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THE SET OF PERIODIC SOLUTIONS OF A NEUTRAL
DIFFERENTIAL EQUATION WITH CONSTANT DELAY
AND PIECEWISE CONSTANT ARGUMENT
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Abstract: The complete set of w-periodic solutions is found for a neutral differential

equation with constant delay, piecewise constant argument and w-periodic coefficients.

Considerable attention has been given to delay differential equations with
piecewise constant arguments by several authors including Cooke and Wiener
[1], Shah and Wiener [2], Aftabizaded et al. [3], and others. This class of differ-
ential equations has useful applications in biomedical models of disease that has
been developed by Busenerg and Cooke [4] and in stabilization of hybrid control
systems with feedback delay, where a hybrid system is one with a continuous
plant with a discrete (sampled) controller.

In [3], the set of all periodic solutions of the following linear differential equa-
tion with constant coefficient and piecewise constant deviating argument

y () +ay () +by(t—-1) =0, t>0,

are found, where [-] is the greatest integer function. In [4], the set of all periodic
solutions of a more general equation

(1) vyt +a®)y®)+o@y(t-1) =0, >0,
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is identified with the set of solutions of a linear system. It then follows that nec-
essary and sufficient conditions for the existence of nontrivial periodic solutions
of (1) can be found by considering a circulant matrix.

In this note, we proceed one step further and consider the following nonho-
mogeneous equation

@ (v +eyt—1) +a@) (y(t)+eyt—1)+b0)y(t-1) = p(t),

where ¢ is a real constant such that |c| # 1, and a (), b (t) as well as p(t) are real,
continuous functions with positive integer period w. Note that we allow ¢ = 0, in
which case, (2) reduces to the following nonhomogeneous equation with piecewise
constant argument.

v () +a®)y®)+b@)y(t-1) = p(t).

We will be interested in finding all the w-periodic solutions of (2). To this
end, let R be the set of real numbers and Z the set of all integers. By a solution
y = y(t) of (2), we mean a continuous function on R such that (y (t) + cy (t — 1))’
exists at each point ¢ € R, with the possible exception of the points [t] € R
where one-sided derivatives exist, and equation (2) is satisfied on each interval
[n,n 4+ 1) C R with integral endpoints.

Lemma 1. Let ¢ be a real constant such that |c| # 1. If u (t) is a real, con-
tinuous and w-periodic function on R, then there is unique w-periodic continuous
function z (t) which is defined on R and

(3) u(t) =z (t)+cx(t—1), teR.

Furthermore, if |c| < 1, then

(4) z(t) =Y (-1)'cu(t—i), teR,
i=0

(2

while if |c¢| > 1, then

Proof: In case |¢| < 1, it is easy to see that Y5, (—1)" ¢u (t — i) is uniform
convergent on compact intervals of R. If we define x (t) by (4), then z (¢) is a
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real, continuous and w-periodic function on R. Furthermore, it is not difficult to
check that x (t) satisfies (3). Similarly, in case |c¢| > 1, if we definite z (t) as (5),
then z (t) is real, continuous and w-periodic, and (3) holds.

Suppose y (t) is a real, continuous and w-periodic function defined on R which
satisfies

(6) ut) =y@t)+cy(t—1), teR.
From (3), (6) and the fact that x (t) and y (t) are w-periodic, we see that for any
te R,
(7) [z () —y @] = leffx(t-1) =yt -1 .
By (7) and the fact that x (t) and y (t) are w-periodic, we have

e [2 () ~ y (O] = suple ()~ y (o)
(8) = lelsup |z (t —1) —y (t = 1)

teR

= lel | max |z () —y (¢)] -
Since |c| # 1, (8) implies x (t) = y (¢) for t € R. The proof is complete. n

The set of all w-periodic solutions of (2) will be denoted by €2,,. Note that
when p(t) =0 for t € R, Q,, endowed with the usual addition and (real) scalar
multiplication, is a linear space. In order to determine €2, we set

(9) an:exp<—/n a(u)du)—c, nez,

n

-1
(10) Bn = cexp(—/nila(u) du) - /7:11) (s) exp(—/sna (u) du) ds, neZz,

and

(11) 'yn——/nlp(s)exp<—/sna(u)du>ds, nez.

e
Since a (t), b (t) and ¢ (t) are w-periodic, it is easy to see that {an}oo  ,{Bn}re
and {y,},— ., are w-periodic sequences.

—00
Let W, be the set of all solutions of the following system of w linear equations

Brze + 121 —22 = 71,
(12) BZZ_l + Q29 — 23 = Y2,

Buozw—1+ 02y — 21 = Yw -

In case 71 = ... = 7, = 0, note that ¥, is a linear subspace of R“.



298 GEN-QIANG WANG and SUI SUN CHENG
Note that the system (12) can be written as
sz =7

where z = (21, 29, ...,zw)T, v = (71, ...,’yw)T, and

ar =10 0 ... By
62 a9 -10 ... 0
(13) A = 0 ,33 a3 -1 ... .. 0
0 /Bw—l Qy—-1 —

0 0 0
10 0 0 .0 B au

when w > 3,

(14) Aw:<a1 51_1)

o—1 a9

when w = 2 and
(15) Ay = (a1 +61—-1)

when w = 1.

Theorem 1. There is a one to one and onto mapping from ., to V.
Furthermore, if p (t) =0 for t € R, then Q,, and ¥, are isomorphic.

Proof: Let y(t) be an w-periodic solution of (2). Then for n € Z,
!/
(v +eyt=1) +a(t) (y(O+ey (t-1))+b @) y(n—1) = p(t), n<t<ntl,

so that

% ((y (t) + cy (t—l)) exp(/ta (u) du)) +b(t) exp( ta (u) du) y(n—1)

= pOesp( [atda). n ”

and
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forn <t <mn-+1. Thus

y(t)+eyt—1) = (y (n) +cy (n—l)) exp(—/ta (u) du)

n

—y(n-1) /ntb(s) exp<—/sta (u) du) ds

(16) + /ntp (s) exp (—/Sta (u) du) ds

for n < ¢ <mn+1. Since lim;_, )- y(t) = y(n+1), we see further that for
nez,

ot ) ey(a) = (310) o) exp( /f“ )

so that

y(n+1) = (exp(— /:Ha(u) du) - c> y(n)
+ {c exp (—/nnJriz(u) du) - /nnﬂb(s) exp (—/sn+clz(u) du) ds} y(n—1)
+/nn+;(8) exp (—/Sn+1cz(u) du) ds .

In terms of ay,, B, and 7, defined by (9), (10) and (11),

(17) Yy (n + 1) = Qnt1Y (n) + ﬂn-ﬁ-ly (n_l) - Tn+1l -

If we now let z;, = y (k — 1) for k € Z, then {z};- _ is a periodic sequence and
from (17) we see that the column vector (21, 22, ..., 2z,)| is a solution of (12), that
is, (21, 22, ...zw)T cw,.

Conversely, let (z1, 22, ... w) € ¥,. Define zyg = z, and extend the finite
sequence {zo, 21, ..., 2, } to the unique w- perlodlc sequence {z,}oo . Let y, =
Znt+1 for n € Z, and let the function wu (t) on each interval [n,n+1) C R be
defined by

u(t) = (Yn + cyn—1) exp (—/nta (u) du> — Yn—1 /ntb (s) exp (—/:a (u) du) ds

(18) +/ exp( /t (u) du) .
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and

u(n+1) = (yn + cyn-1) exp(—/n+1a (u) du)

n

(19) — Yn—1 /nﬂb(s) exp <—/Sn+1a (u) du> ds

n

+ /n+1 exp( /Snﬂa (u) du) .

Noting that {an} -, {Bntne oo {nlne_o and {zn}oo . are w-periodic
sequences and y, = z,41 for n € Z, from (12) and (19), we see that

u(n+1) = {exp (—/:Ha(u) du) — c} Yn
+ {c exp <—/nn+1a(u) du) — /:Jr})(s) exp (—/SnHCL(u) du) ds} Yn—1
{0 () e

= Qp+1Yn + ﬁn—l—l Yn—1 — Yn+1 + CYn
= Yn+1 T CYn ,

that is
(2()) u(n+1) = Yn+1 + CYn, nez.

By (18), (19) and (20), we see that u () is a real, continuous and w-periodic func-
tion on R, furthermore, from Lemma 1, there is a unique w-periodic continuous
function y (t) which is defined on R and

(21) u(lt)=y@t)+cy(t—1), teR.

By (18) and (21), we have

v+ eyt=1) = (g cvns) e [ awdu)

(22) — Yn— 1/b exp(/ ()d)ds
+/ exp(/ ()du)ds

for t € R. Now, we prove that y (n) =y, for n € Z. From (22), we have

(23) y(m)+ey(n=1)=yn+cyn-1, nez.
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Noting that {y (n)},~__and {y,} o _ are w-periodic sequences, (23) implies

n=—oo

yJmax [y (n) —yn| = suply (n) —ya| = |c] sup |y (n—1) =y
<n<w-1 nez nez
(24) = lel suply (n) = ynl = el max |y (n) =yl -

Because |c| # 1, y(n) = y, for n € Z. Furthermore, in view of (22), we know
that y (t) satisfies (16), it is therefore not difficult to check that the function y(t)
is an w-periodic solution of (2). In other words, we have found a one to one and
onto mapping from €, to V.

Note that in case p(t) = 0, we have v; = y9 = ... =7, = 0. Thus the solution
sets (1, and W, are linear spaces. It is easily seen that the mapping found in the
proof of Theorem 1 is linear. We may thus conclude that the solution spaces €2,
and ¥, are isomorphic. The proof is complete. n

In view of the above identification theorem, we can apply standard results in
linear algebra to yield the nature of the solutions of (2).

Theorem 2. Suppose p(t) = 0. Then the dimension of Q, is w—Rank(A,,).

In particular, when p(t) = 0, (2) has a nontrivial w-periodic solution if, and
only if, det A, = 0. In case w = 1, det A; = 0 if, and only if, 81 + a1 = 1;
in case w = 2, det Ay = 0 if, and only if, (81 — 1)(82 — 1) = ajag; and in case
w>3,det A, =0if By +ar —1=0for k=1,...,w (since 0 is an eigenvalue and
(1,1,...,1)T is the corresponding eigenvector of A,).

Theorem 3.  Equation (2) has an w-periodic solution if, and only Iif,
Rank(A,) = Rank([A, 7]), and has infinitely many w-periodic solutions if, and
only if, Rank(A,,) = Rank([A,, 7]) < w. Here v = (1, ...,7.)" is defined by (11)
and [A, 7] is the augmented matrix formed from A, and ~.

In particular, equation (2) has a unique w-periodic solution if, and only if,
det A, # 0. As a consequence, when w = 1, (2) has a unique 1-periodic solution
if and only if 8; + a1 # 1; when w = 2, (2) has a unique w-periodic solution if,
and only if, (81 —1)(82 — 1) # aias.

Example 1. Consider the following equation

(y (t) — 3y (t — 1)) + (sinmt) (y (t) — 3y (t — 1)) + (exp (7r_1 coswt)) y ([t —1])
(25) = (cosmt)exp (sin (2*17rt)) .
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Let c=—3, a(t)=sin7t, b(t) =exp(m ! cos 7t) and p(t) = (cos 7t) exp(sin(2~1rt)).
It is easy to verify that a (¢), b (t) and p (¢) are continuous real functions with pe-
riod 2. Then oy = 3+exp (—2771), ag = 3+exp (277 1), f1 = —3exp (—27 1) —
exp (=77 1) and By = —3exp (27 1) —exp (77 1). Thus (81 — 1)(B2 — 1) # a1z,
By Theorem 3, our equation (25) has a unique 2-periodic solution. Furthermore,
since the trivial function is not a solution of our equation, this 2-periodic solution
is not trivial. o
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