A VIABILITY RESULT FOR A FIRST-ORDER DIFFERENTIAL INCLUSION

Radouan Morchadi and Saïd Sajid

Abstract

This paper deals with the existence of solutions of a first-order viability problem of the type $$
\dot{x} \in f(t, x)+F(x), \quad x(t) \in K
$$ where K a closed subset of \mathbb{R}^{n}, F is upper semicontinuous with compact values contained in the subdifferential $\partial V(x)$ of a convex proper lower semicontinuous function V and f is a Carathéodory single valued map.

1 - Introduction

Bressan, Cellina and Colombo [1] proved the existence of solutions of the problem $\dot{x} \in F(x), x(0)=x_{0} \in K$, where F is an upper semicontinuous multifunction contained in the subdifferential of a convex proper lower semicontinuous function in the finite dimensional space. This result has been generalized by Ancona and Colombo [2] by proving the existence of solutions of the perturbed problem $\dot{x} \in F(x)+f(t, x), x(0)=x_{0}$, with f satisfying the Carathéodory conditions. The proof is based on approximate solutions; to overcome the weak convergence of derivatives of such solutions, the authors use the following basic relation:

$$
\frac{d}{d t}\left(V(x(t))=\|\dot{x}(t)\|^{2}\right.
$$

The aim of the present paper is to prove a viability result of the following problem:

$$
\left\{\begin{array}{l}
\dot{x} \in f(t, x)+F(x) \quad \text { a.e. } t \in[0, T] \tag{1.1}\\
x(0)=x_{0} \in K \\
x(t) \in K \quad \forall t \in[0, T]
\end{array}\right.
$$

where F is an upper semicontinuous with compact valued multifunction such that $F(x) \subset \partial V(x)$, for some convex proper lower semicontinuous function V and f is a Carathéodory function.

This paper is a generalization of the work of Rossi [5]. Our argument is different from the one appearing in Rossi's paper.

2 - The result

Let \mathbb{R}^{n} be the n-dimensional Euclidean space with scalar product $\langle.,$.$\rangle and$ norm $\|$.$\| . Let K$ be a closed subset of \mathbb{R}^{n}. Let F be a multifunction from \mathbb{R}^{n} into the set of all nonempty compact subsets of \mathbb{R}^{n}. Let f be a function from $\mathbb{R} \times \mathbb{R}^{n}$ into \mathbb{R}^{n}. Assume that F and f satisfy the following conditions:
$\left.\mathbf{A}_{\mathbf{1}}\right) F$ is upper semicontinuous, i.e. for all $x \in \mathbb{R}^{n}$ and for every $\varepsilon>0$, there exists $\delta>0$ such that if $\left\|x-x^{\prime}\right\| \leq \delta$ then $F\left(x^{\prime}\right) \subseteq F(x)+\varepsilon B$, where B is the unit ball of \mathbb{R}^{n}.
\mathbf{A}_{2}) There exists a convex proper and lower semicontinuous function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F(x) \subset \partial V(x)$, where ∂V is the subdifferential of the function V.
A3) $f: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a Carathéodory function, i.e. for every $x \in \mathbb{R}^{n}$, $t \rightarrow f(t, x)$ is measurable and for all $t \in \mathbb{R}, x \rightarrow f(t, x)$ is continuous.
\mathbf{A}_{4}) There exists $m \in L^{2}(\mathbb{R})$ such that

$$
\|f(t, x)\| \leq m(t) \quad \forall(t, x) \in \mathbb{R} \times \mathbb{R}^{n}
$$

$\mathbf{A}_{\mathbf{5}}$) (Tangential condition) $\forall(t, x) \in \mathbb{R} \times K, \exists v \in F(x)$ such that

$$
\lim _{h \rightarrow 0^{+}} \inf \frac{1}{h} d_{K}\left(x+h v+\int_{t}^{t+h} f(s, x) d s\right)=0 .
$$

Let $x_{0} \in K$, let f and F satisfying assumptions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{5}$, then we shall prove the following result:

Theorem 1. There exist $T>0$ and $x:[0, T] \rightarrow \mathbb{R}^{n}$ such that

$$
\left\{\begin{array}{l}
\dot{x}(t) \in f(t, x(t))+F(x(t)) \quad \text { a.e. on }[0, T], \\
x(0)=x_{0} \in K, \\
x(t) \in K \quad \forall t \in[0, T] .
\end{array}\right.
$$

3 - Proof of the main result

Lemma 2. Let V be a convex proper lower semicontinuous function such that for all $x \in \mathbb{R}^{n}, F(x) \subset \partial V(x)$. Then there exist $r=r_{x}>0$ and $M=M_{x}>0$ such that $\|F(x)\|=\sup _{z \in F(x)}\|z\| \leq M$ and V is lipschitz continuous with constant M on $B(x, r)$.

For the proof, see [1].
Let r be the real given by Lemma 2 associated to x_{0}. Choose $T>0$ such that

$$
\int_{0}^{T}(m(s)+M+1) d s<\frac{r}{2}
$$

In all the sequel, denote by K_{0} the compact subset $K \cap \bar{B}\left(x_{0}, r\right)$.

Lemma 3. Assume that F and f satisfy A_{1}, \ldots, A_{5}. Then for all $\varepsilon>0$, there exists $\eta>0(\eta<\varepsilon)$ with the following properties: for all $(t, x) \in[0, T] \times K_{0}$, there exist $u \in F(x)+\frac{\varepsilon}{T} B$ and $h_{t, x} \in[\eta, \varepsilon]$ such that

$$
x+h_{t, x} u+\int_{t}^{t+h_{t, x}} f(s, x) d s \in K
$$

Proof: Let $(t, x) \in[0, T] \times K_{0}$, let $\varepsilon>0$. Since F is upper semicontinuous, then there exists $\delta_{x}>0$ such that

$$
F(y) \subset F(x)+\varepsilon B, \quad \forall y \in B\left(x, \delta_{x}\right)
$$

Let $(s, y) \in[0, T] \times K$. By the tangential condition there exist $\left.\left.h_{s, y} \in\right] 0, \varepsilon\right]$ and $v \in F(y)$ such that

$$
d_{K}\left(y+h_{s, y} v+\int_{s}^{s+h_{s, y}} f(\tau, y) d \tau\right)<h_{s, y} \frac{\varepsilon}{4 T}
$$

Consider the subset

$$
N(s, y)=\left\{(t, z) \in \mathbb{R} \times \mathbb{R}^{n} / d_{K}\left(z+h_{s, y} v+\int_{t}^{t+h_{s, y}} f(\tau, z) d \tau\right)<h_{s, y} \frac{\varepsilon}{4 T}\right\}
$$

Since

$$
\|f(s, z)\| \leq m(s) \quad \text { a.e. on } \quad[0, T], \quad \forall z \in \mathbb{R}^{n}
$$

then, the dominated convergence theorem applied to the sequence of functions $\left(\chi_{\left[t, t+h_{s, y}\right]} f(., .)\right)_{t}$ shows that the function

$$
(l, z) \rightarrow z+h_{s, y} v+\int_{l}^{l+h_{s, y}} f(\tau, z) d \tau
$$

is continuous. So that, the function

$$
(l, z) \rightarrow d_{K}\left(z+h_{s, y} v+\int_{l}^{l+h_{s, y}} f(\tau, z) d \tau\right)
$$

is continuous and consequently the subset $N(s, y)$ is open.
Moreover, since (s, y) belongs to $N(s, y)$, there exists a ball $B\left((s, y), \eta_{\tau, y}\right)$ of radius $\eta_{(\tau, y)}<\delta_{x}$ contained in $N(s, y)$. Therefore, the compact subset $[0, T] \times K_{0}$ can be covered by q such balls $B\left(\left(s_{i}, y_{i}\right), \eta_{s_{i}, y_{i}}\right)$. For simplicity, we set $h_{s_{i}, y_{i}}=h_{i}$, $i=1, \ldots, q$. Put $\eta=\min _{i=1, \ldots, q} h_{i}>0$.

Let $(t, x) \in[0, T] \times K_{0}$ be fixed. Since $(t, x) \in B\left(\left(s_{i}, y_{i}\right), \eta_{s_{i}, y_{i}}\right)$ which is contained in $N\left(s_{i}, y_{i}\right)$, then there exist $x_{i} \in K$ and $u_{i} \in F\left(y_{i}\right)$ such that

$$
\begin{aligned}
&\left\|u_{i}-\frac{1}{h_{i}}\left(x_{i}-x-\int_{t}^{t+h_{i}} f(s, x) d s\right)\right\| \leq \\
& \leq \frac{1}{h_{i}} d_{K}\left(x+h_{i} u_{i}+\int_{t}^{t+h_{i}} f(\tau, z) d \tau\right)+\frac{\varepsilon}{4 T} \leq \frac{\varepsilon}{2 T}
\end{aligned}
$$

Set

$$
u=\frac{1}{h_{i}}\left(x_{i}-x-\int_{t}^{t+h_{i}} f(s, x) d s\right)
$$

hence

$$
x+h_{i} u+\int_{t}^{t+h_{i}} f(s, x) d s \in K
$$

and

$$
\left\|u_{i}-u\right\| \leq \frac{\varepsilon}{2 T}
$$

Since

$$
\left\|x-y_{i}\right\|<\eta_{(\tau, y)}<\delta_{x}
$$

then

$$
F\left(y_{i}\right) \subset F(x)+\frac{\varepsilon}{2 T} B
$$

so that

$$
u \in F(x)+\frac{\varepsilon}{T} B
$$

Hence the Lemma 3 is proved.
Now, our purpose is to define on $[0, T]$ a family of approximate solutions and show that a subsequence converges to a solution of the problem (1.1).

4 - Construction of approximate solutions

Let $x_{0} \in K_{0}$ and $\varepsilon<T$. By Lemma 3, there exist $\eta>0, h_{0} \in[\eta, \varepsilon]$ and $u_{0} \in F\left(x_{0}\right)+\frac{\varepsilon}{T} B$ such that

$$
x_{1}=x_{0}+h_{0} u_{0}+\int_{0}^{h_{0}} f\left(s, x_{0}\right) d s \in K
$$

then if $h_{0} \leq T$ we have

$$
\left\|x_{1}-x_{0}\right\|=\left\|h_{0} u_{0}+\int_{0}^{h_{0}} f\left(s, x_{0}\right) d s\right\| \leq\left\|\int_{0}^{T}(M+1+m(s)) d s\right\| \leq \frac{r}{2}
$$

and thus $x_{1} \in K_{0}$. Hence for $\left(h_{0}, x_{1}\right)$ there exist $h_{1} \in[\eta, \varepsilon]$ and $u_{1} \in F\left(x_{1}\right)+\frac{\varepsilon}{T} B$ such that

$$
x_{2}=x_{1}+h_{1} u_{1}+\int_{h_{0}}^{h_{0}+h_{1}} f\left(s, x_{1}\right) d s \in K
$$

we have

$$
\left\|x_{2}-x_{0}\right\|=\left\|h_{0} u_{0}+\int_{0}^{h_{0}} f\left(s, x_{0}\right) d s+h_{1} u_{1}+\int_{h_{0}}^{h_{0}+h_{1}} f\left(s, x_{1}\right) d s\right\|
$$

then if $h_{0}+h_{1}<T$ we have

$$
\left\|x_{2}-x_{0}\right\| \leq\left\|\int_{0}^{T}(M+1+m(s)) d s\right\| \leq \frac{r}{2}
$$

thus $x_{2} \in K_{0}$.
Set $h_{-1}=0$, by induction, since h_{i} belongs to $[\eta, \varepsilon]$, then there exists an integer s such that $\sum_{i=0}^{s-1} h_{i}<T \leq \sum_{i=0}^{s} h_{i}$. Hence we construct the sequences $\left(h_{p}\right)_{p} \subset[\eta, \varepsilon],\left(x_{p}\right)_{p} \subset K_{0}$, and $\left(u_{p}\right)_{p}$ such that for every $p=0, \ldots, s-1$, we have

$$
\left\{\begin{array}{l}
x_{p+1}=x_{p}+h_{p} u_{p}+\int_{h_{p-1}}^{h_{p-1}+h_{p}} f\left(s, x_{p}\right) d s \in K \\
u_{p} \in F\left(x_{p}\right)+\frac{\varepsilon}{T} B
\end{array}\right.
$$

By induction, for all $p \geq 2$ we have

$$
\begin{aligned}
& x_{p}=x_{0}+\sum_{i=0}^{i=p-1} h_{i} u_{i}+\sum_{i=1}^{i=p-1} \int_{\sum_{j=0}^{i-1} h_{j}}^{\sum_{j=0}^{i} h_{j}} f\left(\tau, x_{i}\right) d \tau \\
& u_{p} \in F\left(x_{p}\right)+\frac{\varepsilon}{T} B
\end{aligned}
$$

and the estimates

$$
\begin{aligned}
\left\|x_{p}-x_{0}\right\| & =\left\|\sum_{i=0}^{i=p-1} h_{i} u_{i}+\sum_{i=0}^{i=p-1} \int_{\sum_{j=0}^{i-1} h_{j}}^{\sum_{j=0}^{i} h_{j}} f\left(\tau, x_{i}\right) d \tau\right\| \\
& \leq(M+1) \sum_{i=1}^{i=p-1} h_{i}+\int_{0}^{T} m(\tau) d \tau
\end{aligned}
$$

Since $\sum_{i=0}^{i=p-1} h_{i} \leq T$, then we obtain $\left\|x_{p}-x_{0}\right\| \leq \frac{r}{2}$.
For any nonzero integer k and for every integer $q=0, \ldots, s$, denote by h_{q}^{k} a real associated to $\varepsilon=\frac{1}{k}$ and $x=x_{q}$ given by Lemma 3 , consider the sequence $\left(\tau_{k}^{q}\right)_{k}$

$$
\left\{\begin{array}{l}
\tau_{k}^{0}=0, \quad \tau_{k}^{s}=T \\
\tau_{k}^{q}=h_{0}^{k}+\cdots+h_{q-1}^{k}
\end{array}\right.
$$

and define on $[0, T]$ the sequence of functions $\left(x_{k}(.)\right)_{k}$ by

$$
\begin{aligned}
& x_{k}(t)=x_{q-1}+\left(t-\tau_{k}^{q-1}\right) u_{q-1}+\int_{\tau_{k}^{q-1}}^{t} f\left(s, x_{q-1}\right) d s \quad \forall t \in\left[\tau_{k}^{q-1}, \tau_{k}^{q}\right] \\
& x_{k}(0)=x_{0}
\end{aligned}
$$

then for all $t \in\left[\tau_{k}^{q-1}, \tau_{k}^{q}\right]$

$$
\dot{x}_{k}(t)=u_{q-1}+f\left(t, x_{q-1}\right)
$$

5 - Convergence of approximate solutions

Observe that the sequence $\left(x_{k}(.)\right)_{k}$ satisfies the following relations

1) $\left\|\dot{x}_{k}(t)\right\| \leq\left\|u_{q-1}\right\|+\left\|f\left(t, x_{q-1}\right)\right\| \leq M+1+m(t)$,
2) $\left\|x_{k}(t)\right\|=\left\|x_{k}\left(\tau_{k}^{q-1}\right)+\int_{\tau_{k}^{q-1}}^{t} \dot{x}_{k}(\tau) d \tau\right\|$

$$
\begin{aligned}
& \leq\left\|x_{q-1}\right\|+\left\|\int_{0}^{T}(M+1+m(t)) d \tau\right\| \\
& \leq\left\|x_{0}\right\|+\frac{r}{2}+\frac{r}{2} \leq\left\|x_{0}\right\|+r .
\end{aligned}
$$

Hence

$$
\int_{0}^{T}\left\|\dot{x}_{k}(t)\right\|^{2} d t \leq \int_{0}^{T}(M+1+m(t))^{2} d t
$$

the sequence $\left(\dot{x}_{k}(.)\right)_{k}$ is bounded in $L^{2}\left([0, T], \mathbb{R}^{n}\right)$ and therefore $\left(x_{k}(.)\right)_{k}$ is equiuniformly continuous. Hence there exists a subsequence, still denoted by $\left(x_{k}(.)\right)_{k}$ and an absolutely continuous function $x():.[0, T] \rightarrow \mathbb{R}^{n}$ such that $x_{k}($.$) converges$ to $x($.$) uniformly and \dot{x}_{k}($.$) converges weakly in L^{2}\left([0, T], \mathbb{R}^{n}\right)$ to $\dot{x}($.$) .$

The family of approximate solutions $x_{k}($.$) has the following property:$
Proposition 4. For every $t \in[0, T]$ there exists $q \in\{1, \ldots, s\}$ such that

$$
\lim _{k \rightarrow \infty} d_{g r F}\left(x_{k}(t), \dot{x}_{k}(t)-f\left(t, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right)=0 .
$$

Proof: Let $t \in[0, T]$. By construction of τ_{k}^{q} there exists q such that $t \in$ $\left[\tau_{k}^{q-1}, \tau_{k}^{q}\left[\right.\right.$ and $\left(\tau_{k}^{q}\right)_{k}$ converges to t.

Since

$$
\dot{x}_{k}(t)-f\left(t, x_{k}\left(\tau_{k}^{q-1}\right)\right)=u_{q-1} \in F\left(x_{k}\left(\tau_{k}^{q-1}\right)\right)+\frac{1}{k T}
$$

then

$$
\lim _{k \rightarrow \infty} d_{g r(F)}\left(x_{k}(t), \dot{x}_{k}(t)-f\left(t, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right) \leq \lim _{k \rightarrow \infty}\left(\left\|x_{k}(t)-x_{k}\left(\tau_{k}^{q-1}\right)\right\|+\frac{1}{k T}\right)
$$

hence

$$
\lim _{k \rightarrow \infty} d_{g r(F)}\left(x_{k}(t), \dot{x}_{k}(t)-f\left(t, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right)=0 .
$$

This completes the proof.
Since the sequences $x_{k}(.) \rightarrow x($.$) uniformly, \dot{x}_{k}(.) \rightarrow \dot{x}($.$) weakly in L^{2}\left([0, T], \mathbb{R}^{n}\right)$, $\left(f\left(., x_{k}\left(\tau_{k}^{q}\right)\right)_{k}\right.$ converges to $f(., x()$.$) in L^{2}\left([0, T], \mathbb{R}^{n}\right)$ and F is upper semi-continuous, then by theorem 1.4.1 in [3], $x($.$) is a solution of the following convexified$ problem:

$$
\left\{\begin{array}{l}
\dot{x}(t) \in f(t, x(t))+\operatorname{co} F(x(t)) \\
x(0)=x_{0} .
\end{array}\right.
$$

Consequently, for all $t \in[0, T]$ we have that

$$
\begin{equation*}
\dot{x}(t)-f(t, x(t)) \in \partial V(x(t)) \tag{5.1}
\end{equation*}
$$

Proposition 5. The application $x($.$) is a solution of the problem (1.1).$

Proof: To begin with, we prove that $\left(\left\|\dot{x_{k}}\right\|_{2}\right)_{k}$ converges to $\|\dot{x}\|_{2}$. Since the map $x($.$) and V(x()$.$) are absolutely continuous, we obtain from (5.1) by applying$ Lemma 3.3 in [4] that

$$
\frac{d}{d t} V(x(t))=\langle\dot{x}(t), \dot{x}(t)-f(t, x(t))\rangle \quad \text { a.e. on } \quad[0, T]
$$

therefore

$$
\begin{equation*}
V(x(T))-V\left(x_{0}\right)=\int_{0}^{T}\|\dot{x}(s)\|^{2} d s-\int_{0}^{T}\langle\dot{x}(s), f(s, x(s))\rangle d s \tag{5.2}
\end{equation*}
$$

On the other hand, since for all $q=1, \ldots, s$

$$
\dot{x}_{k}(t)-f\left(t, x_{k}\left(\tau_{k}^{q-1}\right)\right)=\dot{x}_{k}(t)-f\left(t, x_{q-1}\right) \in \partial V\left(x_{k}\left(\tau_{k}^{q-1}\right)\right)+\frac{1}{k T} B
$$

there exists $b_{q} \in B$ such that

$$
\dot{x}_{k}(t)-f\left(t, x_{q-1}\right)+\frac{1}{k T} b_{q} \in \partial V\left(x_{k}\left(\tau_{k}^{q-1}\right)\right)
$$

Moreover the subdifferential properties of a convex function imply that for every $z \in \partial V\left(x_{k}\left(\tau_{k}^{q-1}\right)\right)$

$$
\begin{equation*}
V\left(x_{k}\left(\tau_{k}^{q}\right)\right)-V\left(x_{k}\left(\tau_{k}^{q-1}\right)\right) \geq\left\langle x_{k}\left(\tau_{k}^{q}\right)-x_{k}\left(\tau_{k}^{q-1}\right), z\right\rangle \tag{5.3}
\end{equation*}
$$

particularly, for

$$
z=\dot{x}_{k}(t)-f\left(t, x_{q-1}\right)+\frac{1}{k T} b_{q}
$$

we have

$$
V\left(x_{k}\left(\tau_{k}^{q}\right)\right)-V\left(x_{k}\left(\tau_{k^{q-1}}\right)\right) \geq\left\langle\int_{\tau_{k} q-1}^{\tau_{k}^{q}} \dot{x}_{k}(s) d s, \dot{x}_{k}(t)-f\left(t, x_{q-1}\right)+\frac{1}{k T} b_{q}\right\rangle
$$

thus

$$
\begin{aligned}
V\left(x_{k}\left(\tau_{k}^{q}\right)\right)-V\left(x_{k}\left(\tau_{k}^{q-1}\right)\right) \geq & \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\langle\dot{x}_{k}(s), \dot{x}_{k}(s)\right\rangle d s+\int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\langle\dot{x}_{k}(s), \frac{1}{k T} b_{q}\right\rangle d s \\
& -\int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\langle\dot{x}_{k}(s), f\left(s, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right\rangle d s
\end{aligned}
$$

hence, it is clear that

$$
\begin{align*}
V\left(x_{k}(T)\right)-V\left(x_{0}\right) \geq & \int_{0}^{T}\left\|\dot{x}_{k}(s)\right\|^{2} d s-\sum_{q=1}^{s} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\langle\dot{x}_{k}(s), f\left(s, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right\rangle d s \\
& +\sum_{q=1}^{s} \frac{1}{k T} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\langle\dot{x}_{k}(s), b_{q}\right\rangle d s \tag{5.4}
\end{align*}
$$

Claim. The sequence

$$
\left(\sum_{q=1}^{s} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\langle\dot{x}_{k}(s), f\left(s, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right\rangle d s\right)_{k}
$$

converges to

$$
\int_{0}^{T}\langle\dot{x}(s), f(s, x(s))\rangle d s
$$

Proof: We have

$$
\begin{aligned}
&\left\|\sum_{q=1}^{s} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\langle\dot{x}_{k}(s), f\left(s, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right\rangle d s-\int_{0}^{T}\langle\dot{x}(s), f(s, x(s))\rangle d s\right\|= \\
&=\left\|\sum_{q=1}^{s} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left(\left\langle\dot{x}_{k}(s), f\left(s, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right\rangle-\langle\dot{x}(s), f(s, x(s))\rangle\right) d s\right\| \\
& \leq \sum_{q=1}^{s} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\|\left\langle\dot{x}_{k}(s), f\left(s, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right\rangle-\langle\dot{x}(s), f(s, x(s))\rangle\right\| d s \\
& \leq \sum_{q=1}^{s} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\|\left\langle\dot{x}_{k}(s), f\left(s, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right\rangle-\left\langle\dot{x}_{k}(s), f\left(s, x_{k}(s)\right)\right\rangle\right\| d s \\
&+\sum_{q=1}^{s} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\|\left\langle\dot{x}_{k}(s), f\left(s, x_{k}(s)\right)\right\rangle-\left\langle\dot{x}_{k}(s), f(s, x(s))\right\rangle\right\| d s \\
&+\sum_{q=1}^{s} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\|\left\langle\dot{x}_{k}(s), f(s, x(s))\right\rangle-\langle\dot{x}(s), f(s, x(s))\rangle\right\| d s \\
&= \sum_{q=1}^{s} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\|\left\langle\dot{x}_{k}(s), f\left(s, x_{k}\left(\tau_{k}^{q-1}\right)\right)\right\rangle-\left\langle\dot{x}_{k}(s), f\left(s, x_{k}(s)\right)\right\rangle\right\| d s \\
&+\int_{0}^{T}\left\|\left\langle\dot{x}_{k}(s), f\left(s, x_{k}(s)\right)\right\rangle-\left\langle\dot{x}_{k}(s), f(s, x(s))\right\rangle\right\| d s \\
&+\int_{0}^{T}\left\|\left\langle\dot{x}_{k}(s), f(s, x(s))\right\rangle-\langle\dot{x}(s), f(s, x(s))\rangle\right\| d s
\end{aligned}
$$

Since f is a Carathéodory function, $x_{k}(.) \rightarrow x($.$) uniformly, \left\|\dot{x}_{k}(s)\right\| \leq M+$ $1+m(s), m(.) \in L^{2}\left([0, T], \mathbb{R}^{n}\right)$ and $\dot{x}_{k}(.) \rightarrow \dot{x}($.$) weakly in L^{2}\left([0, T], \mathbb{R}^{n}\right)$ then the last term converges to 0 . This completes the proof of the claim.

Since

$$
\lim _{k \rightarrow \infty} \sum_{q=1}^{s} \frac{1}{k} \int_{\tau_{k}^{q-1}}^{\tau_{k}^{q}}\left\langle\dot{x}_{k}(s), b_{q}\right\rangle d s=0
$$

then by passing to the limit for $k \rightarrow \infty$ in (5.4) and using the continuity of the function V on the ball $B\left(x_{0}, r\right)$, we obtain the following inequality

$$
V\left(x(T)-V\left(x_{0}\right)\right) \geq \lim _{k \rightarrow \infty} \sup \int_{0}^{T}\left\|\dot{x}_{k}(s)\right\|^{2} d s-\int_{0}^{T}\langle\dot{x}(s), f(s, x(s)\rangle d s
$$

Moreover, by the equality (5.2) we have

$$
\|\dot{x}\|_{2}^{2} \geq \lim _{k \rightarrow \infty} \sup \left\|\dot{x}_{k}\right\|_{2}^{2}
$$

and by the weak lower semicontinuity of the norm, it follows that

$$
\|\dot{x}\|_{2}^{2} \leq \lim _{k \rightarrow \infty} \inf \left\|\dot{x}_{k}\right\|_{2}^{2}
$$

Finally, since $\left(\dot{x}_{k}\right)_{k}$ converges to $\dot{x}($.$) strongly in L^{2}\left([0, T], \mathbb{R}^{n}\right)$, then there exists a subsequence denoted by $\dot{x}_{k}($.$) which converges pointwisely to \dot{x}($.$) .$ Therefore, we conclude, in view of Proposition 4, that

$$
d_{g r F}(x(t), \dot{x}(t)-f(t, x(t)))=0 \quad \text { a.e. on } \quad[0, T] .
$$

Since the graph of F is closed we have

$$
\dot{x}(t) \in f(t, x(t))+F(x(t)) \quad \text { a.e. on }[0, T] .
$$

Finally, let $t \in[0, T]$. Recall that there exists $\left(\tau_{k}^{q}\right)_{k}$ such that $\lim _{k \rightarrow \infty} \tau_{k}^{q}=t$ for all $t \in[0, T]$. Since

$$
\lim _{k \rightarrow \infty}\left\|x(t)-x_{k}\left(\tau_{k}^{q}\right)\right\|=0
$$

$x_{k}\left(\tau_{k}^{q}\right) \in K, K$ is closed, by passing to the limit we obtain $x(t) \in K$.
This completes the proof.

REFERENCES

[1] Bressan, A.; Cellina, A. and Colombo, G. - Upper semicontinuous differential inclusions without convexity, Proc. Am. Math. Soc., 106 (1989), 771-775.
[2] Ancona, F. and Colombo, G. - Existence of solutions for a class of nonconvex differential inclusions, Rend. Sem. Mat. Univ. Padova, 83 (1990).
[3] Aubin, J.P. and Cellina, A. - Differential Inclusions, Spring-Verlag, Berlin, 1984.
[4] Brezis, H. - Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
[5] Rossi, P. - Viability for upper semicontinuous differential inclusions, Diff. Int. Eqs., 6 (1998), 21-37.

Radouan Morchadi and Saïd Sajid,
Département de Mathématiques, Faculté des Sciences et Techniques,
BP 146 Mohammadia - MOROCCO
E-mail: morchadi@hotmail.com
saidsajid@hotmail.com

