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Abstract: Consider fractions a
N
, 0 < a < N , and their periodic expansions in

base B, (B,N) = 1. Our interest is in the number of times a B-digit b occurs among

the periods of all such fractions, for fixed N , and also in the number of occurances of b

among the proper periods, those where (a,N) = 1. Some historical perspective on this

problem is also included.

1 – Introduction

Let N > 1 be an integer relatively prime to 10 and consider fractions a
N

between 0 and 1, a = 1, 2, ..., N−1. It is well known [3, p. 111] that such a fraction

has a purely periodic decimal expansion, and if the fraction is reduced, (a,N) = 1,

the length of the period is the order of 10 mod N . We are interested in how often

each of the digits 0, 1, ..., 9 occurs in the periods of these fractions. To introduce

the topic we consider a simple example. Take N = 21; 2
21 = 0.09523809523809...

has period 095238 with length 6. For brevity we write this decimal as 0.[095238];

others use the device of placing dots or bars over the period. In elementary

school one learns how to find the period by long division which is equivalent to

the following system of equations:

(1)

10× 2 = 0× 21 + 20
10× 20 = 9× 21 + 11
10× 11 = 5× 21 + 5
10× 5 = 2× 21 + 8
10× 8 = 3× 21 + 17
10× 17 = 8× 21 + 2
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Having reached the remainder 2 with which we started, the equations now repeat

and the period of the decimal is 095238. If we had begun with 20
21 the process

would have started with the second equation, showing 20
21 = 0.[952380]; the period

has undergone a ‘cyclic’ permutation or left shift, the initial digit moving to the

final position. The six fractions 2
21 ,

20
21 ,

11
21 ,

5
21 ,

8
21 ,

17
21 correspond to the period

095238 and its cyclic permutations which we now think of as a single period

belonging to 21. For 1
21 the period is 047619 corresponding to the fractions

1
21 ,

10
21 ,

16
21 ,

13
21 ,

4
21 ,

19
21 . These twelve fractions are all the reduced fractions with

denominator 21; we call the two periods they determine the proper periods for

21. Observe that 0,9 both occur twice among the twelve digits in the proper

periods for 21 while 1, 2, ..., 8 each occur once. Could this have been predicted?

Is there a general rule?

The remaining fractions with denominator 21 need not be reduced to carry out

the process. For example, 7
21 produces 10×7 = 3×21+7, so

7
21 = 0.[3], the period

is 3 with length 1. No surprise, since 7
21 =

1
3 . We call 3 an improper period for

21. The remaining improper periods are 6, determined by 14
21 = 0.[6], and 142857

determined by 3
21 = 0.[142857]. To summarize, the periods belonging to 21 are

047619, 095238, 142857, 3, 6, comprising a total of 20 digits corresponding to

the 20 fractions a
21 , a = 1, 2, ..., 20. Now observe that each of the digits 0, 1, ..., 9

occurs twice among all the periods.

There is no need to restrict to base 10. Let B > 1 be an integer taken as

base; the numbers b = 0, 1, ..., B − 1 are the digits for base B; call them B-digits

for short, or just digits when B is understood. For an integer N > 1, relatively

prime to B, the fractions a
N have periodic (analogous to decimal) B-expansions,

found the same way as above with B replacing 10. For example, with N = 21

again and base B = 4, the fraction 2
21 leads to equations

(2)
4× 2 = 0× 21 + 8
4× 8 = 1× 21 + 11
4× 11 = 2× 21 + 2

showing 2
21 = 0.[012] in base 4, the period 012 corresponding to the fractions

2
21 ,

8
21 ,

11
21 . As an exercise the reader may wish to calculate all the proper periods

for 21 in base 4; they are 003, 012, 033, 321. Here 0,3 both occur 4 times while

1,2 occur 2 times each. The remaining improper periods are 1, 2, 021, 123 and

we see that each base 4 digit occurs 5 times among all the base 4 periods for 21.

To study the general case, fix a base B and N > 1 relatively prime to B and

a B-digit b. We define f(b,N,B) as the frequency (number of occurrences) of b

among the proper periods for N in base B, and F (b,N,B) as the frequency of b
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among all the periods for N in base B. For example, we’ve seen f(0, 21, 10) = 2,

f(1, 21, 10) = 1, F (b, 21, 10) = 2 for 0 ≤ b ≤ 9; f(0, 21, 4) = 4, F (b, 21, 4) = 5,

for 0 ≤ b ≤ 3. For later use it is convenient to define f, F for N = 1 also by

setting f(b, 1, B) = 0 = F (b, 1, B). This is consistent with the original meaning

since there are no periods for N = 1, as there are no fractions with denominator

1 between 0 and 1.

Let A = {1, 2, ..., N − 1}, B = {0, 1, ..., B − 1}. In the process of writing all

the equations to find the periods for N in base B, as we began in (1) and (2),

there are a total of N − 1 equations of the form

(3) Ba = bN + a′ ,

one for each a ∈ A with, necessarily, a′ ∈ A. Since each a ∈ A determines a

digit b ∈ B, the total number of B-digits occurring in all the periods for N is

N − 1. The proper periods arise from those equations with (a,N) = 1 and there

are φ(N) of these (φ being Euler’s function). In other words

(4)
B−1
∑

b=0

F (b,N,B) = N − 1 and
B−1
∑

b=0

f(b,N,B) = φ(N) .

In the next section we present theorems providing formulas for f and F .

But first it is appropriate to see what there is in the mathematical literature

about this topic. My source is Dickson’s History [1], whose ch.VI is titled Peri-

odic Decimal Fractions, where I find only three references to our specific topic:

Sardi [5], Glaisher [2], and Reynolds [4]. About the first Dickson [1, p. 167] says,

“C. Sardi noted that if 10 is a primitive root of a prime p = 10n+1, the period for
1
p contains each digit 0, ..., 9 exactly n times. For p = 10n+ 3, this is true of the

digits other than 3 and 6, which occur n+ 1 times. Analogous results are given

for 10n + 7 and 10n + 9.” I have not been able to obtain [5], but since Dickson

says ‘noted’ rather than ‘proved’, which is used elsewhere, it seems Sardi had

no proof, only empirical evidence. Note that when N is a prime, p, all periods

are proper and f(b, p,B) = F (b, p,B). Glaisher [2, p. 202] remarks that “from

Mr.Goodwyn’s tables it may be noticed that for a prime p = 10m+1 each of the

digits 0, 1, ..., 9 occurs m times among the periods.” Reynolds [4] extends these

observations to include N not necessarily prime. He discusses bases other than

10, specifically 7 and 11, and tabulates the pattern of distribution of the digits.

In conclusion he states, “These results have been empirically obtained, and the

writer does not profess to be able to prove them. Yet he offers them with great

confidence as, having once discovered what the laws were, he has not met with a
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single exception. Still... it may be rash to positively assert the results to be uni-

versally true, until someone has proved them.” Beyond these I have found only

one reference in the past century, [6], in which the author states and proves the

rule of distribution of the digits in the periods only for N = p, prime, and base

10, without reference to any previous literature. No one seems to have discussed

the distribution of digits among the proper periods, when N is not prime.

2 – Theorems

Here we present theorems and proof, and in the next section deduce some

consequences and illustrate with numerical examples. We keep the notations

N,B, F, f,A,B already introduced. The greatest integer function plays an im-

portant role so we collect here some of its properties that will be useful. Recall

that for real x, [x] denotes the greatest integer ≤ x; [x] = k iff k is an integer

and k ≤ x < k+1. It is immediate that for any integer n, [n+ x] = n+ [x]. The

following lemma states two properties of [x] that will be used frequently. The

proofs are straightforward, hence omitted.

Lemma.

(i) If x is not an integer, [−x] = −[x]− 1.

(ii) If x < y are both not integers, then the number of integers between x

and y is [y]− [x].

We need a bit more notation. In what follows, in a context where N , B are

fixed, we write simply f(b) in place of f(b,N,B) and F (b) in place of F (b,N,B).

Also, for a B-digit b ∈ B, we define the complementary digit b∗ to be B − 1− b,

and for a ∈ A we define ã to be N − a, Note that b → b∗, a → ã are involutions

on B, A respectively.

Theorem 1. Write N = gB + r, g the quotient, r the remainder when N is

divided by B. g = [NB ] and 1 ≤ r ≤ B − 1, (r,B) = 1.

(i) For any B-digit b, F (b∗) = F (b) and f(b∗) = f(b).

(ii) F (0) = g and F (B − 1) = g.

(iii) For 0 < b < B − 1, F (b) = g except for the r − 1 digits bi =
[

Bi
r

]

,

i = 1, 2, ..., r − 1 where F (bi) = g + 1.
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Proof: Our assumptions N > 1, B > 1, (N,B) = 1 prove the restrictions

on r. As we have seen, F (b) is the number of a ∈ A for which an equation, (3)

above, Ba = bN + a′, holds for some a′ ∈ A. (3) implies Bã = BN − Ba =

BN − bN − a′ = (B − b− 1)N +N − a′ = b∗N + ã′, thus

(5) Bã = b∗N + ã′ .

Thus for every occurrence of b in the periods for N there is a corresponding

occurrence of b∗. And if (a,N) = 1, so the occurrence of b given by (3) is in a

proper period, then the corresponding occurrence of b∗ given by (5) is in a proper

period also, since (ã, N) = 1. This proves (i).

The equation (3) with a, a′ ∈ A is equivalent to the inequality bN < Ba <

bN +N = (b+ 1)N . For a set X, |X| denotes the number of elements in the set

X. Thus we have F (b) = |X(b)| where

(6) X(b) =

{

a

∣

∣

∣

∣

bN

B
< a <

(b+ 1)N

B

}

.

Note that the inequality in (6) already ensures that a ∈ A. When b = 0, X(0) =
{

a

∣

∣

∣

∣

0 < a <
N

B

}

and so F (0) = [NB ] = g. Since 0∗ = B− 1, F (B− 1) = g follows

from (i), proving (ii). Assume now 0 < b < B − 1. Then bN
B and (b+1)N

B both are

not integers so, by the lemma,

F (b) = |X(b)| =

[

(b+ 1)N

B

]

−

[

bN

B

]

.

Substituting N = gB+ r this simplifies to F (b) = g +

[

(b+ 1)r

B

]

−

[

br

B

]

. Define

(7) E(b,N,B) =

[

(b+ 1)r

B

]

−

[

br

B

]

or E(b) for short, so we now have

(8) F (b) = g + E(b) .

Note that E(b,N,B) = E(b, r, B) depends only on r, and E(b, 1, B) = 0.

In particular, E(b,N,B) depends only on the congruence class of N mod B.

Again by the lemma, E(b,N,B) is the number of integers between br
B and

(b+1)r
B .

But (b+1)r
B − br

B =
r
B < 1 so there can be at most one integer between them.

Thus E(b) = 0, F (b) = g, except when there is an integer i such that

(9)
br

B
< i <

(b+ 1)r

B
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in which case E(b) = 1, F (b) = g + 1. Now (9) is equivalent to b < Bi
r < b + 1,

or b = [Bir ]. But we require 0 < b < B − 1 which one easily sees is exactly for

i = 1, 2, ...r − 1. This completes the proof of the theorem.

It is convenient to call the digits b for which E(b) = 1, F (b) = g+1, abundant

for N in base B, since they occur more frequently, albeit only by 1, in the periods

for N . We see that if N ≡ 1 (mod B), r = 1, then r − 1 = 0 and there are no

abundant digits, while at the opposite extreme, N ≡ B − 1 (mod B), r = B − 1,

then r − 1 = B − 2 and all digits 0 < b < B − 1 are abundant. We can now

explain the distribution rules for B = 10 observed by the authors previously

cited. For (N, 10) = 1, N = 10g + r, r must be one of 1,3,7,9. If r = 1, no

digits are abundant and F (b) = g for all b. If r = 9, all digits 0 < b < 9 are

abundant and F (b) = g + 1 for all such b. If r = 3, the abundant digits are

[10i3 ] for i = 1, 2 which give 3,6 as abundant. Finally, for r = 7, the abundant

digits are [10i7 ] for i = 1, 2, ..., 6 which give 1,2,4,5,7,8 as abundant. In general,

let AD(r,B), for (r,B) = 1, 1 ≤ r ≤ B − 1, be the abundant digits for r in base

B. AD(r,B) is a subset of {1, 2, ..., B − 2}. Note that for B = 10, AD(1, 10),

AD(9, 10) are mutually disjoint and their union is {1, 2, ..., 8}, and the same is

true for AD(3, 10) and AD(7, 10). This is no coincidence – there is another bit

of symmetry, actually anti-symmetry, lurking here.

Theorem 2. Let (r,B) = 1, 1 ≤ r ≤ B − 1. For 0 < b < B − 1, E(b, r, B) +

E(b,B − r,B) = 1.

Proof: By (7), E(b,B − r,B) = [ (b+1)(B−r)
B ]− [ b(B−r)

B ] = [(b+ 1)− (b+1)r
B ]−

[b − br
B ] = 1 + [−

(b+1)r
B ] − [− br

B ]. Now by (i) of the lemma, this last expression

is 1 −
[

(b+1)r
B

]

− 1 −
(

−
[

br
B

]

− 1
)

= 1 − E(b, r, B). Since the values of E are

0,1 it follows that E(b, r, B) = 1 iff E(b,B − r,B) = 0 and E(b, r, B) = 0 iff

E(b,B − r,B) = 1. Thus the sets AD(r,B), AD(B − r,B) form a partition of

{1, 2, ..., B − 2}.

The formula for f(b,N,B) is more complicated. It involves the prime structure

of N , but in a curious way. Suppose N = pk1

1 pk2

2 ...pkm

m is the prime factorization

of N ; m ≥ 1, p1, ...pm are the distinct prime divisors of N , k1 ≥ 1, ..., km ≥ 1.

Let M = {1, 2, ...,m}. For a subset I = {i1, ..., it} of M, |I| = t, set p(I) =

pi1pi2 ...pit ; p(I) = 1 when t = 0, I the empty set.
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Theorem 3.

(i) f(0, N,B) =
m
∑

t=0

(−1)t
∑

|I|=t

[

N/p(I)

B

]

, where in the inner sum I ranges

over all t-element subsets of M.

(ii) f(B − 1, N,B) = f(0, N,B)

(iii) For 0 < b < B − 1, f(b,N,B) = f(0, N,B) + d(b,N,B), where

d(b,N,B) =
m
∑

t=0

(−1)t
∑

|I|=t

E

(

b,
N

p(I)
, B

)

.

Proof: Every period for N is a proper period for a unique divisor N1 of N .

In fact, if a ∈ A, (a,N) = c, then write a = ca1, N = cN1, so
a
N =

a1

N1
and the

period determined by a
N is a proper period for N1. It follows that the frequency

of a digit b among all periods for N is the sum of its frequencies among all proper

periods for N1 ranging over the divisors of N . Thus

(10) F (b,N,B) =
∑

N1|N

f(b,N1, B) .

Holding b,B fixed and considering f, F only as functions of the middle argument,

(10) can be inverted by the Mobius inversion formula [3, p. 236] to obtain

(11) f(b,N,B) =
∑

N1|N

µ(N1)F

(

b,
N

N1
, B

)

.

Recall that µ(1) = 1, µ(n) = (−1)t if n is a product of t distinct primes and

µ(n) = 0 otherwise. So the only N1|N in (11) with µ(N1) 6= 0 are N1 = p(I)

where I ranges over all subsets ofM. When |I| = t, µ(N1) = (−1)
t, so that (11)

can be rewritten as

(12) f(b,N,B) =
m
∑

t=0

(−1)t
∑

|I|=t

F

(

b,
N

p(I)
, B

)

.

By Theorem 1, F
(

0, N
p(I) , B

)

=
[

N/p(I)
B

]

= F
(

B − 1, N
p(I) , B

)

while, by (8), for

0 < b < B − 1, F
(

b, N
p(I) , B

)

=
[

N/p(I)
B

]

+ E
(

b, N
p(I) , B

)

. Substituting these

expressions into (12) proves the theorem.
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3 – Consequences and examples

As a first example we take N = 21, B = 4 considered earlier. Since 21 ≡

1 (mod 4) and [214 ] = 5, Theorem 1 says F (b) = 5 for all digits b in base

4. Since 21 = 3 × 7 we have, in the notation of Theorem 3, f(0) =
[

21
4

]

−
([

21/3
4

]

+
[

21/7
4

])

+
[

21/(3×7)
3

]

= 5 − (1 + 0) + 0 = 4, and also f(3) = 4.

The quantity d(b,N,B) of Theorem 3 is f(b,N,B) − f(0, N,B), the amount

by which f(b) differs from f(0). So here we have for b = 1, 2, d(b, 21, 4) =

E(b, 21, 4) − (E(b, 21
3 , 4) + E(b, 21

7 , 4)) + E(b, 21
(3×7) , 4). Since 21 ≡ 1 (mod 4),

E(b, 21, 4) = 0, and the last term E(b, 1, 4) = 0. The two middle terms E(b, 7, 4),

E(b, 3, 4) are equal, since 7 ≡ 3 (mod 4). Since 3 = 4− 1, E(b, 3, 4) = 1 for both

b = 1, 2. So finally, d(b, 21, 4) = 0−(1+1)+0 = −2, so f(b, 21, 4) = 4−2 = 2, for

b = 1, 2, in agreement with what we saw by actually writing down the periods.

Theorem 1 shows that the B-digits are distributed as fairly (uniformly) as

possible among the periods for N , and the distribution is actually uniform iff

N ≡ 1 (mod B), for only in this case are there no abundant digits. When

is the distribution among all the proper periods uniform, i.e., when is d(b) =

f(b) − f(0) = 0 for all b? We do not have a necessary and sufficient condition

but claim:

Theorem 4. If N has at least one prime factor p ≡ 1 (mod B) then

f(b,N,B) = f(0, N,B) for all b.

Proof: Suppose, without loss of generality, that p1 ≡ 1 (mod B). In calcu-

lating d(b) as in Theorem 3, the sum
∑

|I|=t

E

(

b,
N

p(I)
, B

)

contains two types of

terms; those where 1 ∈ I, so I can be written as I = {1} ∪ J , where |J | = t− 1

is a subset of M1 = {2, ...,m} and those where 1 6∈ I, so I = J is a subset

of M1 and |J | = t. In the first case, p(I) = p1 · p(J) ≡ p(J) (mod B) and
N
p(I) ≡

N
p(J) (mod B), so E

(

b, N
p(I) , B

)

= E
(

b, N
p(J) , B

)

. So the entire sum is
∑

|J |=t−1

E

(

b,
N

p(J)
, B

)

+
∑

|J |=t

E

(

b,
N

p(J)
, B

)

, J ranging over subsets ofM1. Call

these 2 sums S(t− 1), S(t) respectively. Note that for t = 0, S(0− 1) = 0, since

there are no ‘empty sets’ I with 1 ∈ I. Also for t = m, S(m) = 0 since there

is no set J ⊂ M1 with |J | = m. Taking into account the coefficient (−1)t and
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summing over t gives:

d(b) = S(0) +
m−1
∑

t=1

(−1)t(S(t− 1) + S(t)) + (−1)mS(m− 1) = 0

as all the terms cancel, and the proof is complete.

Here is a simple illustration. Take N=15 = 3×5 and B=4. Since 5≡1 (mod 4)

we have f(b, 15, 4) = f(0, 15, 4) for 0 ≤ b ≤ 3. By direct calculation, the proper

periods for 15 in base 4 are 01,02,13,23 and we see f(b) = f(0) = 2. Actually,

whenever there is uniform distribution there is no need to use Theorem 3 to

evaluate f(0). Indeed, by (4), when f(b) = f(0) for all b, B · f(0) = φ(N)

so f(0) = φ(N)
B . For example, take N = 693 = 32 × 7 × 11 and B = 10; since

11 ≡ 1 (mod 10) we know there is uniform distribution, so f(b, 693, 10) = φ(693)
10 =

3(3−1)(7−1)(11−1)
10 = 36, for 0 ≤ b ≤ 9. In case of uniform distribution, f(0) = φ(N)

B ,

so we must have B|φ(N), or, since (B,N) = 1, B|(p1− 1)(p2− 1)...(pm− 1). But

this is not sufficient for uniform distribution, since for N = 21, B = 4 we have

4|(3− 1)(7− 1) but we’ve seen in this case f(0) = 4, f(1) = 2.

At the opposite extreme, how large can f(b)−f(0) = d(b) be? The formula of

Theorem 3 shows d(b) as a double sum
m
∑

t=0

(−1)t
∑

|I|=t

E

(

b,
N

p(I)
, B

)

. The inner

sum over t-element subsets I ofM is a sum of

(

m
t

)

(binomial coefficient) terms

each of which has value 0 or 1. So the inner sum is between 0 and

(

m
t

)

,

inclusive. To make d(b) as large as possible, those sums for t even, should be
(

m
t

)

, and those for t odd, where something is being subtracted, should be 0.

This gives d(b) ≤
m
∑

t=0

t even

(

m
t

)

= 2m−1. By a similar argument d(b) ≥ −2m−1, so

we have the bounds: If N has m distinct prime divisors then

(13) |f(b,N,B)− f(0, N,B)| ≤ 2m−1 .

It is easy to construct examples where these bounds are attained for all b, 0 < b <

B − 1. Take N to be a product pk1

1 ...pkm

m with all prime factors pi ≡ B − 1 (mod

B). Let K = k1 + k2 + ...+ km. Suppose K is odd; then N ≡ (B − 1)K ≡ B − 1

(mod B). Then for any I with |I| = t even, p(I) ≡ (B − 1)t ≡ 1 (mod B),
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hence N
p(I) ≡ (B − 1) (mod B) and E

(

b,
N

p(I)
, B

)

= 1, for all b, since we’ve

seen that E(b,B − 1, B) = 1 for all b. Thus each term in
∑

|I|=t

t even

contributes a 1.

On the other hand, for t odd, each term in
∑

|I|=t

t odd

contributes 0, since now p(I) ≡

(B − 1)t ≡ (B − 1) (mod B), so N
p(I) ≡ 1 (mod B) and E(b, 1, B) = 0 for all b.

So in this case d(b) = 2m−1. If K is even, the whole argument is reversed and

one has d(b) = −2m−1. Actually the case N = 21 = 3 × 7, B = 4 is a trivial

example of this, since 7 ≡ 3 ≡ (4 − 1) (mod 4), m = 2, K = 2 and we’ve seen

f(0, 21, 4) = 4, f(b, 21, 4) = 2 = 4− 22−1 for b = 1, 2.

In general, in a case where d(b,N,B) = 2m−1 for 0 < b < B−1 then (4) yields a

simple expression for f(0), without going through the calculation of the formula in

Theorem 3. Namely, our assumptions and (4) imply 2f(0)+(B−2)(f(0)+2m−1) =

φ(N) so that f(0) =
φ(N)− (B − 2)2m−1

B
. Similarly if d(b,N,B) = −2m−1, for

0 < b < B − 1, one has f(0) =
φ(N) + (B − 2)2m−1

B
.

Incidentally, it should be obvious, but worth mentioning, that when B = 2,

0∗ = 1, and the distributions are uniform. (4) then implies that for N odd,

B = 2, f(0) = f(1) = φ(N)
2 and F (0) = F (1) = N−1

2 .

For any N,B the formula of Theorem 3 shows that f(0, N,B) depends very

much on the actual prime divisors of N . But d(b,N,B) = f(b,N,B)−f(0, N,B)

depends only on the congruence classes mod B of the prime divisors in an unusual

way. Namely let N = pk1

1 ...pkm

m as previously, and suppose M = qh1

1 ...qhm

m with

p1 ≡ q1, ...pm ≡ qm (mod B) andM ≡ N (mod B), with no further restriction on

the exponents. Then d(b,N,B) = d(b,M,B) for 0 < b < B − 1. For the double

sums involved in each differ only in that for N one has terms E

(

b,
N

pi1 ...pim
, B

)

while forM the terms are E

(

b,
M

qi1 ...qim
, B

)

. But these terms are equal since by

our assumptions the middle arguments are congruent mod B. Example: B = 10,

N = 3 × 13 × 17 × 19, M = 232 × 435 × 76 × 293. Then 3 ≡ 23, 13 ≡ 43,

17 ≡ 7, 19 ≡ 29 (mod 10) and also, easily checked, N ≡ M (mod 10). Then

d(b,N, 10) = d(b,M, 10) for 0 < b < 9.

There are other questions about the possible values of f(b,N,B) that one

may ask, but we must stop here and let the interested reader investigate them.
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