ALMOST NORMALITY AND MILD NORMALITY OF THE TYCHONOFF PLANK

Lutfi N. Kalantan

Abstract

The Tychonoff Plank is a popular example of the fact normality is not hereditary. We will show that it is mildly normal but not almost normal.

The Tychonoff plank $X=\left(\omega_{1}+1 \times \omega+1\right) \backslash\left\{\left\langle\omega_{1}, \omega\right\rangle\right\}$ is a famous example of a $T_{3 \frac{1}{2}}$-space which is not normal, see [1]. It is also a famous example of the fact that normality is not hereditary, see [1]. In this paper, we will show that the Tychonoff plank is mildly normal but not almost normal. We will denote an order pairs by $\langle x, y\rangle$, the set of positive integers by \mathbb{N} and the set of all real numbers by \mathbb{R}.

Definition 1. A subset A of a topological space X is called regularly closed (called also, closed domain) if $A=\overline{\operatorname{int} A}$. Two subsets A and B in a topological space X are said to be separated if there exist two disjoint open subsets U and V such that $A \subseteq U$ and $B \subseteq V$. \square

Definition 2. A topological space X is called mildly normal (called also κ-normal) if any two disjoint regularly closed subsets A and B of X, can be separated.

[^0]In [2], Shchepin introduced the notion of κ-normal property. He required regularity in his definition. In [3], Singal and Singal introduced the notion of mildly normal property. They did not require regularity.

Let ω be the first infinite ordinal and ω_{1} be the first uncountable ordinal with their usual order topology. Consider the product space $\omega_{1}+1 \times \omega+1$. The Tychonoff Plank is the subspace $X=\left(\omega_{1}+1 \times \omega+1\right) \backslash\left\{\left\langle\omega_{1}, \omega\right\rangle\right\}$. Write $X=A \cup B \cup C$, where $A=\left\{\omega_{1}\right\} \times \omega, B=\omega_{1} \times\{\omega\}$, and $C=X \backslash(A \cup B)$. Let $p_{1}: \omega_{1}+1 \times \omega+1 \longrightarrow \omega_{1}+1$ and $p_{2}: \omega_{1}+1 \times \omega+1 \longrightarrow \omega+1$ be the natural projections. To show that X is mildly normal, we need the following lemma:

Lemma 1. If H and K are closed disjoint unseparated subsets of X, then either $\left(p_{1}(H \cap B)\right.$ is unbounded and $p_{2}(K \cap A)$ is unbounded) or $\left(p_{1}(K \cap B)\right.$ is unbounded and $p_{2}(H \cap A)$ is unbounded).

Proof: Let H and K be any closed disjoint unseparated subsets of X. Suppose that the conclusion is false. This gives us that $\left(p_{1}(H \cap B)\right.$ is bounded or $p_{2}(K \cap A)$ is bounded) and ($p_{1}(K \cap B)$ is bounded and $p_{2}(H \cap A)$ is bounded). This gives us the following four cases:

1. $p_{1}(H \cap B)$ is bounded and $p_{2}(H \cap A)$ is bounded.
2. $p_{1}(H \cap B)$ is bounded and $p_{1}(K \cap B)$ is bounded.
3. $p_{2}(K \cap A)$ is bounded and $p_{2}(H \cap A)$ is bounded.
4. $p_{2}(K \cap A)$ is bounded and $p_{1}(K \cap B)$ is bounded.

Case 1: $p_{1}(H \cap B)$ is bounded and $p_{2}(H \cap A)$ is bounded. Let γ be the least upper bound of $p_{1}(H \cap B)$ and m be the least upper bound of $p_{2}(H \cap A)$. In the space $Y=\omega_{1}+1 \times \omega+1 \supset X$ we have that $\left\langle\omega_{1}, \omega\right\rangle \notin \bar{H}^{Y}$. Because if $\left\langle\omega_{1}, \omega\right\rangle \in \bar{H}^{Y}$, then for each $\alpha<\omega_{1}$ and for each $n<\omega$, we have $\left(\left(\alpha, \omega_{1}\right] \times(n, \omega]\right) \cap H \neq \emptyset$. Pick $k>m$ and $\alpha>\gamma$. Pick $\left\langle\alpha_{1}, k_{1}\right\rangle \in\left(\left(\alpha, \omega_{1}\right] \times(k, \omega]\right) \cap H$. Pick $\left\langle\alpha_{2}, k_{2}\right\rangle \in$ $\left(\left(\alpha_{1}, \omega_{1}\right] \times\left(k_{1}, \omega\right]\right) \cap H$. Observe that $\alpha_{1}<\alpha_{2}$ and $k_{1}<k_{2}$. If $l \geq 3, l<\omega$, and $\left\langle\alpha_{1}, k_{1}\right\rangle, \ldots,\left\langle\alpha_{l}, k_{l}\right\rangle$ are all picked such that $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{l}$ and $k_{1}<k_{2}<$ $\ldots<k_{l}$. Then pick $\left\langle\alpha_{l+1}, k_{l+1}\right\rangle \in\left(\left(\alpha_{l}, \omega_{1}\right] \times\left(k_{l}, \omega\right]\right) \cap H$. By induction, we get a countably infinite sequence $\left\{\left\langle\alpha_{i}, k_{i}\right\rangle: i \in \mathbb{N}\right\}$ such that $\alpha_{i}<\alpha_{i+1}$ and $k_{i}<k_{i+1}$ for each $i \in \mathbb{N}$. Since ω_{1} has uncountable cofinality, then there exists a limit ordinal $\beta<\omega_{1}$ such that $\langle\beta, \omega\rangle$ is a limit point of the sequence $\left\{\left\langle\alpha_{i}, k_{i}\right\rangle: i \in \mathbb{N}\right\} \subseteq H$. Hence $\langle\beta, \omega\rangle \in \bar{H}^{X}=H$. This means that $\langle\beta, \omega\rangle \in H \cap B$ with $\gamma<\beta$ which is a contradiction because γ is the least upper bound. Therefore, H is closed in Y. Now, let $K^{\star}=K \cup\left\{\left\langle\omega_{1}, \omega\right\rangle\right\}$. Then K^{\star} is closed in Y which is disjoint from H.

Since Y is normal, being a T_{2}-compact space, then H and K^{\star} can be separated in Y by two disjoint open sets, say U and V with $H \subseteq U$ and $K^{\star} \subseteq V$. Now, the two X-open sets U and $V \cap X$ are disjoint with $H \subseteq U$ and $K \subseteq V \cap X$. So, H and K are separated, which is a contradiction.

Case 4: $p_{2}(K \cap A)$ is bounded and $p_{1}(K \cap B)$ is bounded. This case is similar to Case 1.

Case 2: $p_{1}(H \cap B)$ is bounded and $p_{1}(K \cap B)$ is bounded. Let γ_{1} be the least upper bound for $p_{1}(H \cap B)$ and γ_{2} be the least upper bound for $p_{1}(K \cap B)$. For each $n \in p_{2}(K \cap A)$, there exists an $\alpha_{n}<\omega_{1}$ such that the open set $V_{n}=$ $\left(\alpha_{n}, \omega_{1}\right] \times\{n\}$ is disjoint from H. For each $m \in p_{2}(H \cap A)$, there exists a $\beta_{m}<\omega_{1}$ such that the open set $U_{m}=\left(\beta_{m}, \omega_{1}\right] \times\{m\}$ is disjoint from K. Now, the set $\left\{\gamma_{1}, \gamma_{2}, \alpha_{n}, \beta_{m}: n \in p_{2}(K \cap A), m \in p_{2}(H \cap A)\right\}$ is a countable subset of ω_{1}. Pick an upper bound ξ of it. Now, observe that the set $D=\{\langle\alpha, k\rangle \in H \cup K: \xi \leq$ $\alpha<\omega_{1}$ and $\left.k \notin p_{2}(K \cap A) \cup p_{2}(H \cap A)\right\}$ is countable. So, pick an upper bound ζ of the set $\{\alpha:\langle\alpha, k\rangle \in D$ for some $k<\omega\}$ with $\xi \leq \zeta$. Let $\eta=\zeta+1$. We have that $\left(\eta, \omega_{1}\right] \times\{n\} \subseteq V_{n}$ for each $n \in p_{2}(K \cap A)$ and $\left(\eta, \omega_{1}\right] \times\{m\} \subseteq U_{m}$ for each $m \in p_{2}(H \cap A)$. Thus $\bigcup_{n \in p_{2}(K \cap A)}\left(\eta, \omega_{1}\right] \times\{n\}=N$ is open and disjoint from H. Also, $\bigcup_{m \in p_{2}(H \cap A)}\left(\eta, \omega_{1}\right] \times\{m\}=M$ is open and disjoint from K. Now, consider the clopen (closed-and-open) subspace $Z=\eta+1 \times \omega+1$ of X which is normal, being T_{2}-compact. So, the disjoint Z-closed subsets $Z \cap H$ and $Z \cap K$ can be separated in Z by, say, G and L with $Z \cap H \subseteq G$ and $Z \cap K \subseteq L$. Now, let $U=M \cup G$ and $V=N \cup L$. Then U and V are disjoint X-open subsets with $H \subseteq U$ and $K \subseteq V$. Thus H and K are separated in X which is a contradiction.

Case 3: $p_{2}(K \cap A)$ is bounded and $p_{2}(H \cap A)$ is bounded. In this case, we must have that either $p_{1}(H \cap B)$ is bounded or $p_{1}(K \cap B)$ is bounded since closed unbounded subsets of ω_{1} have nonempty intersection and H and K are disjoint. Since either $p_{1}(H \cap B)$ is bounded or $p_{1}(K \cap B)$ is bounded, then this case is reduced to either Case 1 or Case 4.

In each case we got a contradiction. Therefore, the Lemma is true.
Theorem 1. The Tychonoff Plank X is mildly normal.
Proof: Suppose that there exist two disjoint non-empty regularly closed subsets H and K of X which are unseparated. We have that int $H \neq \emptyset \neq \operatorname{int} K$. Since any regularly closed set is closed, then, by Lemma 1 , assume, without loss of generality, that $p_{1}(H \cap B)$ is unbounded and $p_{2}(K \cap A)$ is unbounded.

Claim 1: For each $n \in p_{2}(K \cap A)$ and for each $\alpha<\omega_{1}$ there exists $\beta>\alpha$ with $\langle\beta, n\rangle \in \operatorname{int} K \cap\left(\omega_{1} \times \omega\right)$.

The statement is clear if $\left\langle\omega_{1}, n\right\rangle \in \operatorname{int} K$. If $\left\langle\omega_{1}, n\right\rangle \notin \operatorname{int} K$, then for any basic open neighborhood of $\left\langle\omega_{1}, n\right\rangle$ which is of the form $\left(\alpha, \omega_{1}\right] \times\{n\}$, where $\alpha<\omega_{1}$, will meet int K because $\left\langle\omega_{1}, n\right\rangle \in K=\overline{\operatorname{int} K}$.

Claim 2: For each $\gamma \in p_{1}(H \cap B)$, for each $\zeta_{\gamma}<\gamma$, and for each $m<\omega$ there exist $n>m$ and β with $\zeta_{\gamma}<\beta \leq \gamma$ and $\langle\beta, n\rangle \in \operatorname{int} H \cap\left(\omega_{1} \times \omega\right)$.

The statement is clear if $\langle\gamma, \omega\rangle \in \operatorname{int} H$. If $\langle\gamma, \omega\rangle \notin \operatorname{int} H$, then for any basic open neighborhood of $\langle\gamma, \omega\rangle$ which is of the form $\left(\zeta_{\gamma}, \gamma\right] \times(m, \omega]$, where $\zeta_{\gamma}<\gamma$ and $m<\omega$, will meet $\operatorname{int} H$ because $\langle\gamma, \omega\rangle \in H=\overline{\operatorname{int} H}$.

Now, pick $n_{1} \in p_{2}(K \cap A)$ and $\alpha_{1}<\omega_{1}$. By Claim 1, pick $\left\langle\beta_{1}, n_{1}\right\rangle \in \operatorname{int} K \cap$ $\left(\omega_{1} \times \omega\right)$. Since $p_{1}(H \cap B)$ is unbounded, pick $\gamma_{1} \in p_{1}(H \cap B)$ with $\beta_{1}<\gamma_{1}$. Since $p_{2}(K \cap A)$ is unbounded, pick $m_{1} \in p_{2}(K \cap A)$ with $n_{1}<m_{1}$. Using Claim 2, pick $\left\langle\alpha_{1}, k_{1}\right\rangle \in \operatorname{int} H \cap\left(\omega_{1} \times \omega\right) \cap\left(\left(\beta_{1}, \gamma_{1}\right] \times\left(m_{1}, \omega\right]\right)$. We continue by induction. If for $l \geq 2,\left\langle\beta_{1}, n_{1}\right\rangle, \ldots,\left\langle\beta_{l}, n_{l}\right\rangle \in \operatorname{int} K \cap\left(\omega_{1} \times \omega\right)$ and $\left\langle\alpha_{1}, k_{1}\right\rangle, \ldots,\left\langle\alpha_{l}, k_{l}\right\rangle \in$ int $H \cap\left(\omega_{1} \times \omega\right)$ are all picked with $\beta_{1}<\alpha_{1}<\beta_{2}<\alpha_{2}<\ldots<\beta_{l}<\alpha_{l}$ and $n_{1}<k_{1}<n_{2}<k_{2}<\ldots<n_{l}<k_{l}$. Then, since $p_{2}(K \cap A)$ is unbounded, pick $n_{l+1} \in p_{2}(K \cap A)$. Pick $\left\langle\beta_{l+1}, n_{l+1}\right\rangle \in \operatorname{int} K \cap\left(\omega_{1} \times \omega\right) \cap\left(\left(\alpha_{l}, \omega_{1}\right] \times\left\{n_{l+1}\right\}\right)$. Since $p_{1}(H \cap B)$ is unbounded, pick $\gamma_{l+1} \in p_{1}(H \cap B)$ such that $\beta_{l+1}<\alpha_{l+1}$ and m_{l+1} with $n_{l+1}<m_{l+1}$. Pick $\left\langle\alpha_{l+1}, k_{l+1}\right\rangle \in \operatorname{int} H \cap\left(\omega_{1} \times \omega\right) \cap\left(\left(\beta_{l+1}, \gamma_{l+1}\right] \times\left(m_{l+1}, \omega\right]\right)$. So, by induction, we got two sequences $\left\{\left\langle\beta_{i}, n_{i}\right\rangle \in \operatorname{int} K \cap\left(\omega_{1} \times \omega\right): i \in \mathbb{N}\right\}$ and $\left\{\left\langle\alpha_{i}, k_{i}\right\rangle \in \operatorname{int} H \cap\left(\omega_{1} \times \omega\right): i \in \mathbb{N}\right\}$ with $\beta_{i}<\alpha_{i}<\beta_{i+1}<\alpha_{i+1}$ for each $i \in \mathbb{N}$ and $n_{i}<k_{i}<n_{i+1}<k_{i+1}$ for each $i \in \mathbb{N}$. Now, the set $\left\{\beta_{i}, \alpha_{i}: i \in \mathbb{N}\right\}$ is a countably infinite subset of ω_{1}. Let η be its least upper bound. By our construction, any basic open neighborhood of $\langle\eta, \omega\rangle$ will meet int H and int K. Thus $\langle\eta, \omega\rangle \in \overline{\operatorname{int} H}=H$ and $\langle\eta, \omega\rangle \in \overline{\operatorname{int} K}=K$. Therfore, $H \cap K \neq \emptyset$, which is a contradiction. Thus there are no unseparated disjoint regularly closed sets. Thus X is mildly normal.

Definition 3 (Singal and Singal, [4]). A topological space X is called almost normal if any two disjoint closed subsets A and B of X one of which is regularly closed can be separated. \square

It is clear from the definition that any almost normal space is mildly normal. In [4], Singal and Singal gave a non-regular space which is mildly normal bot not almost normal. The next theorem will give a $T_{3 \frac{1}{2}}$-space which is mildly normal but not almost normal.

Theorem 2. The Tychonoff Plank X is not almost normal.
Proof: Let $O=\{2 n+1: n<\omega\}$ and $E=\omega \backslash O$. Let

$$
K=\left\{\left\langle\omega_{1}, n\right\rangle: n \in O\right\}
$$

and

$$
H=\left(\bigcup_{m \in E}\left\{\langle\alpha, m\rangle: \alpha \leq \omega_{1}, m \in E\right\}\right) \cup B
$$

Now, \quad int $H=\bigcup_{m \in E}\left\{\langle\alpha, m\rangle: \alpha \leq \omega_{1}, m \in E\right\}, \quad$ and \quad hence $\quad \overline{\operatorname{int} H}=$ $\bigcup_{m \in E}\left\{\langle\alpha, m\rangle: \alpha \leq \omega_{1}, m \in E\right\}=\left(\bigcup_{m \in E}\left\{\langle\alpha, m\rangle: \alpha \leq \omega_{1}, m \in E\right\}\right) \cup B=H$. Thus H is regularly closed. It is clear that K is closed and disjoint from H. Since $K \subset A$ is infinite and $B \subset H$, then H and K cannot be separated. Thus X is not almost normal.

REFERENCES

[1] Engelking, R. - General Topology, PWN, Warszawa, 1977.
[2] Shchepin, E.V. - Real function and near-normal spaces, Siberian Mathematical Journal, 13(5) (1972), 820-830.
[3] Singal, M. and Singal, A. - Mildly normal spaces, Kyungpook Math. J., 13(1) (1973), 27-31.
[4] Singal, M. and Singal, A. - Almost Normal and Almost Completely Regular spaces, Kyungpook Math. J., 25(1) (1970), 141-152.

[^0]: Received: March 13, 2004; Revised: May 9, 2004.
 AMS Subject Classification: 54D15, 54B10.
 Keywords: κ-normal; mildly normal; almost normal; regularly closed; normal.

