is a factor of degree three to the normal variational system if and only

if there is a factor of degree one to the adjoint of the normal variational system

Y ′ = −tM Y .

But here the matrix M has a special structure due to the Hamiltonian system,

indeed,

M J + J tM = 0 with J2 = −I .

So, the adjoint system can be written

J Y ′ = J (−tM Y ) = M (J Y ) = (J Y )′

and each exponential solution Y to the adjoint system corresponds to an expo-

nential solution J Y to the initial system.

As the normal variational system has no exponential solution, we conclude

that there is no factor of degree three.
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4.2.3. Factor of degree two

The factors of degree 2 of (3) correspond to the exponential solutions of its

6 × 6 second exterior system which are pure tensors i.e. which can be written as

the exterior product of two solutions of the normal variational system (proposition

4.14 of [22]). The vector W =t (0, 1, 0, 0, 1, 0) is an exponential solution of the

second exterior system of the normal variational system (3) which comes from

the symplectic structure of (3). Furthermore W is not a pure tensor, otherwise

there would exist v1, v2 such that W = v1 ∧ v2 so there would exist λ1, λ2, λ3, λ4

not all zero such that (λ1 e1 +λ2 e2 +λ3 e3 +λ4 e4)∧ (e1 ∧ e3 + e2 ∧ e4) = 0 where

(e1, e2, e3, e4) is the canonical basis, which is impossible.

So a necessary condition to have a factor of degree two for the initial system

is that the second exterior system has another exponential solution.

Again the point infinity is an ordinary point and the points i, −i, 1 and

−1 are the singular points of the second exterior system. The exponents at the

singularity x0 are the roots of the polynomial Fx0
(n):

Fi(n) = F−i(n) = n2 (n + 1) (n − 1) (n + 2) (n + 3) = 0

F1(n) = F−1(n) = n2 (n4 + 2an2 + a2 − 4b) = 0

If there is an exponential solution it is:

(z − 1)f1 (z + 1)f−1 (z2 + 1)−3 P (z)

where P is polynomial of degree at most 6−f1−f−1 (it depends on the parameters!).

A necessary condition is that there exists f1 and f−1 such that

F1(f1) = F−1(f−1) = 0 and β = f1 + f−1 ∈ Z

(a stronger condition is 6 − β ∈ N).

So a necessary condition is that there exists β ∈ Z such that

F (β) = β (β4 + 4a β2 + 16 b) (β4 + 2 a β2 + a2 − 4 b) (β4 + 8 a β2 + 16 (a2 − 4 b))

But according to lemma 2, under the conditions (C), a, b and a2 − 4 b are

positive so the polynomial F has no non zero real solution. So the only possibility

is β = 0 and one looks for exponential solutions of the form:

1

(z2 + 1)3

(

z + 1

z − 1

)f

P (z)
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where f (f4 + 2 a f2 + a2 − 4 b) = 0 and P is a polynomial of degree 6 (it does

not depend on the parameters!).

If f = 0 we find the only solution t(0, 1, 0, 0, 1, 0).

If f 6= 0 we get a system of polynomial equations that we solve using resultants

under the conditions (C):







d1 = (e6 + 31 e4 + 94 e2 − 36)d̃1

d2 = (e4 + 25 e2 + 64) d̃2

d3 = (e6 + 40 e4 + 229 e2 + 90) d̃3

For each k, we compute rk = Rese(d̃k, f
4 + 2 a f2 + a2 − 4 b) where a and b

are given in (6).







r1 = w140 A56 (3A + w2) r1,1 r1,2

r2 = w120 A50 (3A + w2) r2,1 r2,2

r3 = w140 A60 (3A + w2) r3,1 r3,2

where r1,2, r1,2, r2,1, r2,2, r3,1 and r3,2 are of respective degree in A: 12, 66, 8,

57, 12 and 64.

Using the same technique as in the two previous sub-sections, we prove that

each of the following eight systems of three equations

r1,i1 = r2,i2 = r3,i3 = 0

has no solution under the conditions (C).

We then conclude that the second exterior system has no exponential solution

besides the solution W =t (0, 1, 0, 0, 1, 0) and that there is no factor of degree two

under the conditions (C).

4.3. Conclusion

From the propositions 4 and 3 and the criterion 1, one can state

Proposition 5. The satellite without axial symmetry is not completely

integrable.

5 – Conclusion

We gave a proof of the non complete meromorphic integrability of the satellite

(a rigid body moving in a circular orbit around a fixed gravitational center) with
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and without axial symmetry. This result (propositions 2 and 5) completes the

results of [16], [1] and [18] on the non complete integrability of the satellite with

axial symmetry. A further study of the satellite in a magnetic field will be done

in a forthcoming paper.
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SMF et EDP Sciences, 2001.
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