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CURVE SHORTENING
AND THE FOUR-VERTEX THEOREM

Bernd Süssmann

Abstract: This paper shows how the four-vertex theorem, a famous theorem in

differential geometry, can be proven by using curve shortening.

1 – Introduction

The four-vertex theorem, in its classical formulation, says, that every simple

closed C3 curve in the Euclidean plane E2 has at least four vertices, i.e. points

with ks = 0, where k is the curvature and ks the derivative of k by arclength s.

The theorem was proven first by S. Mukhopadhyaya in 1909 for convex and

in 1912 by A. Kneser for nonconvex curves, see [Mu], [K].

Later on several interesting methods for proving the theorem were discovered,

an overview can be found e.g. in [BF].

Recent publications on this topic deal with more-vertex theorems ([O]) or

vertices of nonsimple curves ([P]). The reader may also have a look at the bibli-

ographies of [BF] and [O].

S.B. Jackson extended in 1945 the four-vertex theorem to simple closed curves

on simply connected surfaces M 2 of constant curvature K. His proof is based

upon the four-vertex theorem for plane curves and a transformation M 2 → E2,

that maps vertices on vertices, cf. [J].

We will prove this result in a somewhat weaker form:
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Theorem. Let M2 be a smooth, complete, simply connected surface with

constant Gauss curvature K. Let C be a simple, closed, immersed C3 curve in

M2.

In the case K < 0 we additionally require for the geodesic curvature k of C

in each point k ≥
√
−K or k ≤ −

√
−K.

Then C has at least four vertices.

The restriction on k in the hyperblic case has technical reasons, as we will see

later.

Let us outline the proceeding in the following chapters:

We will construct a contradiction by asserting that C possesses only two

vertices.

We will apply Curve shortening to C and consider the focal curve of C(t) at

an arbitrary time t > 0. The focal curve has the property that it possesses singu-

larities or cusps at the same parameter values, where its source curve has vertices.

We will then show that the focal curve encloses a domain with positive winding

number, which expands during progressing time. This will yield a contradiction

to the fact that the focal curve contracts to a geodesic segment (Lemma 5).

In E2 the focal curve (or evolute, in this case) converges even to the same

point as the curve itself. However, we do not have this result in the non-Euclidean

case. This makes a somewhat more sophisticated analysis of the behaviour of

that vertex necessary, which represents the curvature minimum (Lemma 3). This

analysis requires a transition to the direction-preserving flow, that is essentially

a parameter transformation to an angle parameter.

While in the case K > 0 the focal curve always exists, it needs to have

strictly positive curvature in the Euclidean case, and for K < 0 it is required

that k >
√
−K or k < −

√
−K holds.

Since there exists a moment tc < tmax (tmax is the maximal lifespan of the

evolving curve) for each nonconvex curve in E2, at which the curve becomes

convex and k > 0 is reached for t > tc (cf. [Gr1, §2, Main Theorem]), we are able

to construct the focal curve (or evolute, respectively) for t > tc, and so prove

the Theorem also for nonconvex curves. For K < 0, however, it is not known,

whether all the curves fulfill one of the curvatue restrictions mentioned earlier,

before the evolution stops. So we have to require them a priori.

This work was part of the author’s doctoral thesis.
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2 – Preparations

For what follows, let C be a curve as described in the Theorem. We addition-

ally assume for C that it has exactly two vertices.

For K < 0 we consider only the case k >
√
−K, without loss of generality.

We take C as initial curve C(0) = C of the initial value problem for curve

shortening onM2, let the solution have the parametrizationX: S1×[0, tmax)→M2,

X= X(u, t).

According to [A2, Theorem 1.5], the number of vertices does not increase

during the evolution. Since there must always be at least two points wih vanishing

derivative of the curvature, each C(t), 0 ≤ t < tmax, has exactly two vertices.

With the assumption above it follows that C can have at most two inflection

points (points with vanishing curvature), this amount cannot increase in time

either, by [A2, Theorem 1.4]. Hence all C(t), 0 ≤ t < tmax, have at most two

inflection points.

In the case M2 = E2 we have by [Gr1, §2, Main Theorem] a tc < tmax, such

that C(t) possesses strictly positive curvature for all t > tc. Without loss of

generality we set tc = 0.

In the case K < 0 we have k(u, t) >
√
−K for all (u, t) ∈ S1×(0, tmax).

This follows by applying the strong maximum principle to k −
√
−K, see e.g.

[Gr1, Lemma 1.8], and to the evolution equation of k.

Now we consider the direction-preserving flow, following [Gr2, section 2],

in a slightly different manner.

Let θ = θ(u, t) =
∫ u
0 kv du =

∫ s(u)
0 k ds with v = ‖Xu‖ be the angle, T (u, t)

encloses with the from X(0, t) to X(u, t) parallel transported vector T (0, t).

For curves in the Euclidean plane with strictly positive curvature, θ can be used

as a global curve parameter, since the curvature remains strictly positive during

the evolution, cf. [GaH, §4].
Here we have, using vt = −k2v ([Gr2, p. 74]) and kt = kss + k3 +Kk

([Gr2, Lemma 1.3])

θt =
∂

∂t

u
∫

0

kv du = ks +Kθ .(1)

Since we cannot use θ as angle parameter for t > 0, we define a corrective function

%, the “angle density”, comparable to the arc length density v. So we set

%(u, t) :=

{

eKt , k(u, t) > 0

−eKt , k(u, t) < 0 .
(2)
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The new “angle parameter” will be the function

ϕ(u, t) :=
θ(u, t)

%(u, t)
.(3)

We have

ϕs =
θs
%

and ϕt =
ks
%

(4)

with (1). We set τ(u, t) = τ(t) := t as the new time parameter, and the functional

determinant for the parameter transformation from (u, t) to (ϕ(u, t), τ(u, t)) reads
∂ϕ
∂u

∂τ
∂t
− ∂ϕ

∂t
∂τ
∂u

= v
%
k > 0 for k 6= 0 and small t.

We investigate the behaviour of a function f under this parameter transfor-

mation: From

f(u, t) = f(ϕ(u, t), τ(t))

follows with (4)

fs(u, t) = fϕ(ϕ, τ)ϕs(u, t) =
k(u, t)

%(u, t)
fϕ(ϕ, τ)

and so

fϕ(ϕ, τ) =
%(u, t)

k(u, t)
fs(u, t) .(5)

Also with (4) we obtain

ft(u, t) = fϕ(ϕ, τ)ϕt(u, t) + fτ (ϕ, τ) τt(t) =
ks(u, t)

%(u, t)
fϕ(ϕ, τ) + fτ (ϕ, τ) ,

and, eventually with (5)

fτ (ϕ, τ) = ft(u, t)−
ks(u, t)

k(u, t)
fs(u, t) .(6)

(6) applied to ϕ yields with (4) (cf. also [Gr2, Lemma 2.1])

ϕτ (ϕ, τ) = ϕt(u, t)−
ks(u, t)

k(u, t)
ϕs(u, t) ≡ 0 .

From this we see that ϕ is independent of τ .

The following calculations are similar to those in [GaH, Section 4.1] or

[EGa, §3], there (in the Euclidean case) we always have % ≡ 1.
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From

X(u, t) = X(ϕ(u, t), τ(t))

we get

vT = Xu = ϕu Xϕ =
v

%
kXϕ

and thus

Xϕ =
%

k
T .(7)

Besides, we have k = θs = ϕsθϕ = k
%
θϕ and with that

θϕ = % and k ds = dθ = % dϕ .(8)

With ∂
∂θ

= 1
%

∂
∂ϕ

follows then

Xθ =
1

k
T

as in the Euclidean case. From this we obtain (N is the unit normal vector of C)

kN = Xt = ϕt Xϕ +Xτ =
ks
k

T +Xτ .

From this we receive with

ks = ϕs kϕ =
k

%
kϕ = k kθ(9)

the new evolution equation for X:

Xτ = −kϕ
%

T + kN = −kθT + kN .(10)

The covariant derivatives ∇ϕ = ∇Xϕ , ∇θ = ∇Xθ
and ∇τ = ∇Xτ of T and N read

kN = ∇sT = ϕs∇ϕT =
k

%
∇ϕT =⇒ ∇ϕT = %N, ∇ϕN = −%T

as well as

∇θT = N , ∇θN = −T .(11)

By ksN = ∇tT we get ksN = ∇tT = ϕt∇ϕT +∇τT = ksN +∇τT , therefore

∇τT = 0 , ∇τN = 0 .(12)

So equations (12) justify the name direction-preserving flow.
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We calculate the new evolution equation of the curvature (cf. [Gr2, Lemma

2.7]):

We get kt = ϕtkϕ + kτ = kk2θ + kτ by (9). From kt = kss + k3 +Kk

([Gr2, Lemma 1.3]) follows, using kss = (kkθ)s = kk2θ + k2kθθ, the formula

kτ = k2kθθ + k3 +Kk ,(13)

where θ and τ do not commute. Since % does not depend on ϕ, the evolution

equation (13) can also be written as

kτ = %−2k2kϕϕ + k3 +Kk .(14)

From now on, we consider the evolution only in the (ϕ, τ)-parameters.

If C(t) has two inflection points, so let ϕ ∈ I−(τ)∪ I+(τ), where I−(τ), I+(τ)

are to be understood as time-dependent open intervals with k
∣

∣

∣I−(τ) < 0 and

k
∣

∣

∣I+(τ) > 0. If an inflection point vanishes at time τ0 < τmax, so the other one

must vanish at the same time, we have then k > 0 for τ0 > 0, and let ϕ ∈ [0, ϕ̄)

for τ > τ0, ϕ̄ kept fixed. For τ we have τ ∈ [0, τmax) with τmax = tmax, and we

will always set τ0 = 0, without loss of generality, if τ0 occurs.

3 – Evolute and focal curve

Let C, respectively C(τ), be given as in the previous section, i.e. especially

k > 0 (in the case K = 0) or k >
√
−K (K < 0) shall hold for τ > 0.

Let in the Euclidean plane the evolute C̄(τ) ⊂ E2 of C(τ) with the parametriza-

tion X̄ be given by

X̄(ϕ, τ) := X(ϕ, τ) +
1

k(ϕ, τ)
N(ϕ, τ) .(15)

As a model for M2 with K < 0 we use the Weierstrass model in the Lorentz space:

R3 with the non-degenerated inner product 〈x, y〉−1 = −x1y1 + x2y2 + x3y3 for

x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3 is called the Lorentz space R3
1. Then the

surface H2
K = {x ∈ R3

1 | 〈x, x〉−1 = 1
K
, x1 > 0} represents the Weierstrass model

of the hyperbolic plane with curvature K < 0, cf. e.g. [C, p. 180].

We use the sphere S2
K = {x ∈ E3 | 〈x, x〉 = x21+x22+x23 =

1
K
} in the Euclidean

space E3 as a model for M2 with K > 0.

With this we can treat points and vectors in the case K 6= 0 in a way similar

to the Euclidean case, without using the exponential map.
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So for K 6= 0 we define a curve C̄(τ) by

X̄(ϕ, τ) :=
k(ϕ, τ)

√

K + k2(ϕ, τ)
X(ϕ, τ) +

1
√

K + k2(ϕ, τ)
N(ϕ, τ) .(16)

For K < 0, C̄(τ) is exactly the focal curve, and for K > 0 one of the two possible

focal curves of C(τ) (depending on the orientation of C(τ)). For the definition

of the focal curve in general cf. [C, Definition 4.5, p. 232], and for the derivation

of the focal curve in the spherical case cf. e.g. [Ml, p. 18].

Since (16) also makes sense for K = 0, we will work in the following without

different cases.

Elementary calculations yield v̄ = ‖X̄ϕ‖ = |kϕ|
K+k2 as well as unit tangent and

normal vectors of X̄ as

T̄ =
K sign kϕ√

K + k2
X − k sign kϕ√

K + k2
N ,(17)

N̄ = sign kϕ · T ,(18)

only at points with kϕ 6= 0.

For the curvature k̄ of X̄ we obtain

k̄ =
%(K + k2)

3

2

k|kϕ|
=

(K + k2)
3

2

|k| |kθ|
.(19)

We determine the (induced) evolution equation of the focal curve:

Lemma 1. If C(τ) evolves according to the equation Xτ = −kϕ
%

T + kN ,

then for the focal curve C̄(τ) of C(τ)

X̄τ =
k2kϕϕ sign kϕ
%2(K + k2)

T̄ − k|kϕ|
%
√
K + k2

N̄ ,(20)

is valid at any time τ > 0 at points where kϕ 6= 0.

Proof: Using (14) we get

(

k√
K + k2

)

τ

=
Kk2kϕϕ

%2(K + k2)
3

2

+
Kk√
K + k2

and (

1√
K + k2

)

τ

= − k3kϕϕ

%2(K + k2)
3

2

− k2√
K + k2

.

Xτ =−kϕ
%

T+kN and Nτ =−KkX as well as (17), (18) lead to the assertion.
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4 – Convergence of the focal curve

By [Gr2, Theorem 0.1 and Corollary 3.4] we know: If τmax is finite, C(τ)

converges for τ → τmax to a point P ∈M2 (in the Hausdorff metric). In the case

τmax =∞ (which is only possible for K > 0), C(τ) converges to a large circle in

the C∞-sense.

Wewill use the convention that C(0) is positively oriented, i.e. that
∫

C(0)kds≥0

holds. With [Gr2, Section 1] we then have
∫

C(τ) k ds ≥ 0 for all τ .

Lemma 2. Let M2 and C be as in the Theorem, additionally we assume that

C(0) has exactly two vertices and that C(τ) converges to a point for τ → τmax.

Then there exists a constant k0 > ∞, such that k(ϕ, τ) ≥ k0 is valid for all

(ϕ, τ) ∈ (I−(τ) ∪ I+(τ))× [0, τmax).

In the case M2 = E2 even limτ→τmax
minϕ∈[0,ϕ̄) k(ϕ, τ) =∞ holds.

Proof: The second assertion is known ([GaH, Corollary 5.6]). In order to

prove the first assertion, we assume its contrary, i.e. a sequence (ϕn, τn)n∈N
shall exist with τn → τmax and kn := k(ϕn, τn) → −∞ for n → ∞. Following

[Gr2, Lemma 5.2] (cf. also [Gr2, Theorem 5.1]) there exists to each τn and kn ≤ 0

a τ̃ ∈ [τn, τmax) and an interval I(τ̃n) = {ϕ | k(ϕ, τ̃n) < kn} with
∫

I(τ̃n)
|%| dϕ =

eKτn |I(τ̃n)| > π (cf. (2)).

The arc C(I(τ̃n)) belonging to I(τ̃n) possesses, by the δ-Whisker-Lemma

([Gr2, Lemma6.4]), a whisker with length δ>0 (i.e. geodesic segments of length δ,

starting at C(I(τ̃n)), going into the domain enclosed by C(τ̃n)), which belong

to a suitable foliation and are parallel to the respective tangents at the edges of

C(I(τ̃n))), which does not intersect the rest of the curve. δ depends only on the

initial curve C(0). Since C(τ̃n) converges to a point for n→∞, the whisker must

intersect the curve at some time. This is a contradiction.

Lemma 3. Let M2 and C be as in the Theorem, additionally we assume that

C(0) has exactly two vertices and that C(τ) converges to a point for τ → τmax.

The minimum of curvature shall be reached at ϕ0(τ).

Then there is a τ0 < τmax, such that ϕ0(τ) is continuous for τ0 < τ < τmax.

If the curvature minimum is additionally bounded by above, i.e. if there exists

a 0 < k1 <∞, such that k(ϕ0(τ), τ) < k1 holds for all 0 < τ < τmax, then

limτ→τmax
ϕ0(τ) and limτ→τmax

T (ϕ0(τ), τ) exist as well.

Proof: ϕ0 can have a discontinuity only, if at any time a further local

cuvature minimum occurs, which is not possible; or if for a τ0 < τmax the re-
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spective vertex is at the same time a zero of the curvature, i.e. k(ϕ0(τ0), τ0) =

kϕ(ϕ0(τ0), τ0) = 0. This (only) point with that property disappears immediately

(see [A2, Theorem 1.3]), i.e. it is k > 0 for τ > τ0, new such points do not occur,

and so ϕ0 is continuous for τ > τ0 (after the adjustment of % and ϕ at τ0). If the

vertex coincides never or as late as at τmax with an inflection point, we can set

τ0 = 0.

Now let k(ϕ0(τ), τ) < k1 for all 0 < τ < τmax with k1 as required.

In order to show that limτ→τmax
ϕ0(τ) exists, we consider two different cases.

First we consider the situation, where C(τ) is or will become convex, i.e. where

a τ0 < τmax exists, such that k(ϕ0(τ), τ) > 0 is true for all τ > τ0. Without loss

of generality we set τ0 = 0. In the remaining case we then have k(ϕ0(τ), τ) < 0

for all τ < τmax.

In the first case we assume that ϕ0(τ) diverges for τ → τmax.

Then there is a sequence (τn)n∈N with τn → τmax, such that ϕ0(τn) diverges.

However, (ϕ0(τn))n∈N is bounded and thus has an accumulation point ϕ1, by

the Bolzano–Weierstrass Theorem. ϕ1 can not be the only accumulation point

of (ϕ0(τn))n∈N, for then ϕ0(τn) would have to converge to ϕ1. Therefore each

(ϕ0(τn))n∈N has another accumulation point ϕ2 6=ϕ1. But then every ϕ∈ [ϕ1, ϕ2]

(without loss of generality the interval is of this form, it could also be [ϕ2, ϕ1]

or the entire parameter interval [0, ϕ̄)) is an accumulation point of ϕ0 due to the

continuity of ϕ0, in other words, ϕ0 oscillates on [ϕ1, ϕ2].

Now we set ∆ := min
{

ϕ2−ϕ1

100 , 1
3e
−|K|τmax

}

and ϕ3 := ϕ1 +∆, ϕ4 := ϕ1 + 2∆,

ϕ5 := ϕ1 + 3∆, ϕ6 := ϕ1 + 4∆. Due to the closedness of C(τ) it is possible

to admit also parameters ϕmod ϕ̄, ϕ ∈ [0, ϕ̄), for functions defined on [0, ϕ̄).

Thus we set ϕ7 := ϕ3 + ϕ̄, such that ϕ7 > ϕ6 holds, and consider [0, ϕ̄) also as

[0, ϕ̄) = [ϕ3, ϕ6) ∪ [ϕ6, ϕ7).

Then we have with (8) and the Gauss–Bonnet Theorem

θ(ϕ7, τ)− θ(ϕ6, τ) =

θ(ϕ7,τ)
∫

θ(ϕ6,τ)

dθ =

θ(ϕ̄,τ)
∫

θ(0,τ)

dθ −
θ(ϕ6,τ)
∫

θ(ϕ3,τ)

dθ

=

L(τ)
∫

0

k ds − θ(ϕ6, τ) + θ(ϕ3, τ) = 2π−KA(τ)−eKτ (ϕ6−ϕ3)

≥ 2π −KA(τ)− 3∆e|K|τmax ≥ 2π −KA(τ)− 1 ,

where L(τ) is the length of C(τ) and A(τ) the area enclosed by C(τ). From

A′(τ) = −
∫ L(τ)
0 k ds (see e.g. [Ga, Lemma 1.3]) follows A′(τ) = KA(τ) − 2π
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(Gauss–Bonnet) and hence themonotonicity ofA(τ). By that and limτ→τmax
A(τ)=0

we conclude, that a τ ′ < τmax exists, such that

θ(ϕ7, τ)− θ(ϕ6, τ) > π(21)

is true for all τ > τ ′.

Also by (8) we obtain

ϕ4 − ϕ3 =

ϕ4
∫

ϕ3

dϕ = e−Kτ

θ(ϕ4,τ)
∫

θ(ϕ3,τ)

dθ = e−Kτ

s(ϕ4,τ)
∫

s(ϕ3,τ)

k ds

≤ e−Kτ max
ϕ3≤ϕ≤ϕ4

k(ϕ, τ) [s(ϕ4, τ)− s(ϕ3, τ)]

≤ e−Kτ max
ϕ3≤ϕ≤ϕ4

k(ϕ, τ) L(τ)

and hence

max
ϕ3≤ϕ≤ϕ4

k(ϕ, τ) ≥ eKτ

L(τ)
(ϕ4 − ϕ3) ≥

e−|K|τmax

L(τ)
∆ .(22)

For maxϕ5≤ϕ≤ϕ6
k(ϕ, τ) the same estimation holds.

For the following we define a constant α as

α :=

[

sin

(

π
ϕ2 −∆− ϕ6

ϕ7 − ϕ6

)]−1

=

[

sin

(

π
ϕ2 − ϕ1 − 5∆

ϕ̄− 3∆

)]−1

> 0 .(23)

Due to L′(τ) = −
∫ L(τ)
0 k2 ds < 0 ([Gr2, Section 1]), L(τ) is monotone

decreasing, and limτ→τmax
L(τ) = 0 holds, there exists because of (22) a point

in time τ ′′ < τmax, such that

max
ϕ3≤ϕ≤ϕ4

k(ϕ, τ) > αk1 e
|K|τmax and max

ϕ5≤ϕ≤ϕ6

k(ϕ, τ) > αk1 e
|K|τmax

is true for all τ > τ ′′. We choose a τ̃ > max{τ ′, τ ′′}, τ̃ < τmax, such that ϕ0(τ̃)

lies within (ϕ4, ϕ5) (possible, since ϕ0 oscillates on [ϕ1, ϕ2]).

But then k(ϕ, τ̃) > αk1e
|K|τmax is true for all ϕ ∈ [ϕ6, ϕ7], otherwise k(ϕ, τ̃)

must have a local minimum in [ϕ6, ϕ7]; so together with ϕ0(τ̃) ∈ (ϕ4, ϕ5) at least

two different ones, which is impossible.

We define a comparison function f , similar as in the proof of Lemma 5.4 in

[Gr2, p. 98]:

f(ϕ, τ) := αk1 e
|K|(τmax−τ) sin

(

π
ϕ− ϕ6

ϕ7 − ϕ6

)

, ϕ6≤ϕ≤ϕ7, τ̃≤τ≤τmax .(24)
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By this k(ϕ, τ̃) > αk1e
|K|τmax > f(ϕ, τ̃) holds for all ϕ ∈ [ϕ6, ϕ7].

We calculate the derivatives of f :

fϕϕ = −
(

π

ϕ7 − ϕ6

)2

f , fτ = −|K| f .(25)

Since k(ϕ0(τ), τ) > 0 is always true, the graphs of k and f can never meet at

the edges ϕ6, ϕ7.

If the graph of k touches the graph of f at a time τ̄ > τ̃ , τ̄ < τmax, for the

first time, at a point ϕ8 ∈ (ϕ6, ϕ7), then we have there

k(ϕ8, τ̄) = f(ϕ8, τ̄) and kϕ(ϕ8, τ̄) = fϕ(ϕ8, τ̄) .(26)

By the maximum principle follows that

kϕϕ(ϕ8, τ̄) ≥ fϕϕ(ϕ8, τ̄) .(27)

With (14), (2), (27), (26) and (25) we get

kτ (ϕ8, τ̄) = e−2Kτ̄ k2(ϕ8, τ̄) kϕϕ(ϕ8, τ̄) + k3(ϕ8, τ̄) +Kk(ϕ8, τ̄)

≥ e−2Kτ̄ f2(ϕ8, τ̄) fϕϕ(ϕ8, τ̄) + f3(ϕ8, τ̄) +Kf(ϕ8, τ̄)

≥
[

1− e−2Kτ̄

(

π

ϕ7 − ϕ6

)2
]

f3(ϕ8, τ̄) +Kf(ϕ8, τ̄) .

Now we see

e−2Kτ̄

(

π

ϕ7 − ϕ6

)2

=

(

π

eKτ̄ (ϕ7 − ϕ6)

)2

=

(

π

θ(ϕ7, τ̄)− θ(ϕ6, τ̄)

)2

< 1

because of (21) and τ̄ > τ ′.

Hence we have

kτ (ϕ8, τ̄) > Kf(ϕ8, τ̄) ≥ −|K| f(ϕ8, τ̄) = fτ (ϕ8, τ̄) .

This means k(ϕ8, τ) > f(ϕ8, τ) for τ > τ̄ , τ close τ̄ , and, altogether,

k(ϕ, τ) ≥ f(ϕ, τ) for ϕ6 ≤ ϕ ≤ ϕ7, τ̃ <τ <τmax ,

i.e. the graph of k cannot cross the graph of f . From this follows with (23)

k(ϕ2 −∆, τ) ≥ f(ϕ2 −∆, τ) = αk1 e
|K|(τmax−τ) sin

(

π
ϕ2 −∆− ϕ6

ϕ7 − ϕ6

)

= k1 e
|K|(τmax−τ) ≥ k1 for τ̃ ≤ τ ≤ τmax .
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Since ϕ0 oscillates continuously on [ϕ1, ϕ2], there is a τ≥ τ̃ with ϕ0(τ)=ϕ2−∆

and thus k(ϕ0(τ), τ) = k(ϕ2 −∆, τ) ≥ k1, in contradiction to the assumption

k(ϕ0(τ), τ) < k1 for all τ .

With this the assumption, that ϕ0(τ) diverges for τ → τmax, must have been

wrong.

Now we treat the remaining case, where k(ϕ0(τ), τ) < 0 holds for all τ < τmax.

Let I−(τ) = (ϕ−(τ), ϕ+(τ)), e.g. the two inflection points occur at ϕ−(τ) and

ϕ+(τ). By this ϕ−(τ) < ϕ0(τ) < ϕ+(τ) is true for all τ < τmax.

Then we have

|ϕ+(τ)− ϕ−(τ)| = e−Kτ
∣

∣

∣θ(ϕ+(τ), τ)− θ(ϕ−(τ), τ)
∣

∣

∣ = e−Kτ

∣

∣

∣

∣

∣

∣

∣

s(ϕ+(τ),τ)
∫

s(ϕ−(τ),τ)

k ds

∣

∣

∣

∣

∣

∣

∣

≤ e−Kτ

s(ϕ+(τ),τ)
∫

s(ϕ−(τ),τ)

|k| ds ≤ e−Kτ |k0|L(τ)

by Lemma 2. This means limτ→τmax
|ϕ+(τ)−ϕ−(τ)| = 0. By [Gr2, Corollary 2.6]

ϕ− and ϕ+ cannot oscillate, thus limτ→τmax
ϕ−(τ), limτ→τmax

ϕ+(τ) exist, and

hence also limτ→τmax
ϕ0(τ).

So in both cases limτ→τmax
θ(ϕ0(τ), τ) and therefore also limτ→τmax

T (ϕ0(τ), τ)

exist.

We set ϕ0(τmax) := limτ→τmax
ϕ0(τ), if this limit exists.

Lemma 4. Let M2 and C be as in the Theorem, additionally we assume

that C(0) possesses exactly two vertices and that C(τ) converges to a point for

τ → τmax. Then limτ→τmax
k(ϕ0(τ), τ) ∈ (−∞,∞] exists.

Are furthermore in the case k(ϕ0(τ), τ) < k1 for all 0 < τ < τmax with

0 < k1 <∞ a δ > 0 and a sequence (ϕn, τn)n∈N with limn→∞ τn = τmax and

|ϕ0(τmax)−ϕn|≥δ for all n∈N given, then for this sequence limn→∞ k(ϕn, τn)=∞
holds.

Proof: We first show the differentiability of ϕ0 for almost all τ ∈ (0, τmax) :

By (14) follows that

kϕτ = kτϕ = %−2k2kϕϕϕ + (%−2k2)ϕkϕϕ + 3 k2kϕ +Kkϕ

= %−2k2kϕϕϕ + 2 %−2kkϕkϕϕ + 3 k2kϕ +Kkϕ

with (%−2k2)ϕ = 2 %−2kkϕ because of %ϕ ≡ 0.
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For κ := kϕ we obtain by this the evolution equation

κτ = %−2k2κϕϕ + 2 %−2kκκϕ + 3 k2κ+Kk .(28)

(28) is of the same type as (14), hence Proposition 1.2 of [A2] can be applied

to (28). From this we get: If a time τ̂ > 0 with κ(ϕ0(τ̂), τ̂)) = κϕ(ϕ0(τ̂), τ̂) = 0

occurs, κϕ(ϕ0(τ), τ) 6= 0 must hold for any small τ > τ̂ .

This means that kϕϕ(ϕ0(τ), τ) = κϕ(ϕ0(τ), τ) = 0 can only occur on a discrete

subset of (0, τmax). On its complement we have kϕ(ϕ0(τ), τ)=0, kϕϕ(ϕ0(τ), τ) 6=0,

there the Theorem on implicit functions yields the differentiability of ϕ0.

We consider the same two cases as in the proof before.

So let first be k(ϕ0(τ), τ) > 0 for all τ > 0. Then by (14), kϕ(ϕ0(τ), τ) = 0,

kϕϕ(ϕ0(τ), τ) ≥ 0 and k(ϕ0(τ), τ) >
√
−K (in the case K < 0)

d

dτ
k(ϕ0(τ), τ) = kϕ(ϕ0(τ), τ)ϕ

′
0(τ) + kτ (ϕ0(τ), τ)

= e−2Kτk2(ϕ0(τ), τ) kϕϕ(ϕ0(τ), τ) + k3(ϕ0(τ), τ) +Kk(ϕ0(τ), τ)

≥ k(ϕ0(τ), τ)
(

k2(ϕ0(τ), τ) +K
)

> 0

for almost all τ ∈(0, τmax). ϕ0 is continuous for 0<τ <τmax (following Lemma 3)

and thus also k(ϕ0(τ), τ) for 0 < τ < τmax. With the previous estimation we

conclude, that k(ϕ0(τ), τ) is monotone increasing for 0 < τ < τmax.

If k(ϕ0(τ), τ) is limited above by k1, limτ→τmax
k(ϕ0(τ), τ) ≤ k1 <∞ exists.

If k(ϕ0(τ), τ) does not have an upper limit, limτ→τmax
k(ϕ0(τ), τ) =∞ follows.

In the case k(ϕ0(τ), τ) < 0 for all τ < τmax, which can only occur for K > 0,

we have, analogue to above with Lemma 2

d

dτ
k(ϕ0(τ), τ) ≥ k30 +Kk0 > −∞

for almost all τ ∈(0, τmax). ϕ0 and so k(ϕ0(τ), τ) are continuous for 0<τ <τmax;

k(ϕ0(τ), τ) is bounded by k0 and 0, and cannot oscillate, because then

kϕ(ϕ0(τ), τ) would have to be bonded below and above. Hence also in this case

limτ→τmax
k(ϕ0(τ), τ) ≤ 0 exists.

For the proof of the second assertion let k(ϕ0(τ), τ) be bounded above by k1.

Then ϕ0(τmax) = limτ→τmax
ϕ0(τ) exists by Lemma 3. Additionally, let δ > 0

and (ϕn, τn)n∈N be as mentioned. If ϕ−(τ) and ϕ+(τ) occur for all τ < τmax,

a τδ < τmax exists due to limτ→τmax
ϕ−(τ) = limτ→τmax

ϕ+(τ) = ϕ0(τmax), such

that ϕ−(τ), ϕ0(τ), ϕ
+(τ) ∈ (ϕ0(τmax) − δ

2 , ϕ0(τmax) +
δ
2) holds for all τ > τδ.

So ϕ−(τ), ϕ0(τ), ϕ
+(τ) /∈ [ϕn − δ

2 , ϕn + δ
2 ] (or only ϕ0(τ) /∈ [ϕn − δ

2 , ϕn + δ
2 ],
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respectively) for all τ > τδ and each n ∈ N due to the assumption |ϕ0(τmax) −
ϕn| ≥ δ for all n ∈ N.

Then k
∣

∣

∣[ϕn−
δ
2
,ϕn+

δ
2
] > 0 for all τ > τδ and each n; and analogue to (22)

max
ϕn−

δ
2
≤ϕ≤ϕn−

δ
4

k(ϕ, τ) ≥ δ

4
· eKτ

L(τ)
, max

ϕn+
δ
4
≤ϕ≤ϕn+

δ
2

k(ϕ, τ) ≥ δ

4
· eKτ

L(τ)

holds for all τ > τδ and each n. Hence k(ϕn, τ) ≥ δe−|K|τmax/4L(τ) follows

for all τ > τδ and each n, since there cannot lie any further local minimum of

k in [ϕn − δ
4 , ϕn + δ

4 ]. Thus also k(ϕn, τn) ≥ δe−|K|τmax/4L(τn) for all n with

τn > τδ; and eventually limn→∞ k(ϕn, τn) =∞ because of limn→∞ τn = τmax,

limτ→τmax
L(τ) = 0 and the continuity of L.

Lemma 5. Let M2 and C be as in the Theorem, additionally we assume

that C(0) has exactly two vertices.

Then for each ε > 0 there exists a τε < τmax, such that C̄(τ) lies for all τ > τε
in the ε-neighbourhood of a point or a geodesic segment on M 2.

Furthermore, in the case K > 0, there exists a τ+ < τmax, such that C̄(τ) lies

in a hemisphere S2+
K for all τ > τ+.

Proof: Weconsider first the case, where C(τ) converges to a point for τ→τmax.

k̂ := limτ→τmax
k(ϕ0(τ), τ) ∈ (−∞,∞] exists by Lemma 4.

If k(ϕ0(τ), τ) has the upper bound k1, k̂ <∞ holds and also N̂ :=

limτ→τmax
N(ϕ0(τ), τ) exists by Lemma 3.

We further set

P := lim
τ→τmax

X(ϕ, τ) = lim
τ→τmax

C(τ) ,

S := lim
τ→τmax

X̄(ϕ0(τ), τ) =

= lim
τ→τmax

[

k(ϕ0(τ), τ)
√

K + k2(ϕ0(τ), τ)
X(ϕ0(τ), τ) +

1
√

K + k2(ϕ0(τ), τ)
N(ϕ0(τ), τ)

]

=







P, if k̂ =∞ ,

k̂√
K+k̂2

P + 1√
K+k̂2

N̂ , if k̂ <∞ .

By PS we mean the geodesic segment or the shortest connection between P and

S on M2, respectively (in the case K > 0 PS lies in an open hemisphere of S2
K),

and by Uε(PS) the ε-neighbourhood of PS.

Now we treat the subcase, where k(ϕ0(τ), τ) has the upper bound k1.

By Lemma 3 ϕ0(τmax) = limτ→τmax
ϕ0(τ) exists.
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Let ε > 0 be fixed. We assume, there is no τε as mentioned. Then there exists

a sequence (τn)n∈N with limn→∞ τn = τmax and C̄(τn) 6⊆ Uε(PS) for all n, i.e. we

also find a sequence (ϕn)n∈N such that X̄(ϕn, τn) 6∈ Uε(PS) for all n ∈ N is true.

If (ϕn)n∈N has a subsequence (ϕnm)m∈N with limm→∞ ϕnm = ϕ0(τmax),

then, due to the continuity of X and N , limm→∞X(ϕnm , τnm) = P and

limm→∞N(ϕnm , τnm) = N̂ . In general, however, limm→∞ k(ϕnm , τnm) = k̂ is

not true, and so neither limm→∞ X̄(ϕnm , τnm) = S, since the limit function of k

at ϕ0(τmax) does not have to be continuous.

But k(ϕnm , τnm) ≥ k(ϕ0(τnm), τnm) holds for all m; and so

lim inf
m→∞

k(ϕnm , τnm) ≥ lim inf
m→∞

k(ϕ0(τnm), τnm)

= lim
m→∞

k(ϕ0(τnm), τnm) = k̂ .

For each λ, k̂ ≤ λ ≤ ∞,

Y (λ) :=
λ√

K + λ2
P +

1√
K + λ2

N̂

is a point of the segment PS with Y (k̂) = S and limλ→∞ Y (λ) = P .

Now we set λ := lim infm→∞ k(ϕnm , τnm) ∈ [k̂,∞]. There exists a subsequence

(ϕnml
, τnml

)l∈N of (ϕnm , τnm)m∈N, with liml→∞ k(ϕnml
, τnml

) = λ. By this we

have

lim
l→∞

X̄(ϕnml
, τnml

) =

= lim
l→∞





k(ϕnml
, τnml

)
√

K+k2(ϕnml
, τnml

)
X(ϕnml

, τnml
) +

1
√

K+k2(ϕnml
, τnml

)
N(ϕnml

, τnml
)





=
λ√

K + λ2
P +

1√
K + λ2

N̂ = Y (λ) ∈ PS ,

in contradiction to X̄(ϕnml
, τnml

) 6∈ Uε(PS) for all l ∈ N.

So (ϕn)n∈N cannot possess a subsequence as stated.

Hence a δ > 0 and a nδ ∈ N exist, such that ϕn 6∈ Uδ(ϕ0(τmax)) holds for all

n≥nδ. But then limn→∞ k(ϕn,τn)=∞ by Lemma 4, and thus limn→∞ X̄(ϕn,τn)=

P , in contradiction to X̄(ϕn, τn) 6∈ Uε(PS) for all n ∈ N.

So a τε exists as required, and the first part of the Lemma is proven for this

subcase.

In the second subcase, where k(ϕ0(τ), τ) does not have an upper bound, we

have by Lemma 4 k̂ = limτ→τmax
k(ϕ0(τ), τ) =∞.
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In the following we will prove that C̄ converges uniformly to P . We obtain

sup
ϕ

∥

∥P − X̄
∥

∥ = sup
ϕ

∥

∥

∥

∥

P − k√
K + k2

X − 1√
K + k2

N

∥

∥

∥

∥

≤ sup
ϕ

∥

∥

∥

∥

P − k√
K + k2

X

∥

∥

∥

∥

+ sup
ϕ

1√
K + k2

≤ sup
ϕ

∥

∥

∥

∥

P − k√
K + k2

P

∥

∥

∥

∥

+ sup
ϕ

∥

∥

∥

∥

k√
K + k2

P − k√
K + k2

X

∥

∥

∥

∥

+ sup
ϕ

1√
K + k2

≤ ‖P‖ sup
ϕ

∣

∣

∣

∣

1− k√
K + k2

∣

∣

∣

∣

+ sup
ϕ

|k|√
K + k2

· sup
ϕ
‖P −X‖+ sup

ϕ

1√
K + k2

.

In the case K > 0 we have −1 < k/
√
K + k2 < 1 for −∞ < k <∞, and

k/
√
K + k2 is monotone increasing in k.

Thus

sup
ϕ

∣

∣

∣

∣

1− k√
K + k2

∣

∣

∣

∣

= 1− inf
ϕ

k√
K + k2

≤ 1− infϕ k
√

K + (infϕ k)2
,

and we have limτ→τmax
supϕ

∣

∣

∣1− k/
√
K + k2

∣

∣

∣ = 0 by limτ→τmax
infϕ k(ϕ, τ) =

limτ→τmax
k(ϕ0(τ), τ) =∞. Additionally,

lim
τ→τmax

sup
ϕ

|k|√
K + k2

≤ 1

and

lim
τ→τmax

sup
ϕ

1√
K + k2

≤ lim
τ→τmax

1
√

K + (infϕ |k|)2
= 0 .

In the case K < 0 we have k/
√
K + k2 > 1 for k >

√
−K and k/

√
K + k2 is

monotone decreasing in k.

Here we see

sup
ϕ

∣

∣

∣

∣

1− k√
K + k2

∣

∣

∣

∣

= sup
ϕ

k√
K + k2

− 1 ≤ infϕ k
√

K + (infϕ k)2
− 1 ,

and we obtain

lim
τ→τmax

sup
ϕ

∣

∣

∣

∣

1− k√
K + k2

∣

∣

∣

∣

= 0

as above; as well as

lim
τ→τmax

sup
ϕ

|k|√
K + k2

≤ lim
τ→τmax

infϕ |k|
√

K + (infϕ |k|)2
= 1

and limτ→τmax
supϕ 1/

√
K + k2 = 0.
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For K = 0 we have

sup
ϕ

∣

∣

∣

∣

1− k√
K + k2

∣

∣

∣

∣

≡ 0 , sup
ϕ

|k|√
K + k2

≡ 1

and limτ→τmax
supϕ 1/

√
K + k2 = 0.

Besides, in all cases follows limτ→τmax
supϕ ‖P −X‖ = 0 from the convergence

of C(τ) to P in the Hausdorff metric for τ → τmax.

Altogether we now obtain

lim
τ→τmax

sup
ϕ
‖P − X̄‖ = 0

and hence

lim
τ→τmax

d(P, C̄(τ)) = lim
τ→τmax

sup
ϕ

d(P, X̄(τ)) = 0 .

This yields us the existence of τε < τmax for given ε > 0.

In order to find the wanted τ+ for K > 0, we calculate the angle 6 (P, S)

between P and S on S2
K as cos 6 (P, S) = k̂/

√

K + k̂2 and obtain from the

montonicity of the occuring function and −∞ < k0 ≤ k̂ ≤ ∞ (by Lemma 2)

−1 < k0/
√

K + k20 ≤ k̂/

√

K + k̂2 ≤ 1. Thus 0 ≤ 6 (P, S) < π, hence PS lies

in an open hemisphere of S2
K , therefore also Uε(PS) for small ε and by the first

part of the Lemma eventually also C̄(τ) for τ > τ+ = τε.

Now we treat the remaining case, where τmax =∞ holds and C(τ) converges

to a large circle on S2
K for τ → τmax. Each large circle is the intersection of

a plane in E3 with S2
K , the normal vector of the plane is then (with suitable

orientation) the unit normal vector N̂ along the large circle.

We will show the uniform convergence of X̄ to N̂/
√
K ∈ S2

K : From

sup
ϕ

∥

∥

∥

∥

∥

N̂√
K
− X̄

∥

∥

∥

∥

∥

= sup
ϕ

∥

∥

∥

∥

∥

N̂√
K
− k√

K + k2
X − 1√

K + k2
N

∥

∥

∥

∥

∥

≤ sup
ϕ

|k|√
K + k2

‖X‖+ sup
ϕ

∥

∥

∥

∥

∥

N̂√
K
− N√

K + k2

∥

∥

∥

∥

∥

≤
supϕ |k|

√

K + (supϕ |k|)2
· 1√

K
+ sup

ϕ

∥

∥

∥

∥

∥

N̂√
K
− N√

K

∥

∥

∥

∥

∥

+ sup
ϕ

∥

∥

∥

∥

N√
K
− N√

K + k2

∥

∥

∥

∥

≤
supϕ |k|√

K
√

K + (supϕ |k|)2
+

1√
K

sup
ϕ

∥

∥

∥N̂ −N
∥

∥

∥+
1√
K
− 1
√

K + (supϕ |k|)2
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results with limτ→∞ supϕ |k| = 0 and limτ→∞ supϕ ‖N̂ −N‖ = 0 eventually

lim
τ→∞

sup
ϕ

∥

∥

∥

∥

∥

N̂√
K
− X̄

∥

∥

∥

∥

∥

=
1√
K
− 1√

K
= 0

and so

lim
τ→∞

d

(

N̂√
K

, C̄(τ)

)

:= lim
τ→∞

sup
ϕ

d

(

N̂√
K

, X̄

)

= 0 .

By this method we obtain the wanted τε <∞ and τ+ = τε for small ε.

5 – The proof of the Theorem

We assume that C(0) = C has exactly two vertices, and we will bring this

assumption to a contradiction.

As mentioned earlier (p. 271), all C(τ), τ > 0, have exactly two vertices,

which correspond to the two local extrema of k. Since kϕ changes sign at the

extrema, the corresponding points of C̄ are singularities, i.e. cusps in the sense,

that T̄ jumps by ±π (cf. (17)) and C̄ does not have a unique tangent vector there.

We call these singularities S̄1 = S̄1(τ) and S̄2 = S̄2(τ). Except for these points

C̄(τ) is smooth by [A1, Theorem 3.1], also at the inflection points, if these are

not at the same time curvature extrema, cf. (17) and (9).

For the following let 0 < τ < τmax for K ≤ 0 or τ+ < τ < τmax for K > 0,

respectively (such that C̄(τ) lies in a hemisphere S2+
K by Lemma 5), arbitrary,

but kept fixed.

We will investigate two cases: S̄1 6= S̄2 and S̄1 = S̄2.

In the first case, C̄ cannot be contained completely in the line F , which

connects S̄1 and S̄2, because then we would have k̄ ≡ 0, which is not possible by

(19).

Now we consider another line H, which shall not intersect F (for K ≤ 0), or

shall have the same intersection points with the boundary of S2+
K as F . If we

move H towards F in a way, that the conditions above still hold, then H must

touch the focal curve C̄ in a nonsingular point (at least at one side of F ), because

otherwise nonsingualr points of C̄ must exist outside of F .

In the second case X̄ ≡ S̄1 = S̄2 cannot hold, because this would imply X̄ϕ ≡ 0

and so kϕ ≡ 0. By this C would have infinitely many vertices, what is not possible.

Thus there must also exist a line H, which touches C̄ in a nonsingular point.
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For both cases, let Ȳ be the first point of contact of C̄ with H, i.e. the first

point of C̄, H reaches (if there are more points with this property, we choose one

of them).

C̄ lies completely on one side of H; and due to k̄ > 0 (cf. (19)) the unit

normal vector N̄(Ȳ ) of C̄ at Ȳ points on this side. Now we consider points

Z̄δ := expȲ δN̄(Ȳ ) for δ > 0. Then there must exist a δ, such that the winding

number w(Z̄δ) of Z̄δ with respect to C̄ is strictly positive, otherwise there must

be for each δ a subarc of C̄ between Z̄δ and Ȳ , which is traversed in the opposite

direction as the subarc, on which Ȳ lies, what is impossible due to k̄ > 0 and the

first contact of H in Ȳ .

Hence there exists a nonempty domain Ḡ = Ḡ(τ) with w|Ḡ ≥ 1 (w is taken

with respect to C̄) and Ā := area(Ḡ) =
∫ ∫

Ḡ dA > 0.

Along the boundary ∂Ḡ of Ḡ, N̄ points in direction to Ḡ because of k̄ > 0

along ∂Ḡ and the increase of the winding number at crossing ∂Ḡ in direction to

Ḡ. By considering the Taylor expansion of X̄ = X̄(ϕ, τ), for X̄ 6= S̄i, (i = 1, 2),

we see with (20) and (19), that X̄(ϕ, τ + ς), for ς > 0 small (and dependent of

ϕ), lies outside of cl Ḡ(τ) = ∂Ḡ(τ) ∪ Ḡ(τ).

This is also true for the edges of ∂Ḡ, which are at the same time self-

intersections of C̄.

At the singularities S̄1, S̄2 kϕ disappears, and the Taylor expansion of X̄ has

no part anymore in N̄ -direction. But under consideration of the continuity of

X̄(ϕ, τ) in both variables and the convexity of the curve arcs bordering on S̄1, S̄2

one can see, that S̄i(τ + ς) (i = 1, 2), for ς > 0 small, cannot lie inside Ḡ(τ).

By this Ḡ(τ) ⊆ Ḡ(τ + ς) follows for ς > 0 small, and hence Ā(τ) ≤ Ā(τ + ς).

This means especially Ā(τmax) ≥ Ā(τ) > 0.

But by Lemma 5 there is for each ε > 0 a τε < τmax, such that C̄(τ) for τ > τε
and so also Ḡ(τ) lie inside the ε-neighbourhood of a fixed segment (or a point,

respectively). So we have limτ→τmax
Ā(τ) = 0, in contradiction to Ā(τmax) > 0.

The assertion was wrong, therefore C(0) must have at least three vertices. If

this third vertex is only a saddle of the curvature, i.e. if kϕ does not change sign

there, then this saddle disappears immediately, and C(τ) has only two vertices

for τ > 0. But then we get with our proof again a contradiction.

Hence the curvature of C(0) has another local extremum; but since two lo-

cal extrema of the same type cannot consecute, there must be another local

extremum, which represents the fourth vertex.

Remark. For surfaces of variable curvature one can in general not expect

a four-vertex theorem: Each distance circle in a sufficiently small neighbour-
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hood of a point with non-stationary Gauss curvature has exactly two vertices

(see [J, Chapter 6]).

However, G. Thorbergsson proved for surfaces of nonpositive curvature a four-

vertex theorem using a more general definition of a vertex (see [T]).
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