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1 – Introduction

The aim of this article is to describe a new method for proving the existence

of periodic solutions for certain types of nonautonomous systems. This method

is based on the properties of the so-called duality mappings defined on smooth

Banach spaces. The method is illustrated by the case

(1.1)
d

dt

(

‖u̇(t)‖p−2 u̇(t)
)

= ‖u(t)‖p−2 u(t) + F (t, u(t))

(1.2) u(0) − u(T ) = u̇(0) − u̇(T ) = 0 ,

where p is a real number so that 1 < p <∞, 0 < T <∞ is a constant and

F : [0, T ]×R
N→ R

N , (t, x) → F (t, x) is a measurable function in t for each

x ∈ R
N and continuous in x for a.e. t ∈ [0, T ]. Clearly, the nonlinear operator

d

dt

(

‖u̇(t)‖p−2 u̇(t)
)

is a vector version of p-Laplacian operator.

In order to say what we understand by solution for the problem (1.1), (1.2)

we remind some basic results concerning the W 1,p
T -spaces.

Let C∞
T be the space of indefinitely differentiable T -periodic functions from

R to R
N . We denote by 〈·, ·〉 the inner product on R

N and by ‖ · ‖, the norm

generated by this inner product (the same meaning is applied for the ‖ · ‖-norm

involved in (1.1)).
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A function v ∈ L1(0, T ; RN ) is called a weak derivative of a function

u ∈ L1(0, T ; RN ) if, for each f ∈ C∞
T ,

(1.3)

∫ T

0

〈

u(t), f ′(t)
〉

dt = −

∫ T

0

〈

v(t), f(t)
〉

dt .

The weak derivative of u will be denoted by u̇ or
du

dt
. If v = u̇ satisfies

(1.3), then

∫ T

0
v(s) ds = 0 and there is c ∈ R

N such that u(t) =

∫ t

0
v(s) ds+ c.

The Sobolev space W 1,p
T , 1 < p < ∞, is the space of functions u ∈ Lp(0, T ; RN )

having the weak derivative u̇ ∈ Lp(0, T ; RN ). According to the previous results,

if u ∈W
1,p
T then

(1.4) u(t) =

∫ t

0
u̇(s) ds + c and u(0) = u(T ) .

The norm over W 1,p
T is defined by

(1.5) ‖u‖p
W

1,p

T

=

∫ T

0
‖u(t)‖p dt +

∫ T

0
‖u̇(t)‖p dt .

It is a simple matter to verify that W 1,p
T is a reflexive Banach space and

C∞
T ⊂ W

1,p
T . Let us also recall the following result (see Mawhin and Willem [9],

propositions 1.1 and 1.2):

Theorem 1.1.

1) There exists c > 0 such that

(1.6) ‖u‖∞ ≤ c ‖u‖
W

1,p

T

, for all u ∈W
1,p
T .

Moreover, if
∫ T

0 u(t) dt = 0, then

(1.7) ‖u‖∞ ≤ c ‖u̇‖Lp(0,T ;RN ) .

2) If the sequence (uk) converges weakly to u in W
1,p
T , then (uk) converges

uniformly to u on [0, T ].

By Theorem 1.1, the injection of W 1,p
T in C([0, T ]; RN ) is compact. Conse-

quently, the injection of W 1,p
T in Lp(0, T ; RN ) is also compact.
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Now, suppose that F : [0, T ]×R
N→ R

N satisfies the following hypothesis:

(H) for any u ∈ Lp(0, T ; RN ), the map t ∈ [0, T ] → F (t, u(t)) belongs to

Lp
′

(0, T ; RN ), p′ =
p

p− 1
.

Definition 1.1. By a solution of (1.1), (1.2) we mean a function u ∈ W
1,p
T ,

which satisfies (1.1) a.e. on [0,T] and u̇(0) = u̇(T ).

Note that by (1.4) functions of W 1,p
T are continuous and T -periodic, i.e.

u(0) = u(T ). In addition, if (1.1) is satisfied a.e. then the condition u̇(0) = u̇(T )

is meaningful. Indeed, because (from the definition of W 1,p
T ) u ∈ Lp(0, T ; RN )

and u̇ ∈ Lp(0, T ; RN ), we infer that the mappings ‖u̇‖p−2 u̇ ∈ Lp
′

(0, T ; RN ),

‖u‖p−2 u + F (., u(.)) ∈ Lp
′

(0, T ; RN ). Consequently, from (1.1) it follows that

the map t ∈ [0, T ] → ‖u̇(t)‖p−2 u̇(t) belongs to W 1,p′

T and is thus continuous on

[0, T ] and satisfies

‖u̇(0)‖p−2 u̇(0) = ‖u̇(T )‖p−2 u̇(T ) ,

which implies u̇(0) = u̇(T ). Moreover, it follows from standard properties of the

weak derivative that u is a solution of (1.1), (1.2), according to definition 1.1,

if and only if u ∈W
1,p
T satisfies:

∫ T

0

〈

‖u̇(t)‖p−2 u̇(t), f ′(t)
〉

dt = −

∫ T

0

〈

‖u(t)‖p−2 u(t) + F (t, u(t)), f(t)
〉

dt

for every f ∈ C∞
T .(1.8)

Thus in order to prove the existence of a solution for (1.1), (1.2) the adopted

strategy will be to prove the existence of an element u ∈ W
1,p
T , which satisfies

(1.8).

2 – An operator equation associated to problem (1.1), (1.2)

Let Jp−1 : W 1,p
T → (W 1,p

T )∗ defined as follows:

〈

Jp−1u, v
〉

W
1,p

T
,(W 1,p

T )
∗ =

∫ T

0

〈

‖u(t)‖p−2 u(t), v(t)
〉

dt +

∫ T

0

〈

‖u̇(t)‖p−2 u̇(t), v̇(t)
〉

dt

for all v ∈W
1,p
T .(2.1)

First, let us show that Jp−1 is well-defined: for any u ∈ W
1,p
T , Jp−1u defined

by (2.1) is a linear and continuous functional on W
1,p
T . Because the linearity
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of Jp−1u is obvious we shall prove the boundedness. Since Jp−10 = 0 we may

assume that u 6= 0. From (2.1) we deduce

∣

∣

∣
〈Jp−1u, v〉W 1,p

T
,(W 1,p

T )
∗

∣

∣

∣
≤

≤

∫ T

0

(

‖u(t)‖p−1 ‖v(t)‖ + ‖u̇(t)‖p−1 ‖v̇(t)‖
)

dt

≤

(∫ T

0
‖u(t)‖(p−1)p′dt

)

1

p′
(∫ T

0
‖v(t)‖p dt

)

1

p

+

(∫ T

0
‖u̇(t)‖(p−1)p′dt

)

1

p′
(∫ T

0
‖v̇(t)‖p dt

)

1

p

= ‖u‖
p

p′

Lp(0,T ;RN )
‖v‖Lp(0,T ;RN ) + ‖u̇‖

p

p′

Lp(0,T ;RN )
‖v̇‖Lp(0,T ;RN )

≤
‖u‖p

Lp(0,T ;RN )

p′
+

‖v‖p
Lp(0,T ;RN )

p
+

‖u̇‖p
Lp(0,T ;RN )

p′
+

‖v̇‖p
Lp(0,T ;RN )

p

=
‖u‖p

W
1,p

T

p′
+

‖v‖p
W

1,p

T

p
.

Thus we have

(2.2)
∣

∣

∣
〈Jp−1u, v〉W 1,p

T
,(W 1,p

T )
∗

∣

∣

∣
≤

‖u‖p
W

1,p

T

p′
+

‖v‖p
W

1,p

T

p
.

For v = z‖u‖
W

1,p

T

and ‖z‖ = 1 we deduce from (2.2) that

∣

∣

∣〈Jp−1u, z〉W 1,p

T
,(W 1,p

T )
∗

∣

∣

∣ ≤ ‖u‖p−1

W
1,p

T

saying that Ju ∈
(

W
1,p
T

)∗
and ‖Ju‖(W 1,p

T )
∗ ≤ ‖u‖p−1

W
1,p

T

. On the other hand, from

(2.1) one obtains

〈Jp−1u, u〉W 1,p

T
,(W 1,p

T )
∗ = ‖u‖p

W
1,p

T

which implies the contrary inequality ‖Ju‖(W 1,p

T )
∗ ≥ ‖u‖p−1

W
1,p

T

. We conclude that

Jp−1 : W 1,p
T →

(

W
1,p
T

)∗
defined by (2.1) has the following metric properties:

(2.3) 〈Jp−1u, u〉W 1,p

T
,(W 1,p

T )
∗ = ‖u‖p

W
1,p

T

, ‖Jp−1u‖(W 1,p

T )
∗ = ‖u‖p−1

W
1,p

T

.
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Because, for any u ∈ Lp(0, T ; RN ), the mapping t ∈ [0, T ] → F (t, u(t))

is supposed to belong to Lp
′

(0, T ; RN ), we may consider the operator

A : Lp(0, T ; RN ) → Lp
′

(0, T ; RN ) defined by

(2.4) (Au)(t) = F (t, u(t)) a.e. on [0, T ], for every u ∈ Lp(0, T ; RN ) .

Let i be the compact injection ofW 1,p
T in Lp(0, T ; RN ) and i∗ : Lp

′

(0, T ; RN ) →
(

W
1,p
T

)∗
its adjoint:

(2.5) i∗x∗ = x∗◦ i , ∀x∗ ∈ Lp
′

(0, T ; RN ) .

Clearly, (2.5) reads as follows: for every v ∈W
1,p
T ,

(2.6) 〈i∗x∗, v〉
W

1,p

T
,(W 1,p

T )
∗ = 〈x∗, i(v)〉Lp(0,T ;RN ),Lp′ (0,T ;RN ) .

Let u ∈W
1,p
T be a solution of equation

(2.7) Jp−1u = − (i∗Ai)u .

Then, for every v ∈W
1,p
T , one has

〈

Jp−1u, v
〉

W
1,p

T
,(W 1,p

T )
∗ = −

〈

(i∗Ai)u, v
〉

W
1,p

T
,(W 1,p

T )
∗

= −
〈

A(i(u)), i(v)
〉

Lp(0,T ;RN ),Lp′ (0,T ;RN )

= −
〈

A(u), v
〉

Lp(0,T ;RN ),Lp′ (0,T ;RN )

= −

∫ T

0

〈

(Au)(t), v(t)
〉

dt = −

∫ T

0

〈

F (t, u(t)), v(t)
〉

dt .

Taking into account (2.1), the equality

〈

Jp−1u, v
〉

W
1,p

T
,(W 1,p

T )
∗ = −

∫ T

0

〈

F (t, u(t)), v(t)
〉

dt

rewrites as
∫ T

0

〈

‖u̇(t)‖p−2 u̇(t), v̇(t)
〉

dt = −

∫ T

0

〈

‖u(t)‖p−2 u(t) + F (t, u(t)), v(t)
〉

dt

for all v ∈W
1,p
T .(2.8)

In particular, (2.8) is satisfied for any v = f ∈ C∞
T ⊂W

1,p
T .

Consequently, if u ∈W
1,p
T is a solution of the operator equation (2.7), then u

is a solution of problem (1.1), (1.2). Thus, in order to prove the existence of a
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solution for the problem (1.1), (1.2), it would be sufficient to prove the existence

of a solution for the operator equation (2.7).

It is a simple matter to see that in the preceeding reasoning the opera-

tor A generated by the function F (·, ·) may be replaced by any operator N :

Lp(0, T ; RN ) → Lp
′

(0, T ; RN ). Thus we obtain the following proposition:

Proposition 2.1. Let Jp−1 : W 1,p
T →

(

W
1,p
T

)∗
, 1 < p <∞ be defined by (2.1)

and let N : Lp(0, T ; RN ) → Lp
′

(0, T ; RN ) be given. Let i : W 1,p
T → Lp(0, T ; RN )

be the compact injection of W 1,p
T in Lp(0, T ; RN ) and i∗ : Lp

′

(0, T ; RN ) →
(

W
1,p
T

)∗

its adjoint.

If u ∈W
1,p
T is a solution of the operator equation

(2.9) Jp−1u = − (i∗Ni)u

then u is a solution for the problem

d

dt

(

‖u̇(t)‖p−2 u̇(t)
)

= ‖u(t)‖p−2 u(t) + (Nu)(t) ,(2.10)

u(0) − u(T ) = u̇(0) − u̇(T ) = 0 .(2.11)

The operator Jp−1 defined by (2.1) and occuring in (2.7), (2.9) is a particular

example of the so-called “duality mapping”.

The definition and some fundamental properties of duality mappings, as well

as some existence results for operator equations involving duality mappings will

be given in the next section. The existence of a solution for (2.9) will be obtained

by particularizing some of these abstract existence results to one situation of

duality mapping, which is Jp−1 defined by (2.1).

3 – Duality mappings

Let X be a real Banach space and ϕ : R+→ R+ be a gauge function, such

that ϕ is continuous, strictly increasing, ϕ(0) = 0 and ϕ(t) → ∞ as t→ ∞.

The duality mapping corresponding to the gauge function ϕ is the set valued

mapping Jϕ : X→ 2X
∗

, defined by

(3.1) Jϕ0 = 0, Jϕx = ϕ(‖x‖X)
{

u∗∈X∗ | 〈u∗, x〉=‖x‖X , ‖u
∗‖X∗ =1

}

if x 6=0 ,

or, with a definition that covers both cases,

(3.2) Jϕx =
{

x∗∈X∗ | 〈x∗, x〉 = ϕ(‖x‖X) ‖x‖X , ‖x∗‖X∗ = ϕ(‖x‖X)
}

.
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According to the well known Hahn–Banach theorem, it follows that

D(Jϕ) =
{

x ∈ X | Jϕx 6= φ
}

= X .

From (3.1), it immediately follows that Jϕ is single valued iff X is a smooth

Banach space, that is, a Banach space having the property that: for any x 6= 0

there exists a unique u∗ ∈ X∗ such that 〈u∗, x〉 = ‖x‖X and ‖u∗‖X∗ = 1.

It is well known (see, for instance, Diestel [3], Zeidler [10]) that the smoothness

of X is equivalent to the Gâteaux differentiability of the norm.

Consequently, if (X, ‖ ‖X) is smooth, then for any x ∈ X, x 6= 0, the only

element u∗ with the properties 〈u∗, x〉 = ‖x‖X and ‖u∗‖X∗ = 1 is u∗ = ‖ ‖′X(x)

(where, ‖ ‖′X denotes the Gâteaux gradient of the norm).

Consequently, if X is smooth, then Jϕ : X → X∗ is defined by

(3.3) Jϕ0 = 0 , Jϕx = ϕ(‖x‖X) ‖ ‖′X(x), x 6= 0 ,

the following metric properties being consequent (see, for example [6]):

(3.4) ‖Jϕx‖X = ϕ(‖x‖X) , 〈Jϕx, x〉 = ϕ(‖x‖X) ‖x‖X .

In [4], [5], the following result has been proved (see, for instance, [5], Theorem 2):

Theorem 3.1. Let X be a smooth reflexive real Banach space, compactly

embedded in the real Banach space Z:

(3.5) X
i
→ Z , ‖i(x)‖Z ≤ cZ ‖x‖X , for all x ∈ X

and i is compact.

We assume the following:

(i) the duality mapping Jp−1 : X → X∗ corresponding to the gauge function

ϕ(t) = tp−1, 1 < p <∞ satisfies the following condition:

(S)2

[

xn ⇀ x and Jp−1xn → Jp−1x
]

=⇒ xn → x ;

(ii) let N : Z → Z∗ be a demicontinuous operator: zn→ z =⇒ Nzn ⇀ Nz

satisfying the growth condition

(3.6) ‖Nz‖Z∗ ≤ c1 ‖z‖
p−1
Z + c2 for all z ∈ Z

where c1 ∈ [0, λ1), λ1 = inf

{

‖x‖pX
‖i(x)‖pZ

∣

∣ x 6= 0

}

, c2 ≥ 0.



54 G. DINCA, D. GOELEVEN and D. PAŞCA

Then the equation

(3.7) Jp−1x = Nx

has a solution.

In the statement of Theorem 3.1, as well as in all that follows, we denote

by X∗ (resp. Z∗), the dual space of X (resp. Z) and by “⇀” (resp. “→”) the

convergence in the weak (respectively strong) topology.

Let us also note that, because of the compact embedding of X into Z, λ1 is

attained and λ
− 1

p

1 is the best constant cz in the writing of the embedding of X

into Z (inequality (3.5)).

In the statement of Theorem 3.1, the duality mapping is required to satisfy

condition (S)2. In the following we will state a sufficient condition for the duality

mapping to satisfy condition (S)2.

To do this, we mention that a Banach space has the Kadec–Klee property if

it is strictly convex and [xn ⇀ x and ‖xn‖ → ‖x‖] =⇒ xn → x.

Proposition 3.1. If X is a smooth Banach space having the Kadec–Klee

property, then, any duality mapping is single-valued (Jϕ : X → X∗) and satisfies

condition (S)2.

Proof: Indeed,

[

xn ⇀ x and Jϕxn → Jϕx
]

=⇒
[

xn ⇀ x and ‖Jϕxn‖X∗ → ‖Jϕx‖X∗

]

=⇒
[

xn ⇀ x and ϕ(‖xn‖X) → ϕ(‖x‖X)
]

=⇒
[

xn ⇀ x and ‖xn‖ → ‖x‖
]

=⇒ xn → x .

Corollary 3.1. If X is a smooth and locally uniformly convex Banach space,

then, any duality mapping Jϕ : X → X∗ satisfies condition (S)2. Specifically, any

duality mapping on a smooth and uniformly convex space satisfies condition (S)2.

More specifically, any duality mapping on a Hilbert space satisfies condition (S)2.

Finally, let us remark that in relation with some other conditions invoked

in the theory of non-linear operators, such as, e.g. (S)+, (S), (S)0 and (S)1



DUALITY MAPPINGS 55

(see Zeidler [10], p. 583), condition (S)2 is placed as follows: (S)+ =⇒ (S) =⇒

(S)0 =⇒ (S)1 =⇒ (S)2.

We will put an end to the comments related to the Theorem 3.1.

With respect to the conclusion of Theorem 3.1, we stress that we under-

stand by a solution of Jp−1x = Nx an element u ∈ X with satisfies Jp−1u = Nu

in the sense of X∗, that is

(3.8) Jp−1u = (i∗Ni)u ,

where i is the compact injection on X in Z, and i∗ : Z∗→ X∗, i∗z∗ = z∗ ◦ i for

all z∗ ∈ Z∗, is the adjoint of i : 〈i∗z∗, x〉X∗, X = 〈z∗, i(x)〉Z∗, Z for all x ∈ X.

Because i is compact i∗ : Z∗→ X∗ is also compact. As a consequence, because

N : Z∗→ Z is demicontinuous, the operator (i∗Ni) : X → X∗ is compact.

Finally, (3.8) is equivalent with

(3.9)
〈

Jp−1u, v
〉

X∗, X
=
〈

N(i(u)), i(v)
〉

Z∗, Z
for all v ∈ X .

Remark 3.1. Notice that if X is an infinite dimensional reflexive and

smooth real Banach space then a duality mapping on X is never compact (see

Theorem 1 in [7]).

Indeed, let Jϕ : X → X∗ be a duality mapping. Then Jϕ is surjective.

The idea of the proof is the following: if X is reflexive and smooth, every

duality mapping Jϕ : X → X∗ is demicontinuous (xn → x =⇒ Jϕxn ⇀ Jϕx).

Because Jϕ is also monotone,

〈

Jϕx− Jϕy, x− y
〉

≥
(

ϕ
(

‖x‖
)

− ϕ
(

‖y‖
)

)(

‖x‖ − ‖y‖
)

≥ 0

and coercive
〈Jϕx, x〉

‖x‖
= ϕ

(

‖x‖
)

→ ∞ as ‖x‖ → ∞ ,

the surjectivity of Jϕ follows from the well known surjectivity result due to

Browder (see, for example Browder [2]).

Now, the noncompactness of Jϕ follows by Baire’s cathegory theorem.

Indeed, suppose, by contradiction, that Jϕ would be compact. Because

X =
⋃

n≥1
B(0, n) and Jϕ is surjective we derive that

X∗ = Jϕ(X) =
⋃

n≥1

Jϕ
(

B(0, n)
)

.
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By Baire’s theorem
◦

Jϕ
(

B(0, n)
)

6= ∅, for some n, which is impossible because

Jϕ
(

B(0, n)
)

is compact and X∗ is infinite dimensional.

After obtaining the surjectivity of Jϕ, another maner to conclude that Jϕ
cannot be compact is the following: by using the surjectivity of Jϕ it can be

easily shown that

Jϕ(∂BX,r) = ∂BX∗,ϕ(r) ,

where ∂BX,r =
{

x ∈ X | ‖x‖ = r
}

, ∂BX∗,ϕ(r) =
{

x∗ ∈ X∗ | ‖x∗‖ = ϕ(r)
}

.

Because of dimX∗ = ∞, ∂BX∗,ϕ(r) = Jϕ(∂BX∗,ϕ(r)) is not compact.

Consequently, Jϕ is not compact.

In [7], some estimations for the Kuratowski measure of noncompactness of a

duality mapping are given.

Remark 3.2. The statement of Theorem 3.1 is the same with that of Theo-

rem 2 in [5]. But, it is evident that if N satisfies the hypotheses of Theorem 3.1

then (−N) satisfies them too. Consequently, under the hypotheses of Theo-

rem 3.1, equation

Jp−1u = − (i∗Ni)u

has a solution.

It is in this form that the conclution of the Theorem 3.1 will be used in the

sequel.

4 – Existence results for equation Jp−1u = − (i∗Ni)u

Let’s go back to operator Jp−1 : W 1,p
T →

(

W
1,p
T

)∗
defined by (2.1) and appear-

ing in equation (2.9). Since Jp−1 satisfies the metric relations (2.3) it follows that,

for any u ∈W
1,p
T , Jp−1u ∈ Jϕu, where Jϕ designates the (eventually multivalued)

duality mapping on W
1,p
T corresponding to the gauge function ϕ(t) = tp−1,

1<p<∞, t≥0 (to see that, write (3.2) for X= W
1,p
T and ϕ(t) = tp−1,

1<p<∞, t ≥ 0). But, as we will see below, W 1,p
T with 1 < p <∞ is a smooth

Banach space. It will result that any duality mapping on W
1,p
T , 1 < p <∞ is

single valued. Consequently, Jp−1 : W 1,p
T →

(

W
1,p
T

)∗
defined by (2.1) is just the

duality mapping corresponding to the gauge function ϕ(t) = tp−1.
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Theorem 4.1. If 1 < p <∞, then:

a) the space
(

W
1,p
T , ‖ ‖

W
1,p

T

)

, is uniformly convex and smooth;

b) the duality mapping on W
1,p
T corresponding to the gauge function

ϕ(t) = tp−1, t ≥ 0 is single valued,
(

Jp−1 : W 1,p
T →

(

W
1,p
T

)∗
)

satisfies

condition (S)2 and is defined as follows: if u ∈W
1,p
T , then

〈

Jp−1u, v
〉

W
1,p

T
,(W 1,p

T )
∗ =

∫ T

0
‖u(t)‖p−2

〈

u(t), v(t)
〉

dt +

∫ T

0
‖u̇(t)‖p−2

〈

u̇(t), v̇(t)
〉

dt

for all v ∈W
1,p
T .(4.1)

Proof: For convenience of the reader we recall the details of the proof.

a) First, let us prove that for 1 < p <∞, Lp(0, T ; RN ) is uniformly convex.

For 2≤p<∞, let u, v ∈ Lp(0, T ; RN ) satisfy ‖u‖Lp(0,T ;RN ) =‖v‖Lp(0,T ;RN ) =1

and ‖u− v‖Lp(0,T ;RN ) ≥ ε > 0. Then we have (see Adams [1], Lemma 2.27):

∥

∥

∥

∥

u(t) + v(t)

2

∥

∥

∥

∥

p

+

∥

∥

∥

∥

u(t) − v(t)

2

∥

∥

∥

∥

p

≤
1

2
‖u(t)‖p +

1

2
‖v(t)‖p a.e. t ∈ [0, T ] .

By integrating from 0 to T one obtains
∥

∥

∥

∥

u+ v

2

∥

∥

∥

∥

p

Lp(0,T ;RN )

+

∥

∥

∥

∥

u− v

2

∥

∥

∥

∥

p

Lp(0,T ;RN )

≤
1

2
‖u‖p

Lp(0,T ;RN )
+

1

2
‖v‖p

Lp(0,T ;RN )
= 1 ,

which implies

∥

∥

∥

∥

u+ v

2

∥

∥

∥

∥

p

Lp(0,T ;RN )

≤ 1 −
εp

2p
.

For 1<p< 2, let u, v ∈ Lp(0, T ; RN ) satisfy ‖u‖Lp(0,T ;RN ) = ‖v‖Lp(0,T ;RN ) =1

and ‖u− v‖Lp(0,T ;RN ) ≥ ε > 0. Then we have (see Adams [1], Lemma 2.27):

∥

∥

∥

∥

u(t) + v(t)

2

∥

∥

∥

∥

p′

+

∥

∥

∥

∥

u(t) − v(t)

2

∥

∥

∥

∥

p′

≤

(

1

2
‖u(t)‖p +

1

2
‖v(t)‖p

) 1

p−1

.

Moreover, if w ∈ Lp(0, T ; RN ) then ‖w(·)‖p
′

∈ Lp−1(0, T ; R+) and
∥

∥

∥
‖w(·)‖p

′

∥

∥

∥

Lp−1(0,T ;R+)
= ‖w‖p

′

Lp(0,T ;RN )
.

Finally, because of 0 < p−1 < 1 we have (the reverse Minkowsky inequality):

‖w1 + w2‖Lp−1(0,T ;R+) ≥ ‖w1‖Lp−1(0,T ;R+) + ‖w2‖Lp−1(0,T ;R+) ,

for any w1, w2 ∈ Lp−1(0, T ; R+).
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By using these arguments we obtain:

∥

∥

∥

∥

u+ v

2

∥

∥

∥

∥

p′

Lp(0,T ;RN )

+

∥

∥

∥

∥

u− v

2

∥

∥

∥

∥

p′

Lp(0,T ;RN )

=

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

u(·) + v(·)

2

∥

∥

∥

∥

p′
∥

∥

∥

∥

∥

Lp−1(0,T ;R+)

+

∥

∥

∥

∥

∥

∥

∥

∥

∥

u(·) − v(·)

2

∥

∥

∥

∥

p′
∥

∥

∥

∥

∥

Lp−1(0,T ;R+)

≤

∥

∥

∥

∥

∥

∥

∥

∥

∥

u(·) + v(·)

2

∥

∥

∥

∥

p′

+

∥

∥

∥

∥

u(·) − v(·)

2

∥

∥

∥

∥

p′
∥

∥

∥

∥

∥

Lp−1(0,T ;R+)

=





∫ T

0

(

∥

∥

∥

∥

u(t) + v(t)

2

∥

∥

∥

∥

p′

+

∥

∥

∥

∥

u(t) − v(t)

2

∥

∥

∥

∥

p′
)p−1

dt





1

p−1

≤

(

∫ T

0

(

1

2
‖u(t)‖p +

1

2
‖v(t)‖p

)

dt

) 1

p−1

=

(

1

2
‖u‖p

Lp(0,T ;RN )
+

1

2
‖v‖p

Lp(0,T ;RN )

) 1

p−1

= 1 .

Thus,
∥

∥

∥

∥

u+ v

2

∥

∥

∥

∥

p′

Lp(0,T ;RN )

≤ 1 −
εp

′

2p′
.

In either case (2 ≤ p <∞ or 1 < p < 2) there exists δ = δ(ε) > 0 such that
∥

∥

∥

∥

u+ v

2

∥

∥

∥

∥

p′

Lp(0,T ;RN )

≤ 1 − δ .

Now, consider the Banach space Lp(0, T ; RN ) × Lp(0, T ; RN ), endowed with

the norm

‖(u, v)‖ =
(

‖u‖p
Lp(0,T ;RN )

+ ‖v‖p
Lp(0,T ;RN )

) 1

p
.

By Theorem 1.22 in Adams [1] it follows that Lp(0, T ; RN ) × Lp(0, T ; RN )

is uniformly convex with respect to the ‖ ‖-norm.

Let P :
(

W
1,p
T , ‖ ‖

W
1,p

T

)

→
(

Lp(0, T ; RN ) × Lp(0, T ; RN ), ‖ ‖
)

defined as fol-

lows:

Pu = (u, u̇) for any u ∈W
1,p
T .

Since ‖Pu‖ = ‖u‖
W

1,p

T

, P is an isometric isomorphism of
(

W
1,p
T , ‖ ‖

W
1,p

T

)

onto

a closed subspace of
(

Lp(0, T ; RN ) × Lp(0, T ; RN ), ‖ ‖
)

.

The later one being uniformly convex it follows that
(

W
1,p
T , ‖ ‖

W
1,p

T

)

is also

uniformly convex.
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The smoothness of W 1,p
T is equivalent with the Gâteaux differentiability of

the norm ‖ ‖
W

1,p

T

. But

(4.2) ‖u‖p
W

1,p

T

= ‖u‖p
Lp(0,T ;RN )

+ ‖u̇‖p
Lp(0,T ;RN )

,

and ‖ ‖Lp(0,T ;RN ) is Gâteaux differentiable: for any u 6= 0,

‖ ‖′Lp(0,T ;RN )(u) ∈ Lp
′

(0, T ; RN ) ,

[

‖ ‖′Lp(0,T ;RN )(u)
]

(t) =
‖u(t)‖p−2 u(t)

‖u‖p−1
Lp(0,T ;RN )

a.e. t ∈ [0, T ] .(4.3)

From (4.3) and (4.2) we deduce the Gâteaux differentiability of the norm

‖ ‖
W

1,p

T

.

Corollary 4.1.

a) Let ϕ : R+→ R+ be a gauge function. The duality mapping on W
1,p
T ,

1<p<∞ corresponding to ϕ is single valued
(

Jϕ : W 1,p
T →

(

W
1,p
T

)∗
)

and

is defined as follows:

Jϕ0 = 0 ,

〈

Jϕu, v
〉

W
1,p

T
,(W 1,p

T )
∗ =

=
ϕ
(

‖u‖
W

1,p

T

)

‖u‖p−1

W
1,p

T

[

∫ T

0

〈

‖u(t)‖p−2 u(t), v(t)
〉

dt +

∫ T

0

〈

‖u̇(t)‖p−2 u̇(t), v̇(t)
〉

dt

]

for all v ∈W
1,p
T , if u 6= 0 .(4.4)

b) The gradient (in the Gâteau sense) of ‖ ‖
W

1,p

T

-norm is defined as follows:

(

∇‖ ‖
W

1,p

T

)

: W 1,p
T \{0} →

(

W
1,p
T

)∗
,

〈

(

∇‖ ‖
W

1,p

T

)

(u), v
〉

W
1,p

T
,(W 1,p

T )
∗

=

=
1

‖u‖p−1

W
1,p

T

[

∫ T

0

〈

‖u(t)‖p−2 u(t), v(t)
〉

dt +

∫ T

0

〈

‖u̇(t)‖p−2 u̇(t), v̇(t)
〉

dt

]

for all v ∈W
1,p
T .(4.5)
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Proof:

a) If (X, ‖ ‖) is a real normed space and ϕ and ψ are two gauge functions

then it is easy to check that

(4.6) Jϕu =
ϕ(‖u‖)

ψ(‖u‖)
Jψu, for all u ∈ X \ {0} .

Consequently, if Jϕ is the duality mapping on W
1,p
T corresponding to the

gauge function ϕ, then one has

(4.7) Jϕu =
ϕ
(

‖u‖
W

1,p

T

)

‖u‖p−1

W
1,p

T

Jp−1u, for all u ∈ X \ {0} .

Formula (4.4) follows by comparing (4.7) and (2.1).

b) Because W 1,p
T , 1 < p <∞ is smooth, the duality mapping on W 1,p

T corre-

sponding to the gauge function ϕ is given by

(4.8) Jϕu = ϕ
(

‖u‖
W

1,p

T

) (

∇‖ ‖
W

1,p

T

)

(u), for all u ∈ X \ {0} .

In order to obtain (4.5) it suffices to compare (4.8) and (4.4).

Theorem 4.2. Let i be the compact injection of W
1,p
T , 1 < p <∞ in

Lp(0, T ; RN ) and i∗ its dual. Let Jp−1 (given by (2.1)) be the duality mapping

on W 1,p
T corresponding to the gauge function ϕ(t) = tp−1, t ≥ 0.

Suppose that N : Lp(0, T ; RN ) → Lp
′

(0, T ; RN ) is a demicontinuous operator

which satisfies the growth condition

(4.9) ‖Nu‖Lp′ (0,T ;RN ) ≤ c1‖u‖
p−1
Lp(0,T ;RN )

+ c2 , for all u ∈ Lp(0, T ; RN )

where

c1 ∈ [0, λ1) , λ1 = inf







‖u‖p
W

1,p

T

‖i(u)‖p
Lp(0,T ;RN )

∣

∣

∣

∣

∣

u 6= 0







, c2 ≥ 0 .

Then, the equation

(4.10) Jp−1u = − (i∗Ni)u

has a solution in W 1,p
T .
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Consequently, the problem

d

dt

(

‖u̇(t)‖p−2 u̇(t)
)

= ‖u(t)‖p−1 u(t) + (Nu)(t) ,(4.11)

u(0) − u(T ) = u′(0) − u′(T ) = 0(4.12)

has a solution in W 1,p
T .

Proof: The hypotheses of the Theorem 4.2 entail the satisfaction of the

hypotheses of Theorem 3.1 under the following choice:

• X = W
1,p
T , 1 < p <∞, Z = Lp(0, T ; RN );

• Jp−1 = J
p−1,W 1,p

T

: W 1,p
T →

(

W
1,p
T

)∗
the duality mapping on W

1,p
T corre-

sponding to the gauge function ϕ(t) = tp−1, t ≥ 0;

• N : Z = Lp(0, T ; RN ) → Z∗ = Lp
′

(0, T ; RN ) satisfying (4.9).

Indeed,

• X = W
1,p
T , 1 < p <∞, is reflexive, smooth (Theorem 4.1) and compactly

embedded in Z = Lp(0, T ; RN );

• X = W
1,p
T , 1 < p < ∞ is uniformly convex (Theorem 4.1). Consequently,

J
p−1,W 1,p

T

satisfies condition (S2) (Corrolary 3.1);

• N : Z = Lp(0, T ; RN ) → Z∗ = Lp
′

(0, T ; RN ) is supposed to be demiconti-

nous and satisfying the growth condition (4.9).

Consequently, according to the Theorem 3.1, there is a solution in W
1,p
T of

equation (4.10). According to proposition (2.1), every solution inW 1,p
T of equation

(4.10) satisfies (4.11) a.e. in [0, T ] and the boundary conditions (4.12).

As application of Theorem 4.2 we give an existence result for problem (1.1),

(1.2) which we repeat here for the convenience of the reader:

d

dt

(

‖u̇(t)‖p−2 u̇(t)
)

= ‖u(t)‖p−2 u(t) + F (t, u(t)) ,(4.13)

u(0) − u(T ) = u̇(0) − u̇(T ) = 0, with 1 < p <∞ .(4.14)

This result is contained in the following theorem.

Theorem 4.3. Let F : [0, T ]×R
N → R

N , (t, x) 7→ F (t, x) be a function

measurable in t for each x ∈ R
N and continuous in x for a.e. t ∈ [0, T ].
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Assume that:

(4.15) ‖F (t, x)‖ ≤ γ(t)
(

‖x‖r + 1
)

,

where γ ∈ L2p′(0, T ; R+),
1

p
+

1

p′
= 1, r =

p

2p′
, 1 < p <∞.

Then, problem (4.13), (4.14) has a solution in W 1,p
T .

To prove this, let us start by the following lemma:

Lemma 4.1. Denote by i the compact injection of W 1,p
T into Lp(0, T ; RN )

and let

(4.16) λ1 = inf







‖u‖p
W

1,p

T

‖i(u)‖p
Lp(0,T ;RN )

∣

∣

∣

∣

∣

u 6= 0







,

In the hypotheses of Theorem 4.3, the operatorN : Lp(0, T ; RN ) → Lp
′

(0, T ; RN )

defined by

(4.17) (Nu)(t) = F (t, u(t)) for every u ∈ Lp(0, T ; RN )

is continuous. Moreover, for any c1 ∈
(

0, 2

(

1

p′
− 1

p

)

λ1

)

, N satisfies the growth

condition

(4.18) ‖Nu‖Lp′ (0,T ;RN ) ≤ 2

�
1

p
− 1

p′

�
c1‖u‖

p−1
Lp(0,T ;RN )

+ c2 ,

where γ(t) = c1β(t) and

(4.19) c
p′

2 = 2p
′−2 c

p′

1

∫ T

0

[

β(t)2p
′

+ 2 (β(t))p
′

]

dt .

Proof: For any u ∈ Lp(0, T ; RN ), we have (see (4.15) and (4.17)):

‖(Nu)(t)‖p
′

= ‖F (t, u(t))‖p
′

≤ c
p′

1 β(t)p
′(

‖u(t)‖r+1
)p′

≥ c
p′

1 β(t)p
′

2p
′−1
(

‖u(t)‖rp
′

+1
)

= c
p′

1 β(t)p
′

2p
′−1
(

‖u(t)‖
p

2 + 1
)

= c
p′

1 β(t)p
′

2p
′−1‖u(t)‖

p

2 + 2p
′−1c

p′

1 β(t)p
′

≤ 2p
′−1 c

p′

1

[

β(t)2p
′

2
+

‖u(t)‖p

2

]

+ 2p
′−1 c

p′

1 β(t)p
′

= 2p
′−2 c

p′

1 ‖u(t)‖
p + 2p

′−2 c
p′

1

[

β(t)2p
′

+ 2β(t)p
′

]

.
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Consequently,

(4.20) ‖(Nu)(t)‖p
′

≤ 2p
′−2 c

p′

1 ‖u(t)‖
p + 2p

′−2 c
p′

1

[

β(t)2p
′

+ 2β(t)p
′

]

,

where from, by means of integration from 0 to T ,

(4.21) ‖Nu‖p
′

Lp′ (0,T ;RN )
≤ 2p

′−2 c
p′

1 ‖u‖
p

Lp(0,T ;RN )
+ c

p′

2 ,

which implies (4.18).

To prove N ’s continuity we will use a technique inspired by that employed in

order to prove the continuity of Nemytskii type operators.

Consider (un)⊂L
p(0,T;RN) and u⊂Lp(0,T;RN) such that ‖un−u‖Lp(0,T ;RN )→0.

Let us prove that ‖Nun−Nu‖Lp′ (0,T ;RN )→ 0, n→ ∞.

Assume the contrary: ‖Nun−Nu‖Lp′ (0,T ;RN ) 9 0. Then there is ε0 > 0 and

a subsequence (u′n) ⊂ (un) such that

(4.22) ‖Nu′n −Nu‖Lp′ (0,T ;RN ) ≥ ε0 .

We define f ′n : [0, T ] → R+, f
′
n(t) = ‖u′n(t)−u(t)‖ a.e. t ∈ [0, T ]. It is obvious

that

f ′n ∈ Lp(0, T ; R+) , ‖f ′n‖Lp(0,T ;R+) = ‖u′n− u‖Lp(0,T ;RN ) → 0, n→ ∞ .

According to a classical result, there exists a subsequence (f ′′n) ⊂ (f ′n) and a

function g ∈ Lp(0, T ; R+) such that

f ′′n(t) → 0 a.e. t ∈ [0, T ] ,

|f ′′n(t)| = f ′′n(t) ≤ g(t) a.e. t ∈ [0, T ] ,

that is, there is (u′′n) ⊂ (u′n) such that

‖u′′n(t) − u(t)‖ → 0 , n→ ∞, a.e. t ∈ [0, T ] ,(4.23)

‖u′′n(t) − u(t)‖ ≤ g(t), a.e. t ∈ [0, T ] .(4.24)

From (4.23), we derive,

(Nu′′n)(t) = F (t, u′′n(t)) → F (t, u(t)) = (Nu)(t) a.e. t ∈ [0, T ] ,

that is

(4.25)
∥

∥(Nu′′n)(t) − (Nu)(t)
∥

∥→ 0 , n→ ∞, a.e. t ∈ [0, T ] .



64 G. DINCA, D. GOELEVEN and D. PAŞCA

On the other hand, from the definition of N and the growth condition (4.15)

we derive:
∥

∥(Nu′′n)(t) − (Nu)(t)
∥

∥ ≤ c1 β(t)
[

‖u′′n(t)‖
r+1

]

+ ‖(Nu)(t)‖

≤
c1

2

[

β2(t) +
(

‖u′′n(t)‖
r+1

)2
]

+ ‖(Nu)(t)‖

≤
c1

2

[

β2(t) + 2
(

‖u′′n(t)‖
2r+1

)

]

+ ‖(Nu)(t)‖

≤
c1

2

[

β2(t) + 2
(

(g(t) + ‖u(t)‖)2r+1
)]

+ ‖(Nu)(t)‖

=
c1

2

[

β2(t) + 2
(

(g(t) + ‖u(t)‖)
p

p′ +1
)]

+ ‖(Nu)(t)‖ .

Consequently,

∥

∥(Nu′′n)(t) − (Nu)(t)
∥

∥ ≤
c1

2

[

2 + β2(t) + 2
(

g(t) + ‖u(t)‖
)

p

p′

]

+ ‖(Nu)(t)‖

a.e. t ∈ [0, T ] .(4.26)

Since
∥

∥(Nu′′n)(·) − (Nu)(·)
∥

∥ ∈ Lp
′

(0, T ; R+) ,

c1

2

[

2 + β2(·) + 2
(

g(·) + ‖u(·)‖
)

p

p′

]

+ ‖(Nu)(·)‖ ∈ Lp
′

(0, T ; R+) ,

from (4.25) and (4.26), by means of Lebesque dominated convergence theo-

rem, it follows that ‖(Nu′′n)(·) − (Nu)(·)‖ → 0 in Lp
′

(0, T ; R+) that is

‖Nu′′n −Nu‖Lp′ (0,T ;RN ) → 0, n→ ∞ which, taking into account (u′′n) ⊂ (u′n),

contradicts (4.22).

Since the operator N : Lp(0, T ; RN ) → Lp
′

(0, T ; RN ) generated by the func-

tion F (·, ·) is continuous and satisfies the growth condition (4.18), with

0 < 2

(

1

p
− 1

p′

)

c1< λ1, the existence of a solution in W 1,p
T for problem (4.13), (4.14)

is a direct consequence of Theorem 4.2.

5 – An alternative existence proof via fixed point techniques

This technique is inspired by Manasevich and Mawhin [8]. As shown in the

previous section, under the hypotheses of Theorem 4.2, in order to prove the exis-

tence of a solution for problem (4.13), (4.14) it is sufficient to prove the existence

of a solution for

(5.1) J
p−1,W 1,p

T

u = −(i∗Ni)u
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where, under the hypotheses of Theorem 4.3, N is defined by (4.17) and

(i∗Ni) : W 1,p
T →

(

W
1,p
T

)∗
= W

1,p′

T is compact.

To prove the compactness of (i∗Ni) it is enough to observe that

i : W 1,p
T → Lp(0, T ; RN ) is compact,

N : Lp(0, T ; RN ) → Lp
′

(0, T ; RN ) is continuous, and

i∗ : Lp
′

(0, T ; RN ) →
(

W
1,p
T

)∗
is compact.

On the other hand, the following theorem holds:

Theorem 5.1. Let X be a smooth, reflexive Banach space having the

Kadeč–Klee property. Then, for any gauge function ϕ, the duality mapping

Jϕ is a bijection of X on X∗ having a continuous inverse.

The partial results employed in the proof may be found, for instance, in Zeidler

[10].

Below, we describe the main steps of the proof.

1) Since X is smooth, Jϕ is single-valued: Jϕ : X → X∗.

2) Since X is reflexive, Jϕ is demicontinuous.

3) Jϕ is monotone:

∀x, y ∈ X,
〈

Jϕx− Jϕy, x− y
〉

≥
(

ϕ(‖x‖)−ϕ(‖y‖)
) (

‖x‖− ‖y‖
)

≥ 0 .

4) Jϕ is coercive

〈Jϕx, x〉

‖x‖
= ϕ(‖x‖) → ∞ as ‖x‖ → ∞ .

5) Out of 2), 3), 4) it follows, via well know surjectivity theorem of

Browder [2], that Jϕ is a surjection of X to X∗.

6) Since X is strictly convex, Jϕ is strictly monotone (injective, in particu-

lar).

7) From 5) and 6), it follows that Jϕ is a bijection of X onto X∗.

8) J−1
ϕ = χ−1J∗

ϕ−1 where J∗
ϕ−1 : X∗→ X∗∗ is the duality mapping on X∗

corresponding to the gauge function ϕ−1, and χ−1 is the inverse of

χ : X → X∗∗, 〈χ(x), x∗〉 = 〈x∗, x〉, for all x ∈ X and x∗ ∈ X∗. Note that

because of X being reflexive and strictly convex it follows that X∗∗

is strictly convex.

Consequently, X∗ is smooth, thus J∗
ϕ−1 is single valued.
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9) J∗
ϕ−1 is demicontinuous (like any single-valued duality mapping on a

reflexive space (see 2) above)).

10) From 8) and 9) it follows J−1
ϕ is demicontinuous:

x∗n→ x∗ (in X∗) =⇒ J−1
ϕ x∗n=χ−1J∗

ϕ−1x
∗
n ⇀ J−1

ϕ x∗=χ−1J∗
ϕ−1x

∗ (in X) .

11) Moreover, ‖J−1
ϕ x∗n‖ = ‖J∗

ϕ−1x
∗
n‖ = ϕ−1(‖x∗n‖) → ϕ−1(‖x∗‖) = ‖J−1

ϕ x∗‖.

12) Since X has the Kadec–Klee property, from 10) and 11), we get

J−1
ϕ x∗n → J−1

ϕ x∗.

Now, since W 1,p
T has all properties imposed to the space X in the Theorem 5.1,

it follows that J
p−1,W 1,p

T

is a bijection of W 1,p
T on

(

W
1,p
T

)∗
with a continuous

inverse.

Consequently, showing that there exists u ∈W
1,p
T which satisfies (5.1) is

equivalent with demonstrating that exists u ∈W
1,p
T such that

(5.2) u = Tu ,

with T =
(

J
p−1,W 1,p

T

)−1
[−i∗Ni] : W 1,p

T →W
1,p
T compact.

In order to prove that T has a fixed point, we will use a priori estimate

technique: there is r > 0 such that
{

u ∈W
1,p
T | ∃ t ∈ (0, 1] such that u = t Tu

}

⊂ B(0, r) .

Indeed, consider t ∈ (0, 1] and ut ∈W
1,p
T such that ut = t Tut. Then

(5.3) J
p−1,W 1,p

T

(ut

t

)

= (i∗Ni)ut .

Because of

‖i(u)‖Lp(0,T ;RN ) ≤ λ
− 1

p

1 ‖u‖
W

1,p

T

, for all u ∈W
1,p
T ,

it follows that ‖i‖ = ‖i∗‖ ≤ λ
− 1

p

1 .

By using this fact and notating, for simplicity, c′1 = 2

(

1

p
− 1

p′

)

c1 in the growth

condition (4.18) we derive:

‖ut‖
p−1

W
1,p

T

≤
∥

∥

∥

ut

t

∥

∥

∥

p−1

W
1,p

T

=
∥

∥

∥
J
p−1,W 1,p

T

(ut

t

)∥

∥

∥

W
1,p′

T

=
∥

∥i∗(N(i(ut)))
∥

∥

W
1,p′

T

≤
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≤ λ
− 1

p

1

∥

∥N(i(ut))
∥

∥

Lp′ (0,T ;RN )

≤ λ
− 1

p

1

[

c′1‖i(ut)‖
p−1
Lp(0,T ;RN )

+ c2

]

≤ λ
− 1

p

1

[

c′1 λ
−

p−1

p

1 ‖ut‖
p−1

W
1,p

T

+ c2

]

= c′1 λ
−1
1 ‖ut‖

p−1

W
1,p

T

+ λ
− 1

p

1 c2 .

Thus, we have

(5.4) (1 − c′1λ
−1
1 ) ‖ut‖

p−1

W
1,p

T

− λ
− 1

p

1 c2 ≤ 0 .

Since 0≤ c′1<λ1 we deduce that (1 − c′1λ
−1
1 ) ξp−1 − λ

− 1

p

1 c2 → ∞ as ξ → ∞.

Therefore, there exists r>0 such that (1−c′1λ
−1
1 ) ξp−1−λ

− 1

p

1 c2 > 0 for any ξ ≥ r.

Consequently, (5.4) holds only for ut satisfying ‖ut‖W 1,p

T

< r.
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