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Abstract: In this paper, we consider the semilinear stationary Schrödinger equation

with a magnetic field: −∆Au − V (x)u = |u|2∗

−2u in R
N , where A is the vector (or

magnetic) potential and V is the scalar (or electric) potential. By means of variational

method, we establish the existence of nontrivial solutions in the critical case.

1 – Introduction and main result

In this paper, we are concerned with the semilinear Schrödinger equation

(1.1) −∆Au− V (x)u = |u|2∗−2u , x ∈ R
N ,

where −∆A = (−i∇+A)2, u : R
N → C, N ≥ 3, 2∗ = 2N

N−2 denotes the critical

Sobolev exponent, A = (A1, A2, ..., AN ) : R
N → R

N is the vector (or magnetic)

potential, the coefficient V is the scalar (or electric) potential and may be sign-

changing.

The nonlinear Schrödinger equation arises in different physical theories (e.g.,

the description of Bose–Estein condensates and nonlinear optics), and has been

widely considered in the literature, see [1, 6, 7, 8, 11, 13].

Throughout this paper, suppose A ∈ L2
loc(R

N ,RN ). Define

L2(RN , V −dx) :=

{

u : R
N → C

∣

∣

∫

RN

|u|2 V − dx <∞
}

and
H1

A,V −(RN ) :=

{

u ∈ L2(RN , V −dx)
∣

∣ ∇Au ∈ L2(RN )

}

,

where ∇A = (∇ + iA), V ± = max{±V, 0} 6≡ 0.
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H1
A,V −(RN ) is a Hilbert space with the inner product

∫

RN

(

∇Au · ∇Av + V −uv
)

dx ,

where the bar denotes complex conjugation.

It is known that C∞
0 (RN ) is dense in H1

A,V −(RN ) (see [8]).

Definition 1.1. u ∈ H1
A,V −(RN ) is said to be a weak solution of problem

(1.1) if

(1.2)

∫

RN

(

∇Au · ∇Aϕ− V (x)uϕ− |u|2∗−2 uϕ
)

dx = 0 ∀ϕ ∈ H1
A,V −(RN ) .

The corresponding energy functional of problem (1.1) is defined by

(1.3) IA,V (u) =
1

2

∫

RN

(

|∇Au|2−V (x)|u|2
)

dx − 1

2∗

∫

RN

|u|2∗dx, u∈H1
A,V −(RN ) .

It is well known that the nontrivial solutions of problem (1.1) are equivalent

to the nonzero critical points of IA,V in H1
A,V −(RN ).

Now we list some assumptions on the potential V :

(A1) 0 6≡ V − ∈ L
N
2 (RN ) and V ∈ L

N
2 (RN\BR(0)) for any R > 0. Moreover,

there exist δ > 0, λ > 0 such that

|x|2 V (x) = µ+ λ|x|α , ∀x ∈ Bδ(0) ,

where 0 < µ < µ = (N−2
2 )2 and 0 < α < min{2, 2

√
µ− µ}.

(A2) There is θ ∈ (0, 1) such that
∫

RN

V +(x) |u|2 dx ≤ θ

∫

RN

(

|∇Au|2 + V −|u|2
)

dx for any u ∈ H1
A,V −(RN ) .

Remark. There does exist such potential V satisfying assumptions (A1), (A2).

For example, take 0 < δ < 1

V (x) =















µ

|x|2 + λ|x|α−2 if |x| ≤ δ ,

− k

|x|β if |x| > δ ,

where 0 < λ < µ− µ, β > 2 and k > 0.



SCHRÖDINGER EQUATIONS WITH MAGNETIC FIELD 39

A direct computation shows that V (x) satisfies assumptions (A1), (A2).

Our main result is the following:

Theorem 1.1. Assume that (A1), (A2) hold, and A is continuous at 0.

Then problem (1.1) admits at least one nontrivial solution.

We prove Theorem 1.1 by critical point theory. However, since the functional

IA,V does not satisfy the Palais–Smale condition due to the lack of compactness

of the embedding: H1
A,V −(RN ) →֒ L2∗(RN ), the standard variational argument is

not applicable directly. In addition, from assumption (A1), the potential V has a

strong singularity at the origin, which also brings some difficulty in dealing with

(1.1). Precisely, the embedding: H1
A,V −(Ω) →֒ L2(Ω, |x|−2dx) is continuous but

not compact, where Ω ∋ 0 is an arbitrary bounded set in R
N . Nevertheless, we

can prove that IA,V satisfies the (P.S.)c condition with c below some energy level.

We need to construct a suitable (P.S.)c compact sequence, which is obtained by

the mountain-pass theorem (see [3]).

Throughout this paper, we shall denote the norm of the space H1
A,V −(RN ) by

‖u‖H1
A,V − (RN ) = (

∫

RN (|∇Au|2+V −|u|2) dx) 1
2 , and the positive constants (possibly

different) by C, C1, C2, ... .

2 – Proof of Theorem 1.1

Before giving the proof of Theorem 1.1, we introduce some notations and

preliminary lemmas.

Set

Sµ := inf
u∈D1,2(RN )\{0}

∫

RN

(

|∇u|2 − µ
u2

|x|2
)

dx

(
∫

RN

|u|2∗dx
)

2
2∗

.

From [9, 10], Sµ is independent of any Ω ⊂ R
N in the sense that if

Sµ(Ω) := inf
u∈H1

0 (Ω)\{0}

∫

Ω

(

|∇u|2 − µ
u2

|x|2
)

dx

(
∫

Ω
|u|2∗dx

)
2
2∗

,

then Sµ(Ω) = Sµ(RN ) = Sµ.
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Let µ̄ = (N−2
2 )2, γ =

√
µ̄ +

√
µ̄− µ, γ′ =

√
µ̄ − √

µ̄− µ, F. Catrina and

Z.Q. Wang [5], S. Terracini [14] proved that for ǫ > 0

Uǫ(x) =

(

4 ǫ2N(µ̄− µ)/(N − 2)
)

N−2
4

(

ǫ2 |x|
γ′
√

µ̄ + |x|
γ√
µ̄

)

√
µ̄

satisfies
{−∆u = |u|2∗−2 u+ µ u

|x|2 in R
N\{0} ,

u→ 0 as |x| → ∞ .

Moreover, Uǫ achieves Sµ.

Lemma 2.1. For any bounded set Ω ⊂ R
N , 0 ∈ Ω, the embedding: H1(Ω) →֒

L2(Ω, |x|l) is compact with l > −2.

Proof: Let {um} ⊂ H1(Ω) be a bounded sequence. Then, up to a subse-

quence, we may assume

um ⇀ u weakly in H1(Ω) ;

um → u strongly in Lp(Ω) with 1<p<2∗ ;

um → u a.e. in Ω .

Choose max{2, 2N
N+l

} < q < 2∗. Then

∫

Ω
|x|l |um − u|2 dx ≤

(
∫

Ω
|x|

lq
q−2 dx

)
q−2

q
(
∫

Ω
|um − u|q dx

)
2
q

.

By the choice of q, we easily have

∫

Ω
|x|

lq
q−2 dx ≤ C and lim

m→∞

∫

Ω
|um − u|q dx = 0 .

Thus, lim
m→∞

∫

Ω |x|l|um − u|2 dx = 0.

Lemma 2.2. The functional IA,V satisfies the (P.S.)c condition with

c < 1
N
S

N
2

µ .
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Proof: Assume that {um} ⊂ H1
A,V −(RN ) satisfies

IA,V (um) → c and dIA,V (um) → 0 as m→ ∞ .

Then, by assumption (A2), we get
(

1

2
− 1

2∗

)
∫

RN

(

|∇Aum|2 + V −|um|2
)

dx =

= IA,V (um) − 1

2∗
〈

dIA,V (um), um

〉

+

(

1

2
− 1

2∗

)
∫

RN

V +(x) |um|2 dx

≤ c+

(

1

2
− 1

2∗

)

θ

∫

RN

(

|∇Aum|2 + V −|um|2
)

dx + o(1) ,

which implies

∫

RN

(

|∇Aum|2 + V −|um|2
)

dx ≤ C.

By choosing a subsequence if necessary, we may assume that

um ⇀ u weakly in H1
A,V −(RN ) and um → u a.e. on R

N .

It is easy to verify that u is a weak solution of problem (1.1). Set um = vm+u.

Then
∫

RN

(

|∇Avm|2 − V |vm|2
)

dx =

=

∫

RN

(

|∇Aum|2 − V |um|2
)

dx −
∫

RN

(

|∇Au|2 − V |u|2
)

dx + o(1)

and by Brezis–Lieb lemma (see [2])
∫

RN

|vm|2∗dx =

∫

RN

|um|2∗dx −
∫

RN

|u|2∗dx + o(1) .

Therefore, we get

〈

dIA,V (vm), vm

〉

=
〈

dIA,V (um), um

〉

−
〈

dIA,V (u), u
〉

+ o(1) = o(1) .

Thus,

(2.1) lim
m→∞

∫

RN

(

|∇Avm|2 − V |vm|2
)

dx = lim
m→∞

∫

RN

|vm|2∗dx = a ,

where a is a nonnegative number.

If a = 0, then we infer

lim
m→∞

∫

RN

(

|∇Avm|2 + V −|vm|2
)

dx = lim
m→∞

∫

RN

V +|vm|2 dx

≤ θ lim
m→∞

∫

RN

(

|∇Avm|2 + V −|vm|2
)

dx ,
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which implies

(2.2) lim
m→∞

∫

RN

(

|∇Avm|2 + V −|vm|2
)

dx = 0 .

If a > 0 then, by Sobolev inequality, we obtain

(2.3)

(
∫

RN

|vm|2∗dx
)

2
2∗

≤ S−1
µ

∫

RN

(

∣

∣∇|vm|
∣

∣

2 − µ|vm|2
|x|2

)

dx

≤ S−1
µ

∫

RN

(

|∇Avm|2 − µ|vm|2
|x|2

)

dx

≤ S−1
µ

(
∫

RN

|∇Avm|2 dx −
∫

Bδ(0)

µ|vm|2
|x|2 dx

)

≤ S−1
µ

∫

RN

(

|∇Avm|2 − V (x) |vm|2
)

dx

+ λS−1
µ

∫

Bδ(0)
|x|α−2 |vm|2 dx + S−1

µ

∫

RN\Bδ(0)
V (x) |vm|2 dx ,

where we use the diamagnetic inequality in the above argument (see [12]):

∣

∣∇|u|
∣

∣ ≤ |∇Au| a.e. in R
N .

Hence, by assumption (A1), Lemma 2.1 and (2.1), (2.3), we derive a
2
2∗ ≤S−1

µ a,

and then a ≥ S
N
2

µ .

In addition,

IA,V (u) = IA,V (u) − 1

2

〈

dIA,V (u), u
〉

=
1

N

∫

RN

|u|2∗dx ≥ 0 .

Therefore,

c = IA,V (um) + o(1)

= IA,V (vm) + IA,V (u) + o(1)

≥ 1

2

∫

RN

(

|∇Avm|2 − V (x) |vm|2
)

dx − 1

2∗

∫

RN

|vm|2∗dx + o(1)

=

(

1

2
− 1

2∗

)

a

≥ 1

N
S

N
2

µ ,

which contradicts c < 1
N
S

N
2

µ .
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Define

cA = inf
γ∈Γ

max
t∈[0,1]

IA,V (γ(t)) ,

where Γ =
{

γ ∈ C
(

[0, 1], H1
A,V −(RN )

)
∣

∣ γ(0) = 0, IA,V (γ(1)) < 0
}

.

Lemma 2.3. Let the assumptions of Theorem 1.1 hold. Then cA < 1
N
S

N
2

µ .

Proof: Since A(x) is continuous at 0, we infer |A(x)| ≤ c0 for all |x| ≤ η(≤ δ).

Set uǫ(x) = ψ(x)Uǫ(x), where ψ is a cut off function satisfying ψ(x) ≡ 1 if |x| ≤ η
2 ,

ψ(x) ≡ 0 if |x| ≥ η and 0 ≤ ψ(x) ≤ 1.

Following [3] and after a detailed calculation, we have the following estimates:

(2.4)

∫

RN

(

|∇(ψUǫ)|2 − µ
|ψUǫ|2
|x|2

)

dx = S
N
2

µ +O(ǫN−2) ,

(2.5)

∫

RN

|ψUǫ|2
∗
dx = S

N
2

µ +O(ǫN ) ,

(2.6)

∫

RN

|ψUǫ|2 dx ≈ β(ǫ) =















ǫ
N−2√
µ−µ , if 0 < µ < µ− 1 ,

ǫN−2 | log ǫ| if µ = µ− 1 ,

ǫN−2 if µ− 1 < µ < µ ,

(2.7)

∫

RN

|x|α−2 |ψUǫ|2 dx ≈ ǫ
α
√

µ√
µ−µ ,

where Aǫ ≈ Bǫ means C1Bǫ ≤ Aǫ ≤ C2Bǫ.

Observe that

(2.8)

∫

RN

(

|∇Auǫ|2 − V (x) |uǫ|2
)

dx =

=

∫

RN

(

|∇(ψUǫ)|2 + |A|2 |ψUǫ|2 − V (x) |ψUǫ|2
)

dx

=

∫

RN

(

|∇(ψUǫ)|2 − µ
|ψUǫ|2
|x|2

)

dx

+

∫

RN

|A|2 |ψUǫ|2 dx − λ

∫

RN

|x|α−2 |ψUǫ|2 dx

≤ S
N
2

µ − C1 ǫ
α
√

µ√
µ−µ + C2 β(ǫ) +O(ǫN−2) ,

where β(ǫ) is given by (2.6).
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Therefore, from (2.4)–(2.8), we conclude

cA ≤ max
t≥0

IA,V (tuǫ)

=
1

N

(

∫

RN

(

|∇Auǫ|2 − V (x) |uǫ|2
)

dx
(∫

RN |uǫ|2∗dx
)

2
2∗

)
N
2

≤ 1

N

(

S
N
2

µ − C1 ǫ
α
√

µ√
µ−µ + C2 β(ǫ) +O(ǫN−2)

S
N−2

2
µ +O(ǫN−2)

)
N
2

<
1

N
S

N
2

µ

(

by the choice of α : 0 < α < min
{

2, 2
√

µ− µ
})

.

Proof of Theorem 1.1: By assumption (A2), for any u ∈ H1
A,V −(RN ), we

have

IA,V (u) =
1

2

∫

RN

(

|∇Au|2 − V (x) |u|2
)

dx − 1

2∗

∫

RN

|u|2∗dx

≥ 1−θ
2

∫

RN

(

|∇Au|2 + V −|u|2
)

dx − C

(
∫

RN

(

|∇Au|2 + V −|u|2
)

dx

)
2∗

2

.

Thus, there exists a sufficiently small constant ρ > 0 such that

b(u) := inf
‖u‖

H1
A,V − (RN )

=ρ
IA,V (u) > 0 = IA,V (0) .

In addition, for any v ∈ H1
A,V −(RN )\{0}, IA,V (tv) → −∞ as t→ ∞. Hence,

there is a t0 > 0 such that ‖t0v‖ > ρ and IA,V (t0v) < 0. By using a variant of

the mountain pass theorem (see [3]), there exists a sequence {um} ⊂ H1
A,V −(RN )

such that as m→ ∞

IA,V (um) → cA , dIA,V (um) → 0 .

By Lemmas 2.2, 2.3, the sequence {um} is relatively compact in H1
A,V −(RN ).

So there exist a subsequence, still denoted by {um}, and a function u∈H1
A,V −(RN )

such that

um → u strongly in H1
A,V −(RN ) .

Thus cA is a critical value of IA,V , and u is a corresponding critical point of IA,V

in H1
A,V −(RN ).
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