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ALMOST NORMALITY AND MILD NORMALITY
OF THE TYCHONOFF PLANK

Lutfi N. Kalantan

Abstract: The Tychonoff Plank is a popular example of the fact normality is not

hereditary. We will show that it is mildly normal but not almost normal.

The Tychonoff plank X = (ω1 + 1 × ω + 1) \ {〈ω1, ω〉} is a famous example

of a T3 1

2

-space which is not normal, see [1]. It is also a famous example of the

fact that normality is not hereditary, see [1]. In this paper, we will show that

the Tychonoff plank is mildly normal but not almost normal. We will denote

an order pairs by 〈x, y〉, the set of positive integers by N and the set of all real

numbers by R.

Definition 1. A subset A of a topological space X is called regularly closed

(called also, closed domain) if A = intA . Two subsets A and B in a topological

space X are said to be separated if there exist two disjoint open subsets U and V

such that A ⊆ U and B ⊆ V .

Definition 2. A topological space X is called mildly normal (called also

κ-normal) if any two disjoint regularly closed subsets A and B of X, can be

separated.
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In [2], Shchepin introduced the notion of κ-normal property. He required

regularity in his definition. In [3], Singal and Singal introduced the notion of

mildly normal property. They did not require regularity.

Let ω be the first infinite ordinal and ω1 be the first uncountable ordinal

with their usual order topology. Consider the product space ω1 + 1 × ω + 1.

The Tychonoff Plank is the subspace X = (ω1 + 1 × ω + 1) \ {〈ω1, ω〉}. Write

X = A ∪B ∪ C, where A = {ω1} × ω, B = ω1 × {ω}, and C = X \ (A ∪B). Let

p1 : ω1 + 1× ω + 1 −→ ω1 + 1 and p2 : ω1 + 1× ω + 1 −→ ω + 1 be the natural

projections. To show that X is mildly normal, we need the following lemma:

Lemma 1. If H and K are closed disjoint unseparated subsets of X, then

either (p1(H ∩ B) is unbounded and p2(K ∩ A) is unbounded) or (p1(K ∩ B) is

unbounded and p2(H ∩A) is unbounded).

Proof: Let H and K be any closed disjoint unseparated subsets of X.

Suppose that the conclusion is false. This gives us that (p1(H ∩B) is bounded or

p2(K ∩ A) is bounded) and (p1(K ∩ B) is bounded and p2(H ∩ A) is bounded).

This gives us the following four cases:

1. p1(H ∩B) is bounded and p2(H ∩A) is bounded.

2. p1(H ∩B) is bounded and p1(K ∩B) is bounded.

3. p2(K ∩A) is bounded and p2(H ∩A) is bounded.

4. p2(K ∩A) is bounded and p1(K ∩B) is bounded.

Case 1: p1(H ∩B) is bounded and p2(H ∩A) is bounded. Let γ be the least

upper bound of p1(H ∩B) and m be the least upper bound of p2(H ∩A). In the

space Y = ω1+1×ω+1 ⊃ X we have that 〈ω1, ω〉 6∈ H
Y
. Because if 〈ω1, ω〉 ∈ H

Y
,

then for each α < ω1 and for each n < ω, we have ((α, ω1] × (n, ω]) ∩ H 6= ∅.

Pick k > m and α > γ. Pick 〈α1, k1〉 ∈ ((α, ω1] × (k, ω]) ∩ H. Pick 〈α2, k2〉 ∈

((α1, ω1] × (k1, ω]) ∩ H. Observe that α1 < α2 and k1 < k2. If l ≥ 3, l < ω,

and 〈α1, k1〉, ..., 〈αl, kl〉 are all picked such that α1 < α2 < ... < αl and k1 < k2 <

... < kl. Then pick 〈αl+1, kl+1〉 ∈ ((αl, ω1]× (kl, ω]) ∩H. By induction, we get a

countably infinite sequence {〈αi, ki〉 : i ∈ N} such that αi < αi+1 and ki < ki+1 for

each i ∈ N. Since ω1 has uncountable cofinality, then there exists a limit ordinal

β < ω1 such that 〈β, ω〉 is a limit point of the sequence {〈αi, ki〉 : i ∈ N} ⊆ H.

Hence 〈β, ω〉 ∈ H
X
= H. This means that 〈β, ω〉 ∈ H ∩B with γ < β which is a

contradiction because γ is the least upper bound. Therefore, H is closed in Y .

Now, let K? = K ∪ {〈ω1, ω〉}. Then K? is closed in Y which is disjoint from H.
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Since Y is normal, being a T2-compact space, then H and K? can be separated

in Y by two disjoint open sets, say U and V with H ⊆ U and K? ⊆ V . Now,

the two X-open sets U and V ∩ X are disjoint with H ⊆ U and K ⊆ V ∩ X.

So, H and K are separated, which is a contradiction.

Case 4: p2(K∩A) is bounded and p1(K∩B) is bounded. This case is similar

to Case 1.

Case 2: p1(H ∩ B) is bounded and p1(K ∩ B) is bounded. Let γ1 be the

least upper bound for p1(H ∩B) and γ2 be the least upper bound for p1(K ∩B).

For each n ∈ p2(K ∩ A), there exists an αn < ω1 such that the open set Vn =

(αn, ω1]×{n} is disjoint from H. For each m ∈ p2(H∩A), there exists a βm < ω1

such that the open set Um = (βm, ω1] × {m} is disjoint from K. Now, the set

{γ1, γ2, αn, βm : n ∈ p2(K ∩A), m ∈ p2(H ∩A)} is a countable subset of ω1. Pick

an upper bound ξ of it. Now, observe that the set D = {〈α, k〉 ∈ H ∪K : ξ ≤

α < ω1 and k 6∈ p2(K ∩A) ∪ p2(H ∩A)} is countable. So, pick an upper bound

ζ of the set {α : 〈α, k〉 ∈ D for some k < ω} with ξ ≤ ζ. Let η = ζ + 1. We

have that (η, ω1] × {n} ⊆ Vn for each n ∈ p2(K ∩ A) and (η, ω1] × {m} ⊆ Um

for each m ∈ p2(H ∩A). Thus
⋃

n∈p2(K∩A)(η, ω1]× {n} = N is open and disjoint

from H. Also,
⋃

m∈p2(H∩A)(η, ω1]×{m} = M is open and disjoint from K. Now,

consider the clopen (closed-and-open) subspace Z = η + 1× ω + 1 of X which is

normal, being T2-compact. So, the disjoint Z-closed subsets Z ∩ H and Z ∩K

can be separated in Z by, say, G and L with Z ∩H ⊆ G and Z ∩K ⊆ L. Now,

let U = M ∪G and V = N ∪L. Then U and V are disjoint X-open subsets with

H ⊆ U and K ⊆ V . Thus H and K are separated in X which is a contradiction.

Case 3: p2(K ∩ A) is bounded and p2(H ∩ A) is bounded. In this case, we

must have that either p1(H ∩B) is bounded or p1(K ∩B) is bounded since closed

unbounded subsets of ω1 have nonempty intersection and H and K are disjoint.

Since either p1(H ∩ B) is bounded or p1(K ∩ B) is bounded, then this case is

reduced to either Case 1 or Case 4.

In each case we got a contradiction. Therefore, the Lemma is true.

Theorem 1. The Tychonoff Plank X is mildly normal.

Proof: Suppose that there exist two disjoint non-empty regularly closed

subsets H and K of X which are unseparated. We have that intH 6= ∅ 6= intK.

Since any regularly closed set is closed, then, by Lemma 1, assume, without loss

of generality, that p1(H ∩B) is unbounded and p2(K ∩A) is unbounded.
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Claim 1: For each n ∈ p2(K ∩ A) and for each α < ω1 there exists β > α

with 〈β, n〉 ∈ intK ∩ (ω1 × ω).

The statement is clear if 〈ω1, n〉 ∈ intK. If 〈ω1, n〉 6∈ intK, then for any basic

open neighborhood of 〈ω1, n〉 which is of the form (α, ω1] × {n}, where α < ω1,

will meet intK because 〈ω1, n〉 ∈ K = intK.

Claim 2: For each γ ∈ p1(H ∩B), for each ζγ < γ, and for each m < ω there

exist n > m and β with ζγ < β ≤ γ and 〈β, n〉 ∈ intH ∩ (ω1 × ω).

The statement is clear if 〈γ, ω〉 ∈ intH. If 〈γ, ω〉 6∈ intH, then for any basic

open neighborhood of 〈γ, ω〉 which is of the form (ζγ , γ] × (m,ω], where ζγ < γ

and m < ω, will meet intH because 〈γ, ω〉 ∈ H = intH.

Now, pick n1 ∈ p2(K ∩ A) and α1 < ω1. By Claim 1, pick 〈β1, n1〉 ∈ intK ∩

(ω1×ω). Since p1(H∩B) is unbounded, pick γ1 ∈ p1(H∩B) with β1 < γ1. Since

p2(K ∩ A) is unbounded, pick m1 ∈ p2(K ∩ A) with n1 < m1. Using Claim 2,

pick 〈α1, k1〉 ∈ intH ∩ (ω1 × ω) ∩ ((β1, γ1]× (m1, ω]). We continue by induction.

If for l ≥ 2, 〈β1, n1〉, ..., 〈βl, nl〉 ∈ intK ∩ (ω1 × ω) and 〈α1, k1〉, ..., 〈αl, kl〉 ∈

intH ∩ (ω1 × ω) are all picked with β1 < α1 < β2 < α2 < ... < βl < αl and

n1 < k1 < n2 < k2 < ... < nl < kl. Then, since p2(K ∩ A) is unbounded, pick

nl+1 ∈ p2(K ∩A). Pick 〈βl+1, nl+1〉 ∈ intK ∩ (ω1×ω)∩ ((αl, ω1]×{nl+1}). Since

p1(H ∩B) is unbounded, pick γl+1 ∈ p1(H ∩B) such that βl+1 < αl+1 and ml+1

with nl+1 < ml+1. Pick 〈αl+1, kl+1〉 ∈ intH ∩ (ω1×ω)∩ ((βl+1, γl+1]× (ml+1, ω]).

So, by induction, we got two sequences {〈βi, ni〉 ∈ intK ∩ (ω1 × ω) : i ∈ N}
and {〈αi, ki〉 ∈ intH ∩ (ω1 × ω) : i ∈ N} with βi < αi < βi+1 < αi+1 for each

i ∈ N and ni < ki < ni+1 < ki+1 for each i ∈ N. Now, the set {βi, αi : i ∈ N}
is a countably infinite subset of ω1. Let η be its least upper bound. By our

construction, any basic open neighborhood of 〈η, ω〉 will meet intH and intK.

Thus 〈η, ω〉 ∈ intH = H and 〈η, ω〉 ∈ intK = K. Therfore, H ∩K 6= ∅, which

is a contradiction. Thus there are no unseparated disjoint regularly closed sets.

Thus X is mildly normal.

Definition 3 (Singal and Singal, [4]). A topological space X is called almost

normal if any two disjoint closed subsets A and B of X one of which is regularly

closed can be separated.

It is clear from the definition that any almost normal space is mildly normal.

In [4], Singal and Singal gave a non-regular space which is mildly normal bot not

almost normal. The next theorem will give a T3 1

2

-space which is mildly normal

but not almost normal.
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Theorem 2. The Tychonoff Plank X is not almost normal.

Proof: Let O = {2n+ 1: n < ω} and E = ω \O. Let

K =
{

〈ω1, n〉 : n ∈ O
}

and

H =

(

⋃

m∈E

{

〈α,m〉 : α ≤ ω1, m ∈ E
}

)

∪ B .

Now, intH =
⋃

m∈E{〈α,m〉 : α ≤ ω1, m ∈ E}, and hence intH =
⋃

m∈E{〈α,m〉 : α ≤ ω1, m ∈ E} = (
⋃

m∈E{〈α,m〉 : α ≤ ω1, m ∈ E}) ∪ B = H.

Thus H is regularly closed. It is clear that K is closed and disjoint from H. Since

K ⊂ A is infinite and B ⊂ H, then H and K cannot be separated. Thus X is

not almost normal.
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