PORTUGALIAE MATHEMATICA Vol. 62 Fasc. 2 – 2005 Nova Série

EVERY NILPOTENT OPERATOR FAILS TO DETERMINE THE COMPLETE NORM TOPOLOGY

MOURAD OUDGHIRI and MOHAMED ZOHRY

Recommended by A. Ferreira dos Santos

Abstract: We show that every nilpotent operator T, on an infinite-dimensional Banach space X, provides a decomposition of X into a direct sum of a finite number of subspaces with sufficiently connections. Finally we construct a complete norm on X that makes T continuous and not equivalent to the original norm on X.

1 – Introduction

The uniqueness of norm problem was initiated fifty years ago by C.E. Rickart [4] and his results were complemented by B.E. Johnson [3]. But the investigation of operators determining the complete norm topology in the context of Banach algebra is recent. It starts with the work of A.R. Villena [5] primarily for C(K) spaces and uniform algebras, where it was shown that for a compact Hausdorff space K without isolated points and $f \in C(K)$, every complete norm on C(K) which makes continuous the multiplication by f is equivalent to the supremum norm if and only if $\{\omega \in K : f(\omega) = \lambda\}$ has no interior points whenever λ lies in \mathbb{C} . Later K. Jarosz [1] generalizes the result of Villena by extending it to a larger class of algebras. Further interesting results have recently been established in [2].

This leaves the more general problem of investigating those bounded linear operators T on an infinite-dimensional Banach space $(X, \|\cdot\|)$, for which every complete norm $|\cdot|$ on X making continuous the operator T from $(X, |\cdot|)$ into

Received: October 10, 2003; Revised: July 7, 2004.

AMS Subject Classification: 47A53, 47A68, 46B04.

Keywords: uniqueness of complete norm topology; nilpotent operator.

186 MOURAD OUDGHIRI and MOHAMED ZOHRY

 $(X, |\cdot|)$ is automatically equivalent to $||\cdot||$. Such an operator is said to determine the complete norm topology of X. In the present paper, we will prove that a nilpotent bounded linear operator does not determine the complete norm topology of an arbitrary infinite-dimensional Banach space. Moreover we construct a complete norm on X making the operator continuous and not equivalent to the original norm.

2 - The result

In the following, let $(X, \|\cdot\|)$ be an infinite-dimensional Banach space over \mathbb{R} or \mathbb{C} , and let BL(X) denote the Banach algebra consisting of all bounded linear operators on X.

We begin with the following useful result on algebraically complementary linear subspaces of a Banach space.

Lemma 1. Let $\{Y, Z\}$ be a pair of algebraically complementary linear subspaces of X such that Y is closed. If for $y \in Y$ and $z \in Z$ we define |y+z| = ||y|| + ||z+Y||, then

- (i) $|\cdot|$ is a complete norm on X;
- (ii) $|\cdot|$ is equivalent to $||\cdot||$ if and only if Z is closed.

Proof: (i) Clearly $|\cdot|$ is a norm in X. Let $\{x_n\}_n$ be any $|\cdot|$ -Cauchy sequences in X. Then there exist $||\cdot||$ -Cauchy sequences $\{y_n\}_n$ and $\{z_n + Y\}_n$ respectively in Y and X/Y such that $x_n = y_n + z_n$ for $n \in \mathbb{N}$. Since Y is closed, there exist $y \in Y$ and $u \in X$ such that $\{y_n\}_n$ converges to y and $\{z_n + Y\}_n$ converges to u + Y. Now it suffices to choose an element $z \in Z$ such that u + Y = z + Y to obtain that $\{x_n\}_n$ is $|\cdot|$ -convergent to x = y + z.

(ii) Suppose that the conditions of the lemma are fulfilled. Then Z is closed if and only if there exists a projection operator $p \in L(X)$ such that $\operatorname{Im} p = Y$. If $|\cdot|$ is equivalent to $||\cdot||$, then there exists $\alpha > 0$ such that $|\cdot| \leq \alpha ||\cdot||$. For x = y + z with $y \in Y$ and $z \in Z$, set p(x) = y. Then is a linear operator defined on X, p is idempotent and $\operatorname{Im} p = Y$, ker p = Z. Futhermore, $p \in BL(X)$, since

$$||p(y+z)|| = ||y|| \le |y+z| \le \alpha ||y+z||$$

that is, p is the bounded projection operator of X onto Y along Z. Thus $Z = \ker p$ is closed. Conversely, if Z is closed then it is easy to check that p is continuous

and consequently Y and Z are now topologically complementary. Therefore there exists $\alpha > 0$ such that $||y|| + ||z|| \le \alpha ||y + z||$ for every $y \in Y$ and $z \in Z$; hence

$$|y+z| = ||y|| + ||z+Y|| \le ||y|| + ||z|| \le \alpha ||y+z|| ,$$

which means that $|\cdot|$ is equivalent to $||\cdot||$.

In the same vein, we obtain the following result.

Lemma 2. Let $\{Y_i\}_{i=1}^n$ be a family of closed subspaces of X and $\{X_i\}_{i=1}^n$ be a family of subspaces of X such that

- (i) $Y_1 \subsetneq Y_2 \subsetneq \cdots Y_{n-1} \subsetneq Y_n = X;$
- (ii) $Y_{i+1} = Y_i \oplus X_{i+1}, \ 1 \le i \le n-1;$
- (iii) $X_1 = Y_1$.

Then $X = X_1 \oplus X_2 \oplus \cdots \oplus X_n$ and the norm on X defined by

$$|x_1 + x_2 + \dots + x_n| = ||x_1|| + \sum_{i=2}^n ||x_i + Y_{i-1}||$$

is complete. Actually $|\cdot|$ is equivalent to $||\cdot||$ if and only if each X_i is closed for $1 \le i \le n$.

Proof: Let $\{x_k\}_k$ be a $|\cdot|$ -Cauchy sequence in X. Then there exist sequences $\{x_{k,i}\}_k$ in X_i such that $\{x_{k,1}\}_k$ is a $\|\cdot\|$ -Cauchy sequence in X_1 and $\{x_{k,i+1} + Y_i\}_k$ is a $\|\cdot\|$ -Cauchy sequence in Y_{i+1}/Y_i for all $i \in \{1, 2, \ldots, n-1\}$. Since $X_1 = Y_1$ there exist $x_1 \in X_1$ and $u_{i+1} \in Y_{i+1}$ such that $\{x_{k,1}\}$ is $\|\cdot\|$ -convergent to $x_1 \in X_1$ and $\{x_{k,i+1}\}_k$ is $\|\cdot\|$ -convergent to $u_{i+1} + Y_i$ for all $i \in \{1, 2, \ldots, n-1\}$. Finally by the argument used in Lemma 1, there exist $x_i \in X_i$ $(2 \le i \le n)$ such that $u_{i+1} + Y_i = x_{i+1} + Y_i$ for all $i \in \{1, 2, \ldots, n-1\}$. Hence, the sequence $\{x_k\}_k$ is $|\cdot|$ -convergent to the element $x_1 + x_2 + \cdots + x_n$, which means that $|\cdot|$ is complete on X.

Now if $|\cdot|$ is equivalent to $||\cdot||$, we suppose inductively that X_1, X_2, \ldots, X_i are closed and we prove that X_{i+1} is also closed. Then there exists $\alpha > 0$ such that for all $x_j \in X_j$, $(1 \le j \le i)$

$$||x_1|| + ||x_2|| + \dots + ||x_i|| \le \alpha ||x_1 + x_2 + \dots + x_i||$$

then

$$||x_1|| + ||x_2 + Y_1|| + \dots + ||x_i + Y_{i-1}|| \le \alpha ||x_1 + x_2 + \dots + x_i||,$$

MOURAD OUDGHIRI and MOHAMED ZOHRY

hence, if $\beta = \max(1, \alpha)$, we obtain

$$|x_1 + x_2 + \dots + x_i + x_{i+1}| \le \beta \left(||x_1 + x_2 + \dots + x_i|| + ||x_{i+1} + Y_i|| \right)$$

Since by hypothesis $\|\cdot\|$ is equivalent to $|\cdot|$, Lemma 1 implies X_{i+1} is closed, which proves that X_i is closed for all $i \in \{1, 2, ..., n\}$. Now suppose that all the subspaces X_i $(1 \le i \le n)$ are closed. In this case the direct sum X = $X_1 \oplus X_2 \oplus \cdots \oplus X_n$ is topologic and then there exists $\alpha > 0$ such that for all $x_i \in X_i$, $(1 \le i \le n)$

$$||x_1|| + ||x_2|| + \dots + ||x_n|| \le \alpha ||x_1 + x_2 + \dots + x_n||,$$

then

 $|x_1 + x_2 + \dots + x_n| \le ||x_1|| + ||x_2|| + \dots + ||x_n|| \le \alpha ||x_1 + x_2 + \dots + x_n||.$

Hence $|\cdot|$ and $||\cdot||$ are equivalent.

The following shows that a nilpotent operator provide an interesting decomposition of an infinite-dimensional Banach space.

Proposition 3. Let $T \in BL(X)$ such that $T^{n+1} = 0$ and $T^n \neq 0$. Then there exists a family $\{X_i\}_{i=1}^{n+1}$ of subspaces of X such that:

- (i) $X = X_1 \oplus X_2 \oplus \cdots \oplus X_{n+1}, X_1 = \ker T;$
- (ii) $T(X_{i+1}) \subseteq X_i, \ 1 \le i \le n;$
- (iii) $\ker T^{i+1} = \ker T^i \oplus X_{i+1}, \ 1 \le i \le n.$

Proof: Let $X = \ker T^n \oplus X_{n+1}$, where X_{n+1} is an algebraic complement of $\ker T^n$. It is easy to check that

 $T(X_{n+1}) \subseteq \ker T^n$ and $T(X_{n+1}) \cap \ker T^{n-1} = \{0\}$.

Then there exists a subspace X_n of X such that

$$T(X_{n+1}) \subseteq X_n$$
 and $\ker T^n = \ker T^{n-1} \oplus X_n$.

We have also $T(X_n) \cap \ker T^{n-2} = \{0\}$ and $T(X_n) \subseteq \ker T^{n-1}$, hence there exists a subspace X_{n-1} of X satisfying $T(X_n) \subseteq X_{n-1}$ and $\ker T^{n-1} = \ker T^{n-2} \oplus X_{n-1}$. Further application of the arguments used above gives a family $\{X_i\}_{i=2}^{n+1}$ of subspaces of X with the desired properties.

188

We are now in a position to establish our main result.

Theorem 4. A nilpotent operator on a Banach space does not determine the complete norm topology of the Banach space.

Proof: Let $(X, \|\cdot\|)$ be a Banach space and $T \in BL(X)$ a nilpotent operator such that $T^{n+1} = 0$ and $T^n \neq 0$. Then there exists a family $\{X_i\}_{i=2}^n$ of subspaces of X verifying the properties of Proposition 3.

First case. Suppose that there exist $i_0 \in \{2, \ldots, n\}$ such that X_{i_0} is not closed, then since $X = \ker T \oplus X_2 \oplus \cdots \oplus X_{n+1}$, the norm $|\cdot|$ on X given by

$$|x_1 + x_2 + \dots + x_{n+1}| = ||x_1|| + \sum_{i=2}^{n+1} ||x_i + \ker T^i||$$

is a complete norm on X not equivalent to $\|\cdot\|$. However for all $x_i \in X_i$, $(1 \le i \le n+1)$ we have

$$|T(x_1 + x_2 + \dots + x_{n+1})| = |T(x_2) + T(x_3) + \dots + T(x_{n+1})|$$

= $||T(x_2)|| + \sum_{i=3}^{n+1} ||T(x_i)| + \ker T^{i-2}||$

and for $3 \le i \le n+1$ we have

$$||T(x_i) + \ker T^{i-2}|| \le ||T(x_i) + T(x)|| \le ||T|| ||x_i + x|| \quad \forall x \in \ker T^{i-1};$$

hence

$$||T(x_i) + \ker T^{i-2}|| \le ||T|| ||x_i + \ker T^{i-1}||$$
 for $3 \le i \le n+1$.

Therefore

$$|T(x_1 + x_2 + \dots + x_{n+1})| \leq ||T|| \left(||x_2 + \ker T|| + \sum_{i=3}^{n+1} ||x_i + \ker T^{i-1}|| \right)$$

$$\leq ||T|| |x_1 + x_2 + \dots + x_{n+1}|.$$

Then T is continuous from $(X, |\cdot|)$ to $(X, |\cdot|)$ and so T doesn't determine the complete norm topology of X.

Second case. Suppose that X_i is closed for all $i \in \{1, 2, ..., n+1\}$. Since ker T is infinite-dimensional, one can find a discontinuous linear functional φ_1 on ker T

00 MOURAD OUDGHIRI and MOHAMED ZOHRY

and $z \in X_{n+1}$ such that $\varphi_1(T^n(z)) = 1$. For $i \in \{2, 3, ..., n+1\}$, let φ_i be the linear functional on X_i given by

$$\varphi_{i+1} = \varphi_i \circ T_{|X_{i+1}}, \quad 1 \le i \le n ,$$

and $F_i \in L(X)$ defined by

$$F_i(x) = x - 2 \varphi_i(x) T^{n-(i-1)}(z) \quad \forall x \in X_i, \ 1 \le i \le n.$$

It is easy to show that $\varphi_i(T^{n-(i-1)}(z)) = 1$ for all i = 2, ..., n. We claim that for all $1 \le i \le n$, F_i defines a linear bijection from X_i onto itself with $F_i^{-1} = F_i$. Indeed, fix i in $\{1, 2, ..., n\}$ and let x be an element in X_i such that $F_i(x) = x - 2\varphi_i(x)T^{n-(i-1)}(z) = 0$. Then applying φ_i , we obtain

$$0 = \varphi_i(x) - 2\varphi_i(x)\varphi_i(T^{n-(i-1)}(z)) = -\varphi_i(x) + \varphi_i(x) + \varphi_i$$

and so x = 0. Now if $y = F_i(x) = x - 2\varphi_i(x) T^{n-(i-1)}(z)$, arguing as before, we deduce that $\varphi_i(y) = -\varphi_i(x)$ and that $x = y - 2\varphi_i(y) T^{n-(i-1)}(z)$ which is our claim. Consider for $1 \le i \le n+1$, the norms N_i on X_i and N on X defined by

$$N_i(x) = \|x - 2\varphi_i(x) T^{n-i+1}(z)\| \quad \forall x \in X_i ,$$

and

$$N(x_1 + x_2 + \dots + x_{n+1}) = \sum_{i=1}^{n+1} N_i(x_i) \quad \forall x_i \in X_i, \ 1 \le i \le n+1.$$

Since, the norm $\|\cdot\|$ is complete and for $1 \le i \le n$, F_i is an isometry from (X_i, N_i) onto $(X_i, \|\cdot\|)$, the norm N_i is also complete. Now

$$N(T(x_1 + x_2 + \dots + x_{n+1})) = N(T(x_2) + \dots + T(x_{n+1}))$$

= $N_1(T(x_2)) + \dots + N_n(T(x_{n+1}))$.

Since

$$N_{i}(T(x_{i+1})) = \left\| T(x_{i+1}) - 2\varphi_{i}(T(x_{i+1}))T^{n-i+1}(z) \right\|$$

= $\left\| T(x_{i+1}) - 2\varphi_{i+1}(x_{i+1})T^{n-i+1}(z) \right\|$
 $\leq \|T\| \left\| x_{i+1} - 2\varphi_{i+1}(x_{i+1})T^{n+1-(i+1)}(z) \right\|$
 $\leq \|T\| N_{i+1}(x_{i+1}),$

190

we obtain $N(T(x)) \leq ||T|| N(x)$. Hence T is continuous from (X, N) to (X, N), but since φ_1 is discontinuous, N_1 is not equivalent to $|| \cdot ||$ on ker T and then N is not equivalent to $|| \cdot ||$ on X, which shows that T does not determine the complete norm topology of X.

It would be desirable to know if every bounded quasi-nilpotent operator fails to determine the complete norm topology of an infinite-dimensional Banach space.

ACKNOWLEDGEMENTS – The authors would like to express their gratitude to the referee for several remarks.

REFERENCES

- JAROSZ, K. Linear maps determining the norm topology, Trans. Amer. Math. Soc., 353(2) (2000), 723–731.
- [2] JAROSZ, K. Uniqueness of translation invariant norms, J. Funct. Anal., 174(2) (2000), 417–429.
- [3] JOHNSON, B.E. The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc., 73 (1967), 537–539.
- [4] RICKART, C.E. The uniqueness of norm problem in Banach algebras, Ann. of Math., 51(2) (1950), 615–628.
- [5] VILLENA, A.R. Operators determining the the complete norm topology of $C(\mathcal{K})$, Studia Math., 124(2) (1997), 155–160.

Mourad Oudghiri and Mohamed Zohry, Department of Mathematics, University Abdelmalek Essaadi, BP 2121, Tetouan - MOROCCO E-mail: mourad_oudghiri@hotmail.com zohry@fst.ac.ma