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ON BI-LIPSCHITZ EMBEDDINGS

H. Movahedi-Lankarani and R. Wells

Abstract: Let µ be a finite Borel regular measure on a compact metric space (X, ρ),

nontrivial on nonempty open sets. It is shown that whenever the map ιρ : X −→ Lp(µ)

given by ιρ(x) = ρ(x, ·) is lower Lipschitz for some 1 < p < ∞, then there is a bi-Lipschitz

embedding of (X, ρ) into some RN .

1 – Introduction

When does a metric space admit a bi-Lipschitz embedding into some Euclidean

space? This problem has been studied in [3, 8, 10, 13, 20, 24, 27], to produce

sufficient conditions for such embeddability, and in [1, 2, 4, 9, 11, 12, 16, 18,

21, 23, 24], to produce necessary conditions and counterexamples. Here, we

use compactness of certain maps between Banach spaces to derive a sufficient

condition for such embeddability of compact metric-measure spaces.

A compact metric-measure space (X, ρ, µ) consists of a compact metric space

(X, ρ) equipped with a finite Borel regular measure µ, nontrivial on nonempty

open sets. For such a space, we define following [20, 21], also cf. [5, 6, 7], the

canonical map ιρ : X −→ Lp(µ), 1 ≤ p ≤ ∞, by setting ιρ(x) = ρ(x, ·). This

map is always (upper) Lipschitz and sometimes, but certainly not always, lower

Lipschitz.
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Main Theorem. Let (X, ρ, µ) be a compact metric-measure space. If the

canonical map ιρ : X −→ Lp(µ) is bi-Lipschitz for some 1 < p < ∞, then there

exists a bi-Lipschitz embedding of (X, ρ) into some RN .

Moreover, if ιρ : X −→ L2(µ) is bi-Lipschitz and ε > 0, then there is a

bi-Lipschitz embedding f : X −→ L2(µ) with image in some finite dimensional

linear subspace of L2(µ) and ‖ιρ − f‖Lip < ε.

See Section 2 for the definition of Lipschitz norm. The above theorem is

an application of the following observation: Let f : X −→ B be a bi-Lipschitz

embedding of a compact metric space into a Banach space. Then there is a

bi-Lipschitz embedding of X into some RN provided that f may be factored

f = Φ ◦ f̂ , with f̂ Lipschitz, through a suitable compact map Φ. (See Section 2

for details.)

Section 3 is entirely devoted to the proof of Main Theorem. In Section 4, we

reformulate the condition that the canonical map is bi-Lipschitz. It turns out

(Theorem 4.1) that the canonical map is bi-Lipschitz exactly when the measure

µ satisfies a certain point separation property: The measure µ separates points

uniformly with respect to the metric ρ if there exist constants c > 0 and ε > 0

such that for each x, y ∈ X with x 6= y we have

µ
({

z : |ρ(x, z)− ρ(y, z)| ≥ ε ρ(x, y)
})

≥ c .

Of course this condition is nontrivial, even for a doubling measure, as follows

from the example of the Heisenberg group modulo its integer lattice. (See the

last section for details.) In contrast, it follows from Theorem 4.1 below and

[19] that if µ if a finite Borel regular measure on Euclidean space with compact

support X, then µ separates points uniformly with respect to the Euclidean

metric on X. More generally, a large class of metric measure spaces (X, ρ, µ) is

given by compact subsets X of a Hilbert space H, ρ the inherited metric, and

µ any allowable measure. For these spaces, the canonical map ιρ is bi-Lipschitz

exactly for the ones which are weak∗ (equivalently, weakly) spherically compact;

see Section 2 for definitions, Theorem 4.2, and the last section. In particular,

for X weakly spherically compact in H, any allowable measure separates points

uniformly.

Finally, we would like to thank Urs Lang for allowing us to use his unpublished

argument in Lemma 2.4. We would also like to thank Gunnar Steffanson for

careful reading of the manuscript.
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2 – The Set Up

We recall from [15, 17, 19, 20] that a subset X of a normed linear space B is

spherically compact if the set of unit vectors

U(X) =

{

x− y
‖x− y‖B

: x, y ∈ X with x 6= y

}

has a compact closure in the norm topology of B. For compact subsets of a

Banach space, spherical compactness is an invariant under C1-diffeomorphism

but not under bi-Lipschitz equivalence [17] and [15, Examples 8.1, 8.2, 8.3].

We say that a subset X ⊂ B is weakly spherically compact if the weak closure of

U(X) does not contain zero. Clearly, spherically compact implies weakly spher-

ically compact. However, it is shown in Example 5.1 that there is a compact

subset of a Hilbert space which is weakly spherically compact but not spherically

compact. Analogously, if B is a dual Banach space, we say that a subset X ⊂ B
is weak∗ spherically compact if the weak∗ closure of U(X) does not contain zero.

Now let (X, ρ) be a compact metric space and let Lip(X) denote the ring of

all real-valued Lipschitz functions on X. It is well-known Lip(X) is a Banach

space under the norm ‖ · ‖Lip defined by setting

‖f‖Lip = sup
x∈X

|f(x)|+ Lip(f) ,

where

Lip(f) = sup

{ |f(x)− f(y)|
ρ(x, y)

: x, y ∈ X with x 6= y

}

.

Let Lip(X)∗ denote the dual Banach space with norm ‖ · ‖Lip(X)∗ and let 〈·, ·〉
denote the dual pairing. Then the evaluation map ev : X−→ Lip(X)∗, defined by

setting 〈ev(x), f〉 = f(x), is a bi-Lipschitz embedding.(1) This gives the following

reformulation of bi-Lipschitz embeddability.

Theorem 2.1. Let (X, ρ) be a compact metric space. Then there exists a

bi-Lipschitz embedding of (X, ρ) into some RN if and only if the set ev(X) is

weak∗ spherically compact in Lip(X)∗.

The proof follows from the definitions and Lemma 2.4 below. We note that

the condition that ev(X) be weak∗ spherically compact in Lip(X)∗ is itself a

bi-Lipschitz invariant because, up to Banach space equivalence, Lip(X) depends

(1) In fact, Pestov [22] shows that in a slightly altered situation, the map ev is an isometric
embedding.
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only on the bi-Lipschitz equivalence class of the metric. Furthermore, it is easy

to see that this set ev(X) is weak∗ spherically compact if and only if it is weakly

spherically compact.

Next, let B1 and B2 be Banach spaces and let T : B1 −→ B2 be a bounded

linear transformation. By saying that T is compact we mean that T carries

any bounded subset of B1 to a precompact subset of B2. We say that a map

Φ : B1 −→ B2 is C1 if the Gâteaux derivative dΦ(x) exists, for all x ∈ B1, as

a bounded linear operator on B1 and the map x 7→ dΦ(x) is continuous with

respect to the operator norm on its range. Then dΦ(x) is the Fréchet derivative.

For a subset X ⊂ B1, a C1 map f : X −→ B2 is simply the restriction of a

C1 map Φ : B1 −→ B2. For simplicity, we say that a (possibly nonlinear) map

Φ : B1 −→ B2 is compact if and only if it is C1 and dΦ(x) is compact for every

x ∈ B1.

Lemma 2.2. Let B1 and B2 be Banach spaces and let Φ : B1 −→ B2 be a

compact (possibly nonlinear) map. Let X ⊂ B1 be a compact subset. Then for

any ε > 0 there is δ(ε) > 0 so that the following conditions

(1) x, y, z ∈ X with y 6= z

(2) ‖x− y‖B1
< δ(ε) and ‖x− z‖B1

< δ(ε)

imply that
∥

∥

∥

∥

Φ(y)− Φ(z)

‖y − z‖B1

− dΦ(x)
y − z

‖y − z‖B1

∥

∥

∥

∥

B2

< ε .

Lemma 2.3. Let Φ : B1 −→ B2 be a map of a normed linear space into a

Banach space satisfying either of the following two hypotheses:

(1) B1 is a Banach space and Φ is a compact (possibly nonlinear) map.

(2) Φ is a compact linear map.

Let X be a compact subset of B1 such that Φ|X is bi-Lipschitz. Then Φ(X)

is spherically compact.

In addition, if B1 is a linear subspace of a dual Banach space, then X itself

is weak∗ spherically compact.

Lemma 2.4. Let B be a normed linear space and let X be a compact subset

of B. Then there exist N ∈ N and a bounded linear map ϕ : B −→ RN such that

ϕ|X is a bi-Lipschitz embedding if and only if X is weakly spherically compact.
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Proof: First, let X be weakly spherically compact. Following U. Lang(2),

there exist ε > 0 and a finite number of continuous linear functionals ϕ1, · · · , ϕN
on B such that for each x, y ∈ X with x 6= y we have |ϕj(x − y)|/‖x − y‖B > ε

for at least one index 1 ≤ j ≤ N . Then ϕ = (ϕ1, · · · , ϕN ) is the desired map.

The converse follows from Case (2) of Lemma 2.3.

As a corollary to the above proof we see that a compact weak∗ spherically

compact subset of a dual Banach space admits a bi-Lipschitz embedding into RN

for some N . The following result is a corollary of Lemma 2.3 and Lemma 2.4.

Theorem 2.5. Let X be a compact metric space. Suppose that there is a

bi-Lipschitz embedding f : X −→ B which factors f = Φ ◦ f̂

with f̂ Lipschitz and the map Φ: B1 −→ B satisfying either of the following two

hypotheses:

(1) B1 is a Banach space and Φ is a compact (possibly nonlinear) map.

(2) B1 is a normed linear space and Φ is a compact linear map.

Then there exists a bi-Lipschitz embedding of X into RN for some N .

Finally, because of the role played by spherical compactness and weak spher-

ical compactness in the above, we include the following theorem. By a quotient

map in the category of Banach apaces we mean a bounded surjective linear map

π : A −→ B which satisfies the following universal property: If f : A −→ E is a

bounded linear map which factors through B to produce a (unique) map f̂ ,

then |‖f̂‖| = |‖f‖|. Here, |‖ · ‖| denotes the operator norm. Of course, a map π

(2) Private Communication.
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is a quotient if and only if ‖b‖B = inf{‖a‖A : π(a) = b}. Given bounded linear

maps

it is clear that if π1 and π2 ◦ π1 are quotients, then so is π2.

Theorem 2.6. Let X be a (norm) compact subset of a Banach space B with

the inherited metric. Consider the following statements:

(1) The set X is spherically compact.

(2) For any ε > 0 there is a finite dimensional quotient F of B such that the

quotient map πF : B −→ F satisfies

(2.6.1) (1− ε) ‖x− y‖B ≤ ‖πF(x)− πF(y)‖F ≤ ‖x− y‖B

for every x, y ∈ X.

(3) The weak closure of U(X) is contained in the unit sphere of B.

(4) The set X is weakly spherically compact.

(5) There is a finite dimensional quotient F of B such that the quotient map

πF|X : X −→ F is a bi-Lipschitz embedding.

(6) There exists a C1 map g : X −→ RN , for some N , which is a bi-Lipschitz

embedding.

(7) There exist a finite dimensional linear subspace F ⊂ B, a compact set

Y ⊂ F, and a Lipschitz map f : Y −→ G, where B = F ⊕ G, such that

X = graph(f) = {y + f(y) : y ∈ Y }.

Then we have the following implications:

Example 5.1. below shows that (4) 6−→ (3) even in a Hilbert space.

Proof: The implications (3) −→ (4) and (5) −→ (6) are immediate. Also,

(4) −→ (5) is Lemma 2.4, (6) −→ (4) is Lemma 2.3, and (3)
B=Lp, 1<p<∞
−−−−−−−−−→ (1) is

a standard exercise.
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(1) −→ (2): For any ξ ∈ U(X) there exists λξ ∈ B∗ with ‖λξ‖B∗ = 1 and

λξ(ξ) = 1. Let Fξ = B/ kerλξ and let πξ : B −→ Fξ be the quotient map. Then

for the factorization λξ = λ̂ξ ◦ πξ we have ‖λ̂ξ‖ = ‖λξ‖B∗ = 1 implying that

‖πξ(ξ)‖F = 1. Now let ε > 0 and let Nε(ξ1), · · · , Nε(ξn) be a cover of U(X) by

ε-balls. Let M = kerλξ1 ∩ · · · ∩ kerλξn and let F be the quotient B/M with

quotient map πF. For each η ∈ U(X) we have ‖η − ξi‖B < ε for some index

1 ≤ i ≤ n. Then

1− ε ≤ ‖πξi(η)‖Fξi ≤ ‖πF(η)‖F ≤ 1

so that (2.6.1) holds for any x, y ∈ X with x 6= y.

(2) −→ (3): Suppose that a net {ξi = (xi−yi)/‖xi−yi‖B}i∈I converges weakly
to some ξ. For ε > 0, let F be a finite dimensional quotient of B, with quotient

map πF, so that (1− ε)‖η‖B ≤ ‖πF(η)‖F ≤ ‖η‖B for all η ∈ U(X). Then the net

{πF(ξi)}i∈I converges in norm to πF(ξ). Thus, (1 − ε) ≤ ‖πF(ξ)‖F ≤ ‖ξ‖B ≤ 1

implying that ‖ξ‖B = 1.

(3)
B=B∗∗
−−−→ (2): We may argue as in the case (1) −→ (2) except that we use a

finite cover of U(X)weak by weakly open neighborhoods U1, · · · , Un of ξ1, · · · , ξn,
respectively, so that for η ∈ Ui we have ‖πξi(η)−πξi(ξi)‖Fξi < ε. Then, as before,

we have (1− ε) ≤ ‖πF(η)‖F ≤ 1 implying (2.6.1).

(5) −→ (7): Let F be a finite dimensional quotient of B so that the quotient

map πF|X : X −→ F is bi-Lipschitz. Let F′ ⊂ B be a linear subspace so that πF|F′
is a linear isomorphism and let Y = (πF|F′)−1 πF(X). Let G = kerπF and define

f : Y −→ G by requiring

x = (πF|F′)−1 πF(x) + f
(

(πF|F′)−1 πF(x)
)

.

(7) −→ (4): Assume for contradiction that there exist nets {xi}i∈I and

{yi}i∈I , both converging to some y ∈ Y , with xi 6= yi and

ξi =
xi + f(xi)− yi − f(yi)
‖xi + f(xi)− yi − f(yi)‖B

weak
−−−→ 0 .

We may assume that {(xi − yi)/‖xi − yi‖F}i∈I converges in norm to some η ∈ F
with ‖η‖F = 1. Let η∗ ∈ F∗ with 〈η∗, η〉 = 1 and let π : B −→ F be a continuous

projection. Then we have

0 = lim
i∈I
|〈π∗η∗, ξi〉| = lim

i∈I
|〈η∗, πξi〉| ≥

1

1 + Lip(f)

which is a contradiction.
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Hence, we arrive at the following:

Complement to Theorem 2.5. In Theorem 2.5, if B = H is a Hilbert

space, then for any ε > 0 there exists a bi-Lipschitz embedding ϕ : X−→ RN for

some N , such that ‖ϕ− f‖Lip < ε.

3 – Proof of Main Theorem

Let (X, ρ) be a compact metric space. Using the metric ρ onX, we define a lift

λ : X −→ Lip(X) of the canonical map by setting λ(x) = ρ(x, ·). Unfortunately,

λ is totally discontinuous, with λ(X) metrically discrete; see the last section for

some related issues. However, there is a topology on Lip(X) with respect to

which λ is continuous. Specifically, let E(X) denote the closed linear span of

ev(X) ⊂ Lip(X)∗. We call the weak topology induced by E(X) on Lip(X) the

E(X)-topology on Lip(X).

Lemma 3.1. The map λ : X −→ Lip(X) is continuous with respect to the

E(X)-topology on Lip(X).

Proof: Suppose that a sequence xn −→ x in X. Then, for any y ∈ X, we

have

〈λ(xn), ev(y)〉 = ρ(xn, y) −→ ρ(x, y) = 〈λ(x), ev(y)〉 .

Consequently, 〈λ(xn), ξ〉 −→ 〈λ(x), ξ〉 for any finite linear combination ξ of ele-

ments of ev(X). Finally, for any ε > 0 and any η ∈ E(X) there is ξ as above

with ‖ξ − η‖Lip(X)∗ < ε. Then

lim
n→∞

〈λ(xn), ξ〉 − ε(1 + diamX) ≤ lim inf
n→∞

〈λ(xn), η〉
≤ lim sup

n→∞
〈λ(xn), η〉

≤ lim
n→∞

〈λ(xn), ξ〉+ ε(1 + diamX)

as desired.

Now, let µ be a finite Borel regular measure supported on X; we may as well

assume that µ(X) = 1. We define a map

J : Lip(X)∗ −→ RX

by setting Jξ(x) = 〈ξ, λ(x)〉 for any ξ ∈ Lip(X)∗. Of course, the function Jξ is
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bounded by (1 + diamX) ‖ξ‖Lip(X)∗ but it need not be µ-measurable. However,

for ξ ∈ E(X) it is continuous. Then we have

Lemma 3.2. For any ξ ∈ E(X), the function Jξ represents an element

Jpξ ∈ Lp(µ), 1 ≤ p ≤ ∞, with ‖Jpξ‖Lp(µ) ≤ (1 + diamX) ‖ξ‖Lip(X)∗ .

We have thus defined, for each 1 ≤ p ≤ ∞, a bounded linear map

Jp : E(X) −→ Lp(µ) .

We next define J∗p : L
p(µ) −→ Lip(X) by setting (The adjoint notation will be

justified below.)

J∗pf(x) =

∫

X
f(y) ρ(x, y) dµ(y) .

Then ‖J∗pf‖Lip(X) ≤ (1 + diamX) ‖f‖Lp(µ). We may identify Lip(X) with a

subset of E(X)∗ and write Lip(X) ⊂ E(X)∗ by setting 〈f, ξ〉 = 〈ξ, f〉 for any

ξ ∈ E(X). That Lip(X) is actually a closed subset of E(X)∗, and that the above

correspondence is one-one are consequences of the following lemma.

Lemma 3.3. The space Lip(X) is a continuous linear retract of E(X)∗.

Proof: We define α : E(X)∗ −→ Lip(X) by setting α(ζ)(x) = 〈ζ, ev(x)〉, for
ζ ∈ E(X)∗. Then, for f ∈ Lip(X) ⊂ E(X)∗, we have α(f)(x) = 〈f, ev(x)〉 =
〈ev(x), f〉 = f(x). It is easily seen that ‖α(ζ)‖Lip(X) ≤ 2‖ζ‖E(X)∗ .

Now, for 1 < p <∞ and f ∈ Lp(µ), we define an element
∫

X f(y)λ(y) dµ(y) ∈
E(X)∗ by setting

〈
∫

X
f(y)λ(y) dµ(y), ξ

〉

=

∫

X
f(y) 〈λ(y), ξ〉 dµ(y) =

∫

X
f(y) Jqξ(y) dµ(y)

for 1/p+ 1/q = 1 and any ξ ∈ E(X).

Lemma 3.4. The element
∫

X f(y)λ(y) dµ(y) ∈ Lip(X) ⊂ E(X)∗ and for

1 < p <∞ we have

J∗pf =

∫

X
f(y)λ(y) dµ(y) .

Proof: It suffices to show that J∗pf and
∫

X f(y)λ(y) dµ(y) agree as bounded

linear functionals on E(X). First, they agree on ev(X) since

〈
∫

X
f(y)λ(y) dµ(y), ev(x)

〉

=

∫

X
f(y) ρ(x, y) dµ(y) = J∗pf(x) = 〈J∗pf, ev(x)〉 .
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Consequently, they agree on span{ev(X)} by linearity and on span{ev(X)} =

E(X) by continuity.

In what follows, 〈·, ·〉p,q denotes the pairing Lp(µ)×Lq(µ)−→R for 1/p+1/q=1.

We note that for 1 < p <∞ and 1/p+ 1/q = 1, we have

〈ξ, J∗q f〉 = 〈J∗q f, ξ〉 =

〈
∫

X
f(y)λ(y) dµ(y), ξ

〉

=

∫

X
f(y) Jpξ(y) dµ(y) = 〈Jpξ, f〉p,q ,

where ξ ∈ E(X) and f ∈ Lq(µ). This proves the following lemma.

Lemma 3.5. For 1 < p <∞ and 1/p+ 1/q = 1, we have

〈ξ, J∗q f〉 = 〈Jpξ, f〉p,q ,

where ξ ∈ E(X) and f ∈ Lq(µ).

Proposition 3.6. For 1 < p <∞, the map Jp : E(X) −→ Lp(µ) is compact.

Proof: It suffices to show that for any bounded net {ξi}i∈I ⊂ E(X), the net

{Jpξi}i∈I ⊂ Lp(µ) has a convergent subnet.

To this end, let {ξi}i∈I ⊂ E(X) be a net with ‖ξi‖Lip(X)∗ < K <∞ for all

i ∈ I. By Alaoglu’s Theorem, we may assume, without loss of generality, that

ξi
weak∗

−−−→ ξ ∈ Lip(X)∗. Thus, for any g ∈ Lq(µ), we have

lim
i∈I
〈Jpξi, g〉p,q = lim

i∈I
〈ξi, J∗q g〉 = 〈ξ, J∗q g〉 .

Moreover, ‖Jpξi‖p ≤ K(1 + diamX) for each i ∈ I. By the Riesz Representation

Theorem, there exists f ∈ Lp(µ) such that ‖f‖p ≤ K(1 + diamX) and f is the

weak limit of the net {Jpξi}i∈I ⊂ Lp(µ). That is, limi∈I〈Jpξi, g〉p,q = 〈f, g〉p,q
for every g ∈ Lq(µ). Because (X, ρ) is compact metric and µ is Borel regular,

the weak topology of Lp(µ) is metrizable. Therefore, there exists a sequence

i(1) < i(2) < · · · in the directed set I so that

weak- lim
n→∞

Jpξi(n) = f = weak- lim
i∈I

Jpξi .

There are two cases to consider:

Case 1. If the sequence {i(n)}n≥1 is not cofinal in I, the directed set I ′ =

{j : j > i(n), n = 1, 2, · · ·} is nonempty and cofinal in I. Furthermore, for each
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j ∈ I ′, the element Jpξj lies in the intersection of a countable base for the weak

topology at f ∈ Lp(µ). Hence, Jpξj = f and the net {Jpξj}j∈I′ is a subnet of

{Jpξi}i∈I , constant at f and so converging, now in the norm topology of Lp(µ),

to f .(3)

Case 2. If the sequence {i(n)}n≥1 is cofinal in I, we have

lim
i∈I

Jpξi(x) = lim
i∈I
〈ξi, λ(x)〉 = 〈ξ, λ(x)〉

for every x ∈ X. Thus, in the topology of pointwise convergence on RX , the net

{Jpξi}i∈I converges to the function γ : x 7→ 〈ξ, λ(x)〉. Therefore, the cofinal sub-

sequence {Jpξi(n)}n≥1 also converges pointwise to the function γ. Consequently,

the function γ is measurable and bounded by K(1 + diamX) since each of the

functions Jpξi(n), n ≥ 1, is so. It follows from the Bounded Convergence Theorem

that limn→∞ ‖Jpξi(n)‖Lp(µ) = ‖γ‖Lp(µ) and that

lim
n→∞

∫

X
Jpξi(n)(x) g(x) dµ(x) =

∫

X
γ(x) g(x) dµ(x)

for every g ∈ Lq(µ). Hence, limn→∞ ‖Jpξi(n) − γ‖Lp(µ) = 0 by the Banach–

Steinhaus Theorem.

Incidentaly, we find that γ = f so that Jpξ = f in the second case. At this

point we have the following commutative diagram

where the map ιρ : X −→ Lp(µ) is the canonical map ιρ(x) = ρ(x, ·) and Jp is a

compact linear operator for 1 < p < ∞.(4) Clearly, if ιρ is bi-Lipschitz, then so

is Jp ◦ ev and hence Jp : ev(X) −→ Jp (ev(X)) is a bi-Lipschitz equivalence.

Proof of Main Theorem: First assume that the canonical map ιρ is bi-

Lipschitz. Then Jp ◦ ev : X −→ Jp (ev(X)) must be bi-Lipschitz. Moreover, the

map Jp is compact and the map ev is Lipschitz. Accordingly, Theorem 2.5 implies

that there is a bi-Lipschitz embedding of X into some RN . The approximation

part of Main Theorem follows from the Complement to Theorem 2.5.

(3) Of course, we cannot say that Jp(ξ) ∈ Lp(µ) or that Jp(ξ) = f .
(4) Recall that both λ and ιρ are the map x 7→ ρ(x, ·). The difference is the choice of target

space.
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4 – The canonical map and point separation

Let (X, ρ, µ) be a compact metric-measure space. For simplicity, in this section

we restrict our attension to the case of p = 2 and consider the question of when

the canonical map ιρ : X −→ L2(µ) is Lipschitz below.

Theorem 4.1. Let (X, ρ, µ) be a compact metric-measure space. Then the

canonical map ιρ : X −→ L2(µ) is bi-Lipschitz if and only if the measure µ

separates points uniformly with respect to ρ.

Proof: Clearly, if µ separates points uniformly with respect to ρ, then there

exist c > 0 and ε > 0 with ‖ιρ(x)− ιρ(y)‖L2(µ) ≥ c
√
ε ρ(x, y) for all x, y ∈ X.

Conversely, suppose that ‖ιρ(x)− ιρ(y)‖L2(µ) ≥ Kρ(x, y) for some K > 0 and

all x, y ∈ X; we may assume that K < 1. For t ≥ 0, we define

f(t) = f(t : x, y) = µ
({

z : |ρ(x, z)− ρ(y, z)| ≥
√
t ρ(x, y)

})

.

Then f is a monotone decreasing function with f(t) ≡ 0 for t > 1. Hence,

K2 ≤
‖ιρ(x)− ιρ(y)‖2L2(µ)

ρ(x, y)2
= −

∫ 2

0
t df(t) =

∫ 1

0
f(t) dt .

Now assume, for contradiction, that for all r > 0 the square on the t-axis with

the lower left corner at the origin and side r fails to lie entirely under the graph

of s=f(t). Then the corner (r, r) lies above the graph so that the area under the

graph of s = f(t) from t = 0 to t = 1 lies in the union of rectangles ([0, 1]×[0, r])∪
([0, r]×[r, 1]). Thus

∫ 1
0 f(t) dt ≤ r + r(1−r). Consequently, we must have K2 ≤

r + r(1−r) for all r ∈ [0, 1] which is a contradiction. In fact, we have that the

square of side r◦ = 1−
√
1−K2 lies under the graph. This value of r is indepen-

dent of the choice of x and y and hence we have

µ
({

z : |ρ(x, z)− ρ(y, z)| ≥ √r◦ ρ(x, y)
})

≥ r◦

for all x, y ∈ X with x 6= y.

Theorem 4.2. Let X be a compact subset of a Hilbert space H with the

inherited metric and let µ be a finite Borel regular measure with closed support

X.

(1) If X is weakly spherically compact, then the canonical map ι : X −→
L2(µ) is bi-Lipschitz.
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(2) Assume that all atoms of µ are isolated. If the canonical map ι : X −→
L2(µ) is bi-Lipschitz, then X is weakly spherically compact.

Here and in the proof, ι stands for ι‖·‖H . We note that (2) follows from

Lemma 2.3 only when ι is C1; that is when the scaling dimension dim(µ) > 2,

see [19, Theorem 2.1].

Proof: To prove (1), let ν be the Lebesgue measure on R3 normalized so that

ν(D3) = 1, where D3 is the closed unit ball in R3. Let j : H×R3 −→ L2(µ×ν|D3)

be the canonical map defined by setting

j(u, v)(u′, v′) =
(

‖u− u′‖2H + ‖v − v′‖2R3

)1/2
= ‖(u, v)− (u′, v′)‖H×R3 .

It is shown in [19, Theorem 2.1] that this map j is C1 and bi-Lipschitz.(5) Thus,

for x, y ∈ X, we may calculate

K‖x− y‖H ≤ ‖j(x, 0)− j(y, 0)‖L2(µ×ν|
D3)

=

∫

D3

∫

X

∣

∣

∣

∣

‖(x, 0)− (u, v)‖H×R3 − ‖(y, 0)− (u, v)‖H×R3

∣

∣

∣

∣

2

dµ(u) dν(v)

≤
∫

D3

∫

X

∣

∣

∣‖x− u‖2H − ‖y − u‖2H
∣

∣

∣

2

(

‖x− u‖H + ‖y − u‖H

)2 dµ(u) dν(v)

= ‖ι(x)− ι(y)‖2L2(µ) .

Hence, ι is lower Lipschitz and so bi-Lipschitz.

For (2) it suffices, by Theorem 4.1, to show that if X is not weakly spherically

compact, then µ does not separate points uniformly with respect to ‖ · ‖H. If X

is not weakly spherically compact, there exists a pair of sequences {xn}n≥1 and

{yn}n≥1 in X, with xn 6= yn for all n, both converging to some x ∈ X such that

the sequence of unit vectors (xn − yn)/‖xn − yn‖H
weak
−−−→ 0; note that x cannot

be isolated. Let ε > 0 be given and consider

Xn =







z ∈ X :

∣

∣

∣‖xn − z‖H − ‖yn − z‖H

∣

∣

∣

‖xn − yn‖H
≥ ε







.

Then for z 6= x we have
∣

∣

∣‖xn − z‖H − ‖yn − z‖H

∣

∣

∣

‖xn − yn‖H
=

〈

xn − yn
‖xn − yn‖H

,
xn + yn − 2z

‖xn − z‖H + ‖yn − z‖H

〉

−→ 0 .

(5) The map j is C1 because the scaling dimension dim(µ× ν|D3) > 2.
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Thus, the characteristic functions χXn−{x} converges to zero pointwise. By the

Bounded Convergence Theorem µ(Xn − {x}) −→ 0 and so µ(Xn) −→ 0. Conse-

quently, for any c > 0, the inequality µ(Xn) ≥ c is impossible.

5 – Concluding Remarks

I. The following example shows that the two notions of spherical compactness

and weak spherical compactness are not the same.

Example 5.1. Let C be the Cantor ternary subset of [0, 1]. According

to [17], there is an infinite dimensional Hilbert space H and a bi-Lipschitz map

f : C −→ H such that any weakly convergent sequence of normalized secants in

f(C) has weak limit zero. That is, f(C) fails to be weakly spherically compact.

Let

Γ =
{

(x, f(x)) : x ∈ C
}

⊂ R×H .

This set Γ is weakly spherically compact but not spherically compact, as the

following argument shows.

For some 0 < a < A we have

a |x− y| ≤ ‖f(x)− f(y)‖H ≤ A |x− y| .

Let {(xn, f(xn))}n≥1 and {(yn, f(yn))}n≥1 be sequences in Γ, both converging to

some (x, f(x)) ∈ Γ, such that the sequence

ξn =
(xn − yn, f(xn)− f(yn))

√

|xn − yn|2 + ‖f(xn)− f(yn)‖2H

weak
−−−→ ξ .

We have that
1√

1 +A2
≤ |〈(1, 0), ξ〉| ≤ 1√

1 + a2
,

implying that ξ 6= 0 and so Γ is weakly spherically compact. But, we also

have that 〈(0, η), ξ〉 = 0 for any η ∈ H. Thus, ξ ∈ R and |ξ| = |〈(1, 0), ξ〉| ≤
(1 + a2)−1/2 < 1, implying that Γ is not spherically compact.

II. Of course if (X, ρ, µ) is as in the Main Theorem and ιρ fails to be Lipschitz

below, but ιρ|Y is Lipschitz below for some Y ⊂ X, then there is a bi-Lipschitz

embedding of Y into some RN . However, such Y may be uninteresting as the

following example shows: For X = f(C) as in I, ρ the metric on X inherited
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from H, and µ the standard probability measure from C, we see that for any

1 < p <∞, the map ιρ : X −→ Lp(µ) is bi-Lipschitz only on finite subsets of X.

This fact follows from an argument similar to the proof of Proposition 3.6.

Thus, X = f(C) gives an example of a space which admits a bi-Lipschitz

embedding into some RN even though ιρ fails, in a strong sense, to be lower

Lipschitz.

III. In [25, 26] it is shown that Lip([0, 1]) is not separable. The map λ : X −→
Lip(X) in Section 3 provides a quick and easy proof that Lip(X) is not separable

unless the compact space X is at most countable. Specifically, for x 6= y in X

we have

‖λ(x)− λ(y)‖Lip(X) = ρ(x, y) + 2

which proves the following proposition.

Proposition 5.2. Let X be a compact uncountable metric space. Then the

set λ(X) is closed, uncountable, and discrete in the norm topology of Lip(X).

In particular, Lip(X) is not separable.

In contrast, the map λ : X −→ Lip(X) is a topological embedding if Lip(X)

is equipped with the E(X)-topology.

IV. The choice of the map λ in Section 3 may be broadened considerably.

Suppose that λ̂ : X×X −→ R is symmetric and satisfies only
∣

∣

∣λ̂(x, y)− λ̂(x, y′)
∣

∣

∣ ≤ Kρ(y, y′)

for some 0 < K <∞. Then the maps λ : X −→ Lip(X) and ι : X −→ Lp(µ) are

defined in the obvious way:

ι(x) = λ(x) = λ̂(x, ·) .

Then the argument proving the Main Theorem actually proves the following

result.

Theorem 5.3. If the map ι : X−→ Lp(µ) is bi-Lipschitz for some 1<p<∞,

then there is a bi-Lipschitz embedding of (X, ρ) into some RN .

V. We note that the retraction α : E(X)∗ −→ Lip(X) in Lemma 3.3 ex-

tends to a retraction α : B∗ −→ Lip(X), where B is any closed linear subspace of

Lip(X)∗ containing E(X).
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VI. The results of this paper do not assume the doubling condition on

the metric (equivalently, finiteness of Assouad dimension dimA; see [2, 3, 12]).

Rather, the finiteness of Assouad dimension here appears as consequence. In fact,

by combining with [14], one arrives at the following result.

Proposition 5.4. If a compact metric-measure space (X, ρ, µ) has a lower

Lipschitz canonical map ιρ : X −→ Lp(µ), for some 1 < p <∞, then

(1) dimA(X) <∞, and

(2) (X, ρ) supports a doubling measure ν (not necessarily = µ).

VII. Tomi Laakso(6) has informed us that his non-embeddability theorem [9]

can be generalized in such a way that the non-embeddability theorem of Cheeger

[4] no longer implies it. In a forthcoming paper, he gives a sufficient condition for

a metric space to admit no bi-Lipschitz embedding into uniformly convex Banach

spaces. Furthermore, he shows that there exists a metric space which does not

admit a bi-Lipschitz embedding into any uniformly convex Banach space even

though it admits a David-Semmes regular mapping onto R2.

VIII. Let X be the Heisenberg group modulo its integer lattice and let ρ

be any metric on X, bi-Lipschitz equivalent to the Carnot–Carathéodory metric.

If the canonical measure µ on X should separate points uniformly with respect

to ρ, then by Theorem 4.1, the canonical map ιρ : X −→ L2(µ) would be lower

Lipschitz and hence there would be a bi-Lipschitz embedding of (X, ρ) into some

RN . However, it is well known that no such embedding exists [12, 21].

IX. Unfortunately, the canonical map is not a bi-Lipschitz invariant of the

metric. It may happen that ιρ is not bi-Lipschitz, but ισ is bi-Lipschitz for some

metric σ, bi-Lipschitz equivalent to ρ. However, we do have the following:

Complement to Main Theorem. If there exists a bi-Lipschitz embedding

of (X, ρ) into some RN , then the metric σ induced on X by the embedding has

a bi-Lipschitz canonical map ισ : X −→ Lp(µ) for all 1 < p <∞.

Proof: Let ϕ : X −→ RN be a bi-Lipschitz embedding. Let σ be the pull-

back of the Euclidean metric e on RN restricted to ϕ(X). Then (X,σ) is bi-

Lipschitz equivalent to (X, ρ) and the map ϕ : (X,σ) −→ (ϕ(X), e) is an isom-

etry. Replacing X with X×S2 if necessary, we may assume that the scaling

(6) Private Communication.
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dimension dim(X) > 1. It then follows from [19, Corollary 2.2] that the map

ιe : ϕ(X) −→ Lp(ϕ∗µ) is a C
1 embedding for 1<p<dimX, and so a bi-Lipschitz

embedding. Then the commutative diagram

with ϕ∗ an isometry, shows that ισ : X −→ Lp(µ) is bi-Lipschitz.

Finally, we note that if ισ : X −→ Lp(µ) is bi-Lipschitz for some p, then

ισ : X −→ Lp
′

(µ) is bi-Lipschitz for all p′ ≥ p.

Given a compact metrizable spaceX supporting a finite Borel regular measure

µ which is nontrivial on nonempty open sets, we let M(X) denote the set of all

metrics onX which are continuous onX×X. There is a natural but not Hausdorff

topology on M(X) with the property that the (possibly empty) subset

I(X) =
{

all metircs ρ ∈M(X) with lower Lipschitz canonical map ιρ
}

is open. This topology on M(X) is determined by a pseudometric D, given by

D(ρ, σ) = sup
x6=y

∥

∥

∥

∥

ιρ(x)− ιρ(y)
ρ(x, y)

− ισ(x)− ισ(y)
σ(x, y)

∥

∥

∥

∥

L2(µ)

.

That D is a pseudometric follows from D(ρ, cρ) = 0 for any c > 0. We note that

the closely related number supx6=y ‖(ιρ(x)− ιρ(y))/ρ(x, y)‖L2(µ) is simply Lip(ιρ).

Clearly if Lip(ιρ) = 0, then (X, ρ) is a finite space with all distances equal.

As mentioned above, two metrics in M(X) may be bi-Lipschitz equivalent with

one in I(X) and the other not. An open problem is to determine whether every

metric sufficiently near (with respect to D) to ρ ∈ I(X) must be bi-Lipschitz

equivalent to ρ. This problem is of interest in the following situation: X is a

compact subset of some (finite dimensional) Euclidean space with the inherited

metric ρ and suitable measure µ. Then ρ ∈ I(X) and there is a bi-Lipschitz

embedding of (X,σ) into some Euclidean space for any σ ∈ M(X) with D(ρ, σ)

sufficiently small. This construction would yield new examples of spaces which

admit bi-Lipschitz embeddings into Euclidean spaces, provided that one could

arrange for σ not to be bi-Lipschitz equivalent to ρ.
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X. The following is an immediate corollary of the Main Theorem and Theorem

4.1.

Corollary 5.5. Let (X, ρ) be a compact metric space. Then there exists

a bi-Lipschitz embedding of (X, ρ) into some RN if and only if there is a finite

Borel regular measure µ with closed support X which separates points uniformly

with respect to a metric σ, bi-Lipschitz equivalent to ρ.

Finally, by combining Theorem 4.1 and Theorem 4.2, we see that for a compact

metric-measure space (X, ρ, µ), the condition that the canonical map ιρ : X −→
Lp(µ) is bi-Lipschitz for some 1 < p < ∞ may be viewed as a generalization of

weak spherical compactness for a compact subset of a Hilbert space.

APPENDIX — L-bi-Lipschitz embeddings

It is obvious that any finite metric space admits bi-Lipschitz embeddings into

RN for any N ≥ 1. However, the upper (or lower) Lipschitz constant may depend

on N and be very large (or very small). Also, since any compact metric space

may be “approximated” as closely as we please by finite subsets, the following

question arises naturally: When does bi-Lipschitz embeddability of ε-dense sub-

spaces imply bi-Lipschitz embeddability of the space itself ? The purpose of this

appendix is to provide an answer to this question.

We begin by recalling that a map f : X −→ Y of metric spaces is an

L-bi-Lipschitz embedding for some L ≥ 1 if and only if

ρX(x, x′)/L ≤ ρY
(

f(x), f(x′)
)

≤ LρX(x, x′) .

for all x, x′ ∈ X.

Now let (X, ρ) be a metric space, let ε > 0, and let L ≥ 1. We set

N(X, ε, L) = min
{

n ≥ 0 | There exists an ε-dense closed subset Xε ⊂ X

and an L-bi-Lipschitz embedding f : Xε ↪→ Rn
}

.

Theorem A.1. Let (X, ρ) be a metric space with diam(X) <∞ and

let L ≥ 1. If lim infε→0 N(X, ε, L) ≤ N for some N ∈ N, then there is an

L-bi-Lipschitz embedding f : X ↪→ RN .
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Proof: Let ε1>ε2> · · ·↘0 be such that N(X, εi, L) ≤ N with
∑

i≥1 εi <∞
and let ε > 0. Let Xi be a closed εi-dense subset of X with fi : Xi ↪→ RN an

L-bi-Lipschitz embedding.

Claim 1. If lim infε→0 N(X, ε, L) ≤ N , then limε→0 N(X, ε, L) exists and is

≤N .

To see this, we note that for any ε > 0 we have some εi < ε with an εi-dense

subset Xi and an L-bi-Lipschitz embedding fi : Xi ↪→ RN . The εi-dense subset

Xi is ε-dense in X and hence N(X, ε, L) ≤ N ; the claim follows.

Now, since diam(X) <∞, we may assume that for each i ≥ 1 the set Yi =

fi(Xi) ⊂ B(0, R) ⊂ RN . Here B(0, R) denotes the closed ball of radius R centered

at 0. Moreover, since Yi is closed for each i ≥ 1, we may assume, by taking

subsequences, that the sequence {Yi}i≥1 converges in the Hausdorff metric to

some set Y ⊂ B(0, R).

For each i ≥ 1, we define a map ψi : Xi −→ Xi+1 by choosing ρ (ψi(x), x) <

εi+1. We may then define ϕi : Yi −→ Yi+1 so that the diagram

commutes. For j > i, we set ϕji = ϕj−1 ◦ · · · ◦ ϕi : Yi −→ Yj . We choose a sub-

sequence 1 = i(1, 1) < i(1, 2) < i(1, 3) < · · · so that the sequence
{

ϕ
i(1,k)
i(1,1)(y)

}

k≥1

converges for each y ∈ Yi(1,1). Then we choose a subsequence i(1, 2) = i(2, 2) <

i(2, 3) < i(2, 4) < · · · so that the sequence
{

ϕ
i(2,k)
i(2,2)(y)

}

k≥1
converges for each

y ∈ Yi(2,2). Inductively, we choose a subsequence

i(j − 1, j) = i(j, j) < i(j, j + 1) < i(j, j + 2) < · · ·

so that the sequence
{

ϕ
i(j,k)
i(j,j)(y)

}

k≥1
converges for each y ∈ Yi(j,j). The next step

is Cantor diagonalization: We set

X̂n = Xi(n,n) , f̂n = fi(n,n) and Ŷn = Yi(n,n) .

Then for m > n, the maps σmn : X̂n −→ X̂m and τmn : Ŷn −→ Ŷm are defined the

obvious way. Also the sequence ε̂n = εi(n,n)↘0 as n→∞ with
∑

n≥1 ε̂n <∞.

Now let x ∈ X and choose x̂n(x) ∈ X̂n so that ρ (x, x̂n(x)) < ε̂n and set

ŷn(x) = f̂n (x̂n(x)).
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Claim 2. The limit limn→∞ ŷn(x) exists.

For proof of the claim, we note that ρ (x̂n(x), x̂n+1(x)) < ε̂n + ε̂n+1. Hence,

‖ŷn(x)−ŷn+1(x)‖ < L(ε̂n+ε̂n+1) implying that ‖ŷn(x)−ŷm(x)‖ < 2L
∑

j≥n ε̂j for

n ≤ m. Consequently, the sequence {ŷn(x)}n≥1 ⊂ B(0, R) is a Cauchy sequence;

this fact establishes the claim.

Finally, we define a map f : X −→ RN by setting f(x) = limn→∞ ŷn(x). Then

‖f(x)− f(x′)‖ = limn→∞ ‖ŷn(x)− ŷn(x′)‖ for x, x′ ∈ X. But limn→∞ x̂n(x) = x

for each x ∈ X, and

ρ
(

x̂n(x), x̂n(x
′)
)

/L ≤ ‖ŷn(x)− ŷn(x′)‖ ≤ Lρ
(

x̂n(x), x̂n(x
′)
)

.

Hence, by taking the limit as n→∞, we have

ρ
(

x, x′
)

/L ≤ ‖f(x)− f(x′)‖ ≤ Lρ
(

x, x′
)

.

The following is an immediate corollary of the above theorem.

Corollary A.2. Let (X, ρ) be a metric space with diam(X) < ∞ and let

L ≥ 1. If lim infε→0 N(X, ε, L) ≤ N , then the Assouad dimension dimA(X) ≤ N .

For the definition of Assouad dimension see [2, 3, 12].

Now, given D > 0 and a function η : (0,∞) −→ N with the property that

limε→0 η(ε) exists, we set

C (D,L, η(·)) = The class of all compact metric spaces X with

diam(X) ≤ D and N(X, ε, L) ≤ η(ε) .

The following is another immediate corollary of Theorem A.1.

Corollary A.3. The class C (D,L, η(ε)) is Hausdorff–Gormov compact.

This corollary is related to the following result of Gromov.

Theorem A.4 ([Gromov]). A classM of compact metric spaces is Hausdorff–

Gromov pre-compact if and only if there is a function n : (0,∞) −→ N such that

for any ε > 0 any X ∈M can be covered by n(ε)-many ε-balls.

By setting n(ε)=(D/ε)η(ε) we see that Theorem A.4 implies that C(D,L, η(ε))

is Hausdorff–Gromov pre-compact; it does not, however, imply that C(D,L, η(ε))

is Hausdorff–Gromov closed.
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