PORTUGALIAE MATHEMATICA Vol. 62 Fasc. 3 – 2005 Nova Série

THE SET OF PERIODIC SOLUTIONS OF A NEUTRAL DIFFERENTIAL EQUATION WITH CONSTANT DELAY AND PIECEWISE CONSTANT ARGUMENT

GEN-QIANG WANG and SUI SUN CHENG

Recommended by L. Sanchez

Abstract: The complete set of ω -periodic solutions is found for a neutral differential equation with constant delay, piecewise constant argument and ω -periodic coefficients.

Considerable attention has been given to delay differential equations with piecewise constant arguments by several authors including Cooke and Wiener [1], Shah and Wiener [2], Aftabizaded et al. [3], and others. This class of differential equations has useful applications in biomedical models of disease that has been developed by Busenerg and Cooke [4] and in stabilization of hybrid control systems with feedback delay, where a hybrid system is one with a continuous plant with a discrete (sampled) controller.

In [3], the set of all periodic solutions of the following linear differential equation with constant coefficient and piecewise constant deviating argument

$$y'(t) + ay(t) + by([t-1]) = 0, \quad t \ge 0,$$

are found, where $[\cdot]$ is the greatest integer function. In [4], the set of all periodic solutions of a more general equation

(1)
$$y'(t) + a(t)y(t) + b(t)y([t-1]) = 0, \quad t \ge 0,$$

Received: March 15, 2004; Revised: April 21, 2004.

AMS Subject Classification: 34K13.

Keywords: neutral differential equation; delay; piecewise constant argument; set of periodic solutions.

GEN-QIANG WANG and SUI SUN CHENG

is identified with the set of solutions of a linear system. It then follows that necessary and sufficient conditions for the existence of nontrivial periodic solutions of (1) can be found by considering a circulant matrix.

In this note, we proceed one step further and consider the following nonhomogeneous equation

(2)
$$(y(t) + cy(t-1))' + a(t)(y(t) + cy(t-1)) + b(t)y([t-1]) = p(t),$$

where c is a real constant such that $|c| \neq 1$, and a(t), b(t) as well as p(t) are real, continuous functions with positive integer period ω . Note that we allow c = 0, in which case, (2) reduces to the following nonhomogeneous equation with piecewise constant argument.

$$y'(t) + a(t)y(t) + b(t)y([t-1]) = p(t)$$
.

We will be interested in finding all the ω -periodic solutions of (2). To this end, let R be the set of real numbers and Z the set of all integers. By a solution y = y(t) of (2), we mean a continuous function on R such that (y(t) + cy(t-1))'exists at each point $t \in R$, with the possible exception of the points $[t] \in R$ where one-sided derivatives exist, and equation (2) is satisfied on each interval $[n, n + 1) \subset R$ with integral endpoints.

Lemma 1. Let c be a real constant such that $|c| \neq 1$. If u(t) is a real, continuous and ω -periodic function on R, then there is unique ω -periodic continuous function x(t) which is defined on R and

(3)
$$u(t) = x(t) + cx(t-1), \quad t \in R.$$

Furthermore, if |c| < 1, then

(4)
$$x(t) = \sum_{i=0}^{\infty} (-1)^{i} c^{i} u(t-i) , \quad t \in \mathbb{R} ,$$

while if |c| > 1, then

(5)
$$x(t) = \sum_{i=0}^{\infty} (-1)^{i} \left(\frac{1}{c}\right)^{i+1} u(t+i+1), \quad t \in \mathbb{R}.$$

Proof: In case |c| < 1, it is easy to see that $\sum_{i=0}^{\infty} (-1)^i c^i u(t-i)$ is uniform convergent on compact intervals of R. If we define x(t) by (4), then x(t) is a

PERIODIC SOLUTIONS OF A NEUTRAL DIFFERENTIAL EQUATION 297

real, continuous and ω -periodic function on R. Furthermore, it is not difficult to check that x(t) satisfies (3). Similarly, in case |c| > 1, if we definite x(t) as (5), then x(t) is real, continuous and ω -periodic, and (3) holds.

Suppose y(t) is a real, continuous and ω -periodic function defined on R which satisfies

(6)
$$u(t) = y(t) + cy(t-1), \quad t \in R$$

From (3), (6) and the fact that x(t) and y(t) are ω -periodic, we see that for any $t \in R$,

(7)
$$|x(t) - y(t)| = |c| |x(t-1) - y(t-1)|.$$

By (7) and the fact that x(t) and y(t) are ω -periodic, we have

(8)
$$\max_{0 \le t \le \omega} |x(t) - y(t)| = \sup_{t \in R} |x(t) - y(t)|$$
$$= |c| \sup_{t \in R} |x(t-1) - y(t-1)|$$
$$= |c| |\max_{0 \le t \le \omega} |x(t) - y(t)| .$$

Since $|c| \neq 1$, (8) implies x(t) = y(t) for $t \in R$. The proof is complete.

The set of all ω -periodic solutions of (2) will be denoted by Ω_{ω} . Note that when p(t) = 0 for $t \in R$, Ω_{ω} , endowed with the usual addition and (real) scalar multiplication, is a linear space. In order to determine Ω_{ω} , we set

(9)
$$\alpha_n = \exp\left(-\int_{n-1}^n a(u)\,du\right) - c\,, \quad n \in Z\,,$$

(10)
$$\beta_n = c \exp\left(-\int_{n-1}^n a(u) \, du\right) - \int_{n-1}^n b(s) \exp\left(-\int_s^n a(u) \, du\right) ds, \quad n \in \mathbb{Z} ,$$

and

(11)
$$\gamma_n = -\int_{n-1}^n p(s) \exp\left(-\int_s^n a(u) \, du\right) \, ds \,, \quad n \in \mathbb{Z} \,.$$

Since a(t), b(t) and c(t) are ω -periodic, it is easy to see that $\{\alpha_n\}_{n=-\infty}^{\infty}, \{\beta_n\}_{n=-\infty}^{\infty}$ and $\{\gamma_n\}_{n=-\infty}^{\infty}$ are ω -periodic sequences.

Let Ψ_{ω} be the set of all solutions of the following system of ω linear equations

(12)
$$\begin{cases} \beta_1 z_{\omega} + \alpha_1 z_1 - z_2 = \gamma_1 ,\\ \beta_2 z_1 + \alpha_2 z_2 - z_3 = \gamma_2 ,\\ \dots = \dots \\ \beta_{\omega} z_{\omega-1} + \alpha_{\omega} z_w - z_1 = \gamma_{\omega} . \end{cases}$$

In case $\gamma_1 = \dots = \gamma_\omega = 0$, note that Ψ_ω is a linear subspace of R^ω .

Note that the system (12) can be written as

$$A_{\omega}z = \gamma ,$$

where $z = (z_1, z_2, ..., z_{\omega})^{\dagger}$, $\gamma = (\gamma_1, ..., \gamma_{\omega})^{\dagger}$, and

(13)
$$A_{\omega} = \begin{pmatrix} \alpha_{1} & -1 & 0 & 0 & \dots & \dots & & \beta_{1} \\ \beta_{2} & \alpha_{2} & -1 & 0 & \dots & \dots & & 0 \\ 0 & \beta_{3} & \alpha_{3} & -1 & \dots & \dots & & 0 \\ \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & \beta_{\omega-1} & \alpha_{\omega-1} & -1 \\ -1 & 0 & 0 & 0 & \dots & 0 & \beta_{\omega} & \alpha_{\omega} \end{pmatrix}$$

when $\omega \geq 3$,

(14)
$$A_{\omega} = \begin{pmatrix} \alpha_1 & \beta_1 - 1 \\ \beta_2 - 1 & \alpha_2 \end{pmatrix}$$

when $\omega = 2$ and (15)

$$A_{\omega} = (\alpha_1 + \beta_1 - 1)$$

when $\omega = 1$.

Theorem 1. There is a one to one and onto mapping from Ω_{ω} to Ψ_{ω} . Furthermore, if p(t) = 0 for $t \in R$, then Ω_{ω} and Ψ_{ω} are isomorphic.

Proof: Let y(t) be an ω -periodic solution of (2). Then for $n \in \mathbb{Z}$,

$$\left(y(t) + cy(t-1)\right)' + a(t)\left(y(t) + cy(t-1)\right) + b(t)y(n-1) = p(t), \quad n \le t < n+1,$$

so that

$$\begin{split} & \frac{d}{dt} \left(\left(y\left(t\right) + cy\left(t-1\right) \right) \exp\left(\int_{n}^{t} a\left(u\right) du \right) \right) + b\left(t\right) \exp\left(\int_{n}^{t} a\left(u\right) du \right) y\left(n-1\right) \\ & = \ p\left(t\right) \exp\left(\int_{n}^{t} a\left(u\right) du \right), \end{split}$$

and

$$\begin{pmatrix} y(t) + cy(t-1) \end{pmatrix} \exp\left(\int_{n}^{t} a(u) du \right) - \left(y(n) + cy(n-1)\right)$$
$$+ y(n-1) \int_{n}^{t} b(s) \exp\left(\int_{n}^{s} a(u) du\right) ds$$
$$= \int_{n}^{t} p(s) \exp\left(\int_{n}^{s} a(u) du\right) ds ,$$

for $n \leq t < n + 1$. Thus

(16)

$$y(t) + cy(t-1) = \left(y(n) + cy(n-1)\right) \exp\left(-\int_{n}^{t} a(u) du\right)$$

$$- y(n-1) \int_{n}^{t} b(s) \exp\left(-\int_{s}^{t} a(u) du\right) ds$$

$$+ \int_{n}^{t} p(s) \exp\left(-\int_{s}^{t} a(u) du\right) ds$$

for $n \leq t < n+1$. Since $\lim_{t \to (n+1)^{-}} y(t) = y(n+1)$, we see further that for $n \in \mathbb{Z}$,

$$y(n+1) + cy(n) = \left(y(n) + cy(n-1)\right) \exp\left(-\int_{n}^{n+1} a(u) \, du\right) - y(n-1) \int_{n}^{n+1} b(s) \exp\left(-\int_{s}^{n+1} a(u) \, du\right) \, ds + \int_{n}^{n+1} p(s) \exp\left(-\int_{s}^{n+1} a(u) \, du\right) \, ds ,$$

so that

$$y(n+1) = \left(\exp\left(-\int_{n}^{n+1} a(u) \, du\right) - c\right) y(n) + \left\{c \exp\left(-\int_{n}^{n+1} a(u) \, du\right) - \int_{n}^{n+1} b(s) \exp\left(-\int_{s}^{n+1} a(u) \, du\right) \, ds\right\} y(n-1) + \int_{n}^{n+1} p(s) \exp\left(-\int_{s}^{n+1} a(u) \, du\right) \, ds \; .$$

In terms of α_n , β_n and γ_n defined by (9), (10) and (11),

(17)
$$y(n+1) = \alpha_{n+1}y(n) + \beta_{n+1}y(n-1) - \gamma_{n+1}$$

If we now let $z_k = y (k-1)$ for $k \in \mathbb{Z}$, then $\{z_k\}_{k=-\infty}^{\infty}$ is a periodic sequence and from (17) we see that the column vector $(z_1, z_2, ..., z_{\omega})^{\dagger}$ is a solution of (12), that is, $(z_1, z_2, ..., z_{\omega})^{\dagger} \in \Psi_{\omega}$.

Conversely, let $(z_1, z_2, ..., z_{\omega})^{\dagger} \in \Psi_{\omega}$. Define $z_0 = z_{\omega}$ and extend the finite sequence $\{z_0, z_1, ..., z_{\omega}\}$ to the unique ω -periodic sequence $\{z_n\}_{n=-\infty}^{\infty}$. Let $y_n = z_{n+1}$ for $n \in \mathbb{Z}$, and let the function u(t) on each interval $[n, n+1) \subset \mathbb{R}$ be defined by

$$u(t) = (y_n + cy_{n-1}) \exp\left(-\int_n^t a(u) \, du\right) - y_{n-1} \int_n^t b(s) \exp\left(-\int_s^t a(u) \, du\right) \, ds$$

(18) $+ \int_n^t p(s) \exp\left(-\int_s^t a(u) \, du\right)$.

GEN-QIANG WANG and SUI SUN CHENG

and

(19)
$$u(n+1) = (y_n + cy_{n-1}) \exp\left(-\int_n^{n+1} a(u) \, du\right)$$
$$- y_{n-1} \int_n^{n+1} b(s) \exp\left(-\int_s^{n+1} a(u) \, du\right) \, ds$$
$$+ \int_n^{n+1} p(s) \exp\left(-\int_s^{n+1} a(u) \, du\right) \, .$$

Noting that $\{\alpha_n\}_{n=-\infty}^{\infty}$, $\{\beta_n\}_{n=-\infty}^{\infty}$, $\{\gamma_n\}_{n=-\infty}^{\infty}$ and $\{z_n\}_{n=-\infty}^{\infty}$ are ω -periodic sequences and $y_n = z_{n+1}$ for $n \in \mathbb{Z}$, from (12) and (19), we see that

$$\begin{aligned} u(n+1) &= \left\{ \exp\left(-\int_{n}^{n+1} a(u) \, du\right) - c \right\} y_{n} \\ &+ \left\{ c \, \exp\left(-\int_{n}^{n+1} a(u) \, du\right) - \int_{n}^{n+1} b(s) \, \exp\left(-\int_{s}^{n+1} a(u) \, du\right) \, ds \right\} y_{n-1} \\ &- \left\{-\int_{n-1}^{n+1} p(s) \, \exp\left(-\int_{s}^{n+1} a(u) \, du\right) \, ds \right\} + c \, y_{n} \\ &= \alpha_{n+1} \, y_{n} + \beta_{n+1} \, y_{n-1} - \gamma_{n+1} + c \, y_{n} \\ &= y_{n+1} + c \, y_{n} \; , \end{aligned}$$

that is

(20)
$$u(n+1) = y_{n+1} + cy_n, \quad n \in \mathbb{Z}$$
.

By (18), (19) and (20), we see that u(t) is a real, continuous and ω -periodic function on R, furthermore, from Lemma 1, there is a unique ω -periodic continuous function y(t) which is defined on R and

(21)
$$u(t) = y(t) + cy(t-1), \quad t \in R.$$

By (18) and (21), we have

(22)
$$y(t) + cy(t-1) = (y_n + cy_{n-1}) \exp\left(-\int_n^t a(u) \, du\right)$$
$$- y_{n-1} \int_n^t b(s) \exp\left(-\int_s^t a(u) \, du\right) \, ds$$
$$+ \int_n^t p(s) \exp\left(-\int_s^t a(u) \, du\right) \, ds$$

for $t \in R$. Now, we prove that $y(n) = y_n$ for $n \in Z$. From (22), we have

(23)
$$y(n) + cy(n-1) = y_n + cy_{n-1}, \quad n \in \mathbb{Z}.$$

PERIODIC SOLUTIONS OF A NEUTRAL DIFFERENTIAL EQUATION 301

Noting that $\{y(n)\}_{n=-\infty}^{\infty}$ and $\{y_n\}_{n=-\infty}^{\infty}$ are ω -periodic sequences, (23) implies

$$\max_{\substack{0 \le n \le \omega - 1}} |y(n) - y_n| = \sup_{n \in Z} |y(n) - y_n| = |c| \sup_{n \in Z} |y(n-1) - y_{n-1}|$$

$$(24) = |c| \sup_{n \in Z} |y(n) - y_n| = |c| \max_{\substack{0 \le n \le \omega - 1}} |y(n) - y_n| .$$

Because $|c| \neq 1$, $y(n) = y_n$ for $n \in \mathbb{Z}$. Furthermore, in view of (22), we know that y(t) satisfies (16), it is therefore not difficult to check that the function y(t)is an ω -periodic solution of (2). In other words, we have found a one to one and onto mapping from Ω_{ω} to Ψ_{ω} .

Note that in case $p(t) \equiv 0$, we have $\gamma_1 = \gamma_2 = ... = \gamma_\omega = 0$. Thus the solution sets Ω_ω and Ψ_ω are linear spaces. It is easily seen that the mapping found in the proof of Theorem 1 is linear. We may thus conclude that the solution spaces Ω_ω and Ψ_ω are isomorphic. The proof is complete.

In view of the above identification theorem, we can apply standard results in linear algebra to yield the nature of the solutions of (2).

Theorem 2. Suppose $p(t) \equiv 0$. Then the dimension of Ω_{ω} is $\omega - \text{Rank}(A_{\omega})$.

In particular, when $p(t) \equiv 0$, (2) has a nontrivial ω -periodic solution if, and only if, det $A_{\omega} = 0$. In case $\omega = 1$, det $A_1 = 0$ if, and only if, $\beta_1 + \alpha_1 = 1$; in case $\omega = 2$, det $A_2 = 0$ if, and only if, $(\beta_1 - 1)(\beta_2 - 1) = \alpha_1 \alpha_2$; and in case $\omega \geq 3$, det $A_{\omega} = 0$ if $\beta_k + \alpha_k - 1 = 0$ for $k = 1, ..., \omega$ (since 0 is an eigenvalue and $(1, 1, ..., 1)^{\dagger}$ is the corresponding eigenvector of A_{ω}).

Theorem 3. Equation (2) has an ω -periodic solution if, and only if, Rank $(A_{\omega}) = \text{Rank}([A_{\omega} \ \gamma])$, and has infinitely many ω -periodic solutions if, and only if, Rank $(A_{\omega}) = \text{Rank}([A_{\omega} \ \gamma]) < \omega$. Here $\gamma = (\gamma_1, ..., \gamma_{\omega})^{\dagger}$ is defined by (11) and $[A_{\omega} \ \gamma]$ is the augmented matrix formed from A_{ω} and γ .

In particular, equation (2) has a unique ω -periodic solution if, and only if, det $A_{\omega} \neq 0$. As a consequence, when $\omega = 1$, (2) has a unique 1-periodic solution if and only if $\beta_1 + \alpha_1 \neq 1$; when $\omega = 2$, (2) has a unique ω -periodic solution if, and only if, $(\beta_1 - 1)(\beta_2 - 1) \neq \alpha_1 \alpha_2$.

Example 1. Consider the following equation

$$(y(t) - 3y(t-1))' + (\sin \pi t) (y(t) - 3y(t-1)) + \left(\exp\left(\pi^{-1}\cos \pi t\right)\right) y([t-1])$$

(25)
$$= (\cos \pi t) \exp\left(\sin\left(2^{-1}\pi t\right)\right)$$

GEN-QIANG WANG and SUI SUN CHENG

Let c = -3, $a(t) = \sin \pi t$, $b(t) = \exp(\pi^{-1} \cos \pi t)$ and $p(t) = (\cos \pi t) \exp(\sin(2^{-1}\pi t))$. It is easy to verify that a(t), b(t) and p(t) are continuous real functions with period 2. Then $\alpha_1 = 3 + \exp(-2\pi^{-1})$, $\alpha_2 = 3 + \exp(2\pi^{-1})$, $\beta_1 = -3\exp(-2\pi^{-1}) - \exp(-\pi^{-1})$ and $\beta_2 = -3\exp(2\pi^{-1}) - \exp(\pi^{-1})$. Thus $(\beta_1 - 1)(\beta_2 - 1) \neq \alpha_1\alpha_2$. By Theorem 3, our equation (25) has a unique 2-periodic solution. Furthermore, since the trivial function is not a solution of our equation, this 2-periodic solution is not trivial. \square

REFERENCES

- COOKE, K.L. and WIENER, J. Retarded differential equations with piecewise constant delays, J. Math. Anal. Appl., 99 (1984), 265–297.
- [2] SHAN, S.M. and WIENER, J. Advanced differential equations with piecewise constat argument deviations, Intern. J. Math. & Math. Sci., 6 (1983), 671–703.
- [3] AFTABIZADEH, A.R.; WIENER, J. and XU, J. Oscillatory and periodic solutions of delay differential equations with piecewise constat argument, *Proc. Amer. Math.* Soc., 99 (1987), 673–679.
- [4] BUSENERG, S. and COOKE, K.L. Models of of vertically transmitted diseases with sequential-continuous dynamics, in "Nonlinear Phenomena in Mathematical Sciences" (V. Lakshmikantham, Ed.), Academic Press, New York, 1982, pp. 179– 187.
- [5] WANG, G.Q. and CHENG, S.S. Note on the set of periodic solutions of a delay differential equations with piecewise constant argument, *Intern. J. Pure & Appl. Math.*, 9 (2003), 139–143.

Gen-qiang Wang, Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510665 – P.R. CHINA

and

Sui Sun Cheng, Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, – R.O. CHINA