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EXACT TRAVELING WAVE SOLUTIONS
FOR DISCRETE CONSERVATION LAWS
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Recommended by L. Sanchez

Abstract: In this paper, sine, cosine, hyperbolic sine and hyperbolic cosine trav-

elling wave solutions for a class of linear partial difference equations modeling discrete

conservation laws are obtained.

1 – Introduction

Consider a chain of chambers which interact through exchange of material.

Assume the chain can be modeled by a doubly infinite sequence of identical

chambers and that our material can, in a specific time period t, only flow from

the (n− 1)-th chamber to the n-th chamber. Let u(t)n be the size of the material

in the n-th chamber and in the time period t. Then a dynamical model describing

the interaction as time evolves may take the form

u(t+1)n − u(t)n = F
(

u
(t)
n−1 − u(t)n

)

,

which roughly says that the increase or decrease of the size of the material in the

n-th chamber in one time period is ‘balanced’ by the decrease or increase of the

size of the material in the neighboring chamber.
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In particular, when our interaction assumes that u
(t+1)
n − u

(t)
n is proportional

to u
(t)
n−1 − u

(t)
n , say, r

(

u
(t)
n−1 − u

(t)
n

)

, then we have the following dynamic model

u(t+1)n − u(t)n = r
(

u
(t)
n−1 − u(t)n

)

,(1)

where r is a proportionality constant.

Clearly, the above equation is a special case of the following more general

conservation law

u(t+1)n = au(t)n + bu
(t)
n−1 , ab 6= 0 ,(2)

where n ∈ Z = {...,−2,−1, 0,+1, ...} and t ∈ N = {0, 1, 2, ...}.
We remark that when either a or b is 0, the equation in (2) is quite simple.

For this reason, we have assumed that ab 6= 0.
For equation (2), the existence and uniqueness of solutions is easy to see.

Indeed, if the initial distribution {u(0)n }n∈Z is known, then we may calculate
successively the sequence

u
(1)
−1, u

(1)
0 , u

(1)
1 ; u

(1)
−2, u

(2)
−1, u

(2)
0 , u

(2)
1 , u

(1)
2 , ...

in a unique manner, which will give rise to a unique solution of (2).

An interesting question arises as to whether there is a solution
{

u
(t)
n

}

of (2)

such that u
(t+1)
n = u

(t)
n−m for some integer m and all n and all t. If such a solution

exist, it is naturally called a traveling wave since in one period of time, the initial

distribution is shifted m units to the right if m is positive, or m units to the left

if m is negative. In the particular case when m is 0, there is no shift and the

corresponding solution is also called a stationary wave solution. For instance, the

equation (1) has a traveling wave solution
{

u
(t)
n

}

defined by u
(t)
n = 1 for t ∈ N

and n ∈ Z.

Traveling wave solutions are the subject of many investigations, see e.g. [1].

In particular, in [2], positive traveling wave solutions of the form

u(t)n = λn−mt , m ∈ Z, λ > 0, n ∈ Z, t ∈ N .

have been found for the equation

u(t+1)n = au
(t)
n−1 + bu(t)n + cu

(t)
n+1 , n ∈ Z, t ∈ N ,(3)

where the coefficients a, b and c are real numbers. In this paper, we will be inter-

ested in finding additional traveling wave solutions for the more special equation

(2). As we will see later, these solutions are related to the sine, cosine, hyperbolic

sine and hyperbolic cosine functions.
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For background materials involving equations such as (1) and (3), the book

by Cheng [3] can be consulted. An example illustrating the use of traveling wave

solutions is also included in the last section for additional illustration.

As in [1,2], we first observe that a traveling wave solution is of the form

u(t)n = ϕ(n−mt) , n ∈ Z, t ∈ N .(4)

Indeed, if u
(t)
n = ϕ(n−mt) for some function ϕ : Z → R, then u

(t+1)
n = u

(t)
n−m for

all n ∈ Z and t ∈ N. Conversely, if we let ϕ(k) = u
(0)
k for k ∈ Z, then

u(t)n = u
(t−1)
n−m = u

(t−2)
n−2m = ... = u

(0)
n−mt = ϕ(n−mt)

as required.

Before we discuss the main results, we first consider the stationary solution

of (2). Note that if m = 0, then

u(t)n = ϕ(n) = u(0)n , t ∈ N, n ∈ Z ,

and

(1− a)ϕ(n) = b ϕ(n− 1) , n ∈ Z .

Thus

ϕ(n) =
1− a

b
ϕ(n+ 1) , n ∈ Z .(5)

The converse also holds as can be verified easily.

Theorem 1. Let {ϕ(n)}n∈Z be a real sequence defined by (5). Then the

initial distribution
{

u
(0)
n

}

= {ϕ(n)}n∈Z determines a stationary solution of (2).

Conversely, if
{

u
(t)
n

}

is a stationary solution of (2), then u
(0)
n = b−1(1 − a)u

(0)
n+1

for all n ∈ Z.

We remark that in case a = 1, the real sequence {ϕ(n)}n∈Z that satisfies (5)
is the trivial sequence, and in case a 6= 1, the real sequence {ϕ(n)}n∈Z defined
by (5) is of the form

ϕ(n) =

(

1− a

b

)−n

ϕ(0) , n ∈ Z .

Next we discuss non-stationary traveling wave solutions. Substituting

ϕ (n−mt) into the equations (2), we obtain

ϕ (n−mt−m) = aϕ (n−mt) + bϕ (n−mt− 1) .(6)
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Letting k = n−mt, we obtain the difference equation

ϕ (k −m) = aϕ (k) + bϕ (k − 1) , k ∈ Z .(7)

In principle, if we can find an integerm and a corresponding solution {ϕ(k)}k∈Z
of (7), then (4) defines a traveling wave solution of (2). To this end, we apply the

well known result that the unknown solution is a linear combination of solutions

of the form
{

λk
}

. Substituting ϕ(k) = λk into (7), we obtain the characteristic

equation

aλm + bλm−1 − 1 = 0 .(8)

For each integer m, we may then try to solve for the corresponding roots λ.

As an example, let us consider the equation

ϕ(k − 3) = 4ϕ(k) + 2ϕ(k − 1) .

Solving the characteristic equation 4λ3 + 2λ2 − 1 = 0, we obtain roots
1
2 ,−12 − 1

2 i,−12 + 1
2 i. Hence the equation

u(t+1)n = 4u(t)n + 2u
(t)
n−1 , n ∈ Z, t ∈ N ,

has the traveling solutions
{

u
(t)
n

}

defined by

u(t)n =

(

1

2

)n−3t

,

(

− 1√
2

)n−3t

cos
(n− 3t)π

4
and

(

− 1√
2

)n−3t

sin
(n− 3t)π

4
.

Next, the characteristic equation corresponding to

ϕ(k − 3) = 2ϕ(k) + 3ϕ(k − 1)

has roots 12 and −1. Hence the equation

u(t+1)n = 2u(t)n + 3u
(t)
n−1 , n ∈ Z, t ∈ N ,

has the traveling solutions
{

u
(t)
n

}

defined by

u(t)n = (1/2)n−3t and (−1)n−3t .

Last, the characteristic equation corresponding to

ϕ(k − 3) = −1
4
ϕ(k)− 1

4
ϕ(k − 1)
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has the multiple root λ = −2. Hence the equation

u(t+1)n = −1
4
u(t)n − 1

4
u
(t)
n−1 , n ∈ Z, t ∈ N ,

has the traveling solution
{

u
(t)
n

}

defined by

u(t)n = (−2)n−3t .

Although we can solve in an explicit manner some of the characteristic equa-

tions as seen above, in the general case, it is difficult to find the exact roots.

We may turn to numerical methods of course. However, ‘explicit’ traveling wave

solutions are of theoretical interest and may provide insights to the qualitative

behavior of discrete conservation laws such as those described here and elsewhere.

For this reason, in section 2, we will seek sine and cosine traveling wave solutions,

and in section 3, we will seek hyperbolic sine and cosine traveling wave solutions.

In the following sections, for the sake of convenience, we set

ξ =
1− a2 − b2

2ab
, η =

1 + a2 − b2

2a
and ζ =

1 + b2 − a2

2b
.(9)

Note that ξ, η and ζ are well defined when ab 6= 0, and

a+ bξ = η , b+ aξ = ζ .

We will also take v = cos−1 u as the inverse function of y = cosx defined for

x ∈ [0, π].

2 – Sine and cosine traveling wave solutions

We seek explicit solutions of (8) in special forms. Among these is one that

satisfies λ = eiθ where θ ∈ [0, π]. In other words, we will seek (complex valued)
traveling wave solutions of the form {(eiθ)n−mt} for (2). Note that such a solution
then leads to real traveling wave solutions

{

u
(t)
n

}

and
{

v
(t)
n

}

defined by

u(t)n = sin(n−mt)θ , n ∈ Z, t ∈ N ,

and

v(t)n = cos(n−mt)θ , n ∈ Z, t ∈ N

respectively. Since (2) is a linear equation, linear combinations of these solution

are also traveling wave solutions. In particular, {− sin(n−mt)θ} is also a traveling



94 HONG LIANG ZHAO, GUANG ZHANG and SUI SUN CHENG

wave solution. Therefore
{

e−iθ(n−mt)
}

is a (complex valued) traveling wave and

−θ now belongs to [π, 2π]. This is the reason why we have restricted our attention
to θ ∈ [0, π].
It turns out such traveling solutions can be found when the pair (a, b) is inside

the following region of the plane:

Ω ≡
{

(x, y)| − 1 ≤ |x|−|y| ≤ 1 ≤ |x|+|y|
}

.(10)

Lemma 1. Suppose ab 6= 0 and let ξ, η and ζ be defined by (9). Then

|ξ| ≤ 1 ⇔ |η| ≤ 1 ⇔ |ζ| ≤ 1 ⇔ −1 ≤ |a| − |b| ≤ 1 ≤ |a|+ |b| .(11)

Proof: First,

|η| ≤ 1 ⇔ |1 + a2 − b2| ≤ 2|a|
⇔ −2|a| ≤ 1 + a2 − b2 ≤ 2|a|
⇔ 1 + a2 − 2|a| ≤ b2 ≤ 1 + a2 + 2|a|
⇔ (1− |a|)2 ≤ b2 ≤ (1 + |a|)2

⇔ −|b| ≤ 1− |a| ≤ |b| ≤ 1 + |a|
⇔ −1 ≤ |a| − |b| ≤ 1 ≤ |a|+ |b| .

Similarly, |ζ| ≤ 1 ⇔ −1 ≤ |a| − |b| ≤ 1 ≤ |a|+ |b|.
Second,

|ξ| ≤ 1 ⇔ |1− a2 − b2| ≤ 2|ab|
⇔ −2|ab| ≤ 1− a2 − b2 ≤ 2|ab|
⇔ −2|ab| ≤ 1− a2 − b2 ≤ 2|ab|
⇔ (|a| − |b|)2 ≤ 1 ≤ (|a|+ |b|)2

⇔ −1 ≤ |a| − |b| ≤ 1 ≤ |a|+ |b| .

The proof is complete.

Theorem 2. Suppose ab 6= 0 and (a, b) ∈ Ω where Ω is defined by (10).

If
{

eiθ(n−mt)
}

, where θ ∈ [0, π] and m ∈ Z, is a (complex valued) traveling wave

solution of (2), then θ and m must satisfy the system of equations:














cos θ = ξ ,

cos(m− 1)θ = ζ ,

cosmθ = η .

(12)
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Conversely, if θ ∈ [0, π] and m ∈ Z satisfy (12), then
{

eiθ(n−mt)
}

is a (complex

valued) traveling wave solution of (2).

Proof: If
{

eiθ(n−mt)
}

, where θ ∈ [0, π] and m ∈ Z, is a (complex valued)

traveling wave solution of (2), then eiθ will satisfy (8)

aeimθ + bei(m−1)θ = 1 ,

that is, θ and m form a solution pair of

{

a cosmθ + b cos(m− 1)θ = 1 ,
a sinmθ + b sin(m− 1)θ = 0 .

(13)

Thus
[

a cosmθ + b cos(m− 1)θ
]2
+
[

a sinmθ + b sin(m− 1)θ
]2
= 1 ,

so that

cos θ =
1− a2 − b2

2ab
.(14)

Rewriting (13) as,

{

a cosmθ = 1− b cos(m− 1)θ ,
a sinmθ = −b sin(m− 1)θ ,

we see also that

a2 cos2mθ + a2 sin2mθ =
(

1− b cos(m− 1)θ
)2
+
(

−b sin(m− 1)θ
)2

,

and

cos(m− 1)θ = 1 + b2 − a2

2b
.(15)

Similarly rewriting (13) as

{

b cos(m− 1)θ = 1− a cosmθ ,

b sin(m− 1)θ = a sinmθ ,

we may obtain

cosmθ =
1 + a2 − b2

2a
.(16)

Conversely, assume (12) holds, we need to show that (13) holds. Indeed,

a cosmθ + b cos(m− 1)θ = a
1 + a2 − b2

2a
+ b
1 + b2 − a2

2b
= 1 .
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Furthermore, note that if θ = 0 or π, then the second equation in (13) is obviously

true. If θ ∈ (0, π), then sin θ 6= 0, so that

sin θ
[

a sinmθ + b sin(m− 1)θ
]

=

= a sin θ sinmθ + b sin θ(sinmθ cos θ − sin θ cosmθ)

= a sin θ sinmθ + b sin θ sinmθ cos θ − b sin2 θ cosmθ

= (a+ b cos θ) sin θ sinmθ − b(1− cos2 θ) cosmθ

= (a+ b cos θ)
[

cos(m− 1)θ − cosmθ cos θ
]

− b(1− cos2 θ) cosmθ

=

(

a+ b
1− a2 − b2

2ab

)(

1 + b2 − a2

2b
− 1 + a2 − b2

2a

1− a2 − b2

2ab

)

−b


1−
(

1− a2 − b2

2ab

)2




1 + a2 − b2

2a

= 0

implies

a sinmθ + b sin(m− 1)θ = 0 .

The proof is complete.

Suppose ab 6= 0 and (a, b) ∈ Ω where Ω is defined by (10). Further assume
that there exist θ and m such that cos θ = ξ and cosmθ = η. We remark that we

cannot conclude that
{

eiθ(n−mt)
}

is a (complex valued) traveling wave solution

of (2). Consider the following example

− λm + λm−1 = 1 .(17)

Here a = −1 and b = 1. Thus, we have


















cos θ =
1− a2 − b2

2ab
=
1

2
,

cosmθ =
1 + a2 − b2

2a
= −1

2
.

(18)

Clearly, θ = π
3 and m = 4 satisfy (18). However, λ = eiπ/3 is not the root of

equation (17). In fact,

−λm + λm−1 = −e4iπ/3 + e3iπ/3

= − cos 4π
3
− i sin

4π

3
+ cosπ + i sinπ
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=
1

2
+

√
3

2
i− 1

= −1
2
+

√
3

2
i 6= 1 .

Hence, we know that cos θ = ξ and cosmθ = η are only necessary conditions, but

not sufficient.

If θ ∈ [0, π] and m ∈ Z satisfy the system (12). Then










cos θ = ξ

cos(m− 1)θ = ζ

cosmθ = η

⇔











θ = cos−1 ξ

(m− 1)θ = ± cos−1 ζ + 2lπ
mθ = ± cos−1 η + 2kπ

⇔











θ = cos−1 ξ

m− 1 = (± cos−1 ζ + 2lπ)/ cos−1 ξ
m = (± cos−1 η + 2kπ)/ cos−1 ξ

⇔ θ = cos−1 ξ and 1 + (± cos−1 ζ + 2lπ)/ cos−1 ξ = (± cos−1 η + 2kπ)/ cos−1 ξ .
Thus, we immediately obtain the following fact.

Corollary 1. Suppose ab 6= 0 and (a, b) ∈ Ω where Ω is defined by (10).

Then
{

eiθ(n−mt)
}

, where θ ∈ [0, π] and m ∈ Z, is a (complex valued) traveling

wave solution of (2) if, and only if, there exist integral numbers l and k such that

θ = cos−1 ξ
and

m = 1 + (± cos−1 ζ + 2lπ)/ cos−1 ξ = (± cos−1 η + 2kπ)/ cos−1 ξ ∈ Z .(19)

As an example, consider the equation

u(t+1)n = −2u(t)n +
√
3u
(t)
n−1 , n ∈ Z, t ∈ N .

We note that here (a, b) = (−2,
√
3) ∈ Ω,

θ = cos−1 ξ = cos−1
√
3

2
=

π

6

and

m = (± cos−1 η + 2kπ)/ cos−1 ξ

= (± cos−1(−1
2
) + 2kπ)/

π

6

= (±2π
3
+ 2kπ)/

π

6
= ±4 + 12k
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k ∈ Z. Now we check whether θ and m satisfy the second equation of (12).

In fact,

cos(m− 1)θ =











cos(3 + 12k)
π

6
, m = 4 + 12k

cos(−5 + 12k)π
6
, m = −4 + 12k

=











0, m = 4 + 12k

−
√
3

2
, m = −4 + 12k .

Thus m = 4+12k satisfies the equation. And then, we get all the sine and cosine

traveling solutions of this equation,

u(t)n = eiθ(n−mt) = ei
π

6
(n−(4+12k)t) .

For some cases, such as k = 0, we get m = 4 and the traveling wave solutions

are {sinπ(n− 4t)/6} and {cosπ(n− 4t)/6}; for k = −1, we get m = −8 and the
traveling wave solutions {sinπ(n+ 8t)/6} and {cosπ(n+ 8t)/6}.
As another immediate corollary of Theorem 2, under ab 6= 0 and (a, b) ∈ Ω

where Ω is defined by (10), if

ξ = η and ζ = 1 ,(20)

then (2) has the traveling wave solution
{

eiθ(n−t)
}

where θ = cos−1 ξ. Similarly,

note that cos 2θ = 2 cos2 θ − 1, therefore if

2ξ2 − 1 = η and ξ = η ,(21)

then (2) has the traveling wave solution
{

eiθ(n−2t)
}

where θ = cos−1 ξ. The

same principle leads to the following result, which involves the m-th Tchebysheff

polynomial Tm : [−1, 1] → R defined by T0(x) = 1, T1(x) = x and Tm(cos θ) =

cosmθ for m = 2, 3, ... .

Corollary 2. Suppose ab 6= 0 and (a, b) ∈ Ω where Ω is defined by (10).

If Tm(ξ) = η and Tm−1(ξ) = ζ where m ≥ 1, then (2) has the traveling wave

solution
{

eiθ(n−mt)
}

where θ = cos−1 ξ.

In particular, if






T3(ξ) = 4ξ
3 − 3ξ = η

T2(ξ) = 2ξ
2 − 1 = ζ ,

(22)
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or






T4(ξ) = 8ξ
4 − 8ξ2 + 1 = η

T3(ξ) = 4ξ
3 − 3ξ = ζ ,

(23)

then (2) has traveling solutions
{

eiθ(n−3t)
}

or
{

eiθ(n−4t)
}

respectively.

We remark that conditions (20) and (21) can be written as implicit relations

between a and b. For instance, (20) can be written as



















1− a2 − b2

2ab
=
1 + a2 − b2

2a

1 + b2 − a2

2b
= 1 ,

which has solutions (a, b) = (a,−a + 1), (a, a + 1). In view of the assumptions
ab 6= 0 and (a, b) ∈ Ω where Ω is defined by (10), we see that when

(a, b) ∈
{

(x, y)| y = −x+ 1, xy 6= 0
}

,(24)

or

(a, b) ∈
{

(x, y)| y = x+ 1, xy 6= 0
}

,(25)

(2) has traveling wave solutions of the form {eiθ(n−t)} where θ = cos−1 ξ ∈ [0, π].
Similarly,























2

(

1− a2 − b2

2ab

)2

− 1 = 1 + a2 − b2

2a

1− a2 − b2

2ab
=
1 + b2 − a2

2b

has solutions (a, b) = (a, a − 1), (a,−a + 1). In view of the assumptions ab 6= 0
and (a, b) ∈ Ω where Ω is defined by (10), we see that when

(a, b) ∈
{

(x, y)| y = x− 1, xy 6= 0
}

,(26)

or

(a, b) ∈
{

(x, y)| y = −x+ 1, xy 6= 0
}

,(27)

then (2) has traveling wave solutions of the form
{

eiθ(n−2t)
}

where θ = cos−1 ξ ∈
[0, π].

For the cases where m = 3 or 4, we can also find explicit conditions similar

to those above for the existence of traveling wave solutions. For the case where

m > 4, we can also find traveling wave solutions in theory, but the conditions

become very complicated.
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3 – Hyperbolic sine and cosine traveling wave solutions

In this section, we seek new explicit solutions of (8) in the form sinh(n−mt)θ

or cos(n−mt)θ. It turns out such traveling solutions can be found when the pair

(a, b) is inside the following region of the plane:

Γ ≡
{

(x, y) | 1− (x
2 + y2)

2xy
> 1 and

1 + x2 − y2

2x
> 1

}

.(28)

We remark that by symmetry considerations, we may show that Γ is also equal

to
{

(x, y) | 1− (x
2 + y2)

2xy
> 1,

1 + x2 − y2

2x
> 1 and

1 + y2 − x2

2y
> 1

}

.

Theorem 3. Suppose ab 6= 0 and (a, b) ∈ Γ where Γ is defined by (28).

If the double sequences {cosh(n−mt)θ} and {sinh(n−mt)θ} , where m ∈ Z and

θ ∈ R, are traveling wave solutions of (2), then eθ = ξ ±
√

ξ2 − 1 and m ∈ Z

must satisfy
(

ξ +
√

ξ2 − 1
)m

= η +
√

η2 − 1 if b > 0(29)

or
(

ξ +
√

ξ2 − 1
)m

= η −
√

η2 − 1 if b < 0 .(30)

Conversely, if eθ = ξ ±
√

ξ2 − 1 and m ∈ Z satisfy (29) or (30), then the double

sequences {cos(n−mt)θ} and {sinh(n−mt)θ} are traveling wave solutions of

(2).

Proof: If {cosh(n−mt)θ} and {sinh(n−mt)θ} are traveling wave solutions
of (2), then {cosh kθ} and {sinh kθ} are solutions of (7). Thus

{

a+ b cosh θ = coshmθ

b sinh θ = sinhmθ
(31)

which implies

{

a+ b(cosh θ + sinh θ) = coshmθ + sinhmθ

a+ b(cosh θ − sinh θ) = coshmθ − sinhmθ
(32)

and
{

a+ beθ = emθ ,

a+ be−θ = e−mθ .
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Let t = eθ, we get the following system











a+ bt = tm

a+
b

t
=
1

tm

and

a2 + b2 + ab

(

t+
1

t

)

= 1 .

Since ξ > 1, the above equation has solutions

t = ξ ±
√

ξ2 − 1 ,(33)

so that eθ = ξ ±
√

ξ2 − 1.
On the other hand, we also get











a− tm = bt ,

a− 1

tm
=

b

t
.

From this, we get

tm = η ±
√

η2 − 1 .(34)

If b > 0, then from (31) we know sinhmθ and sinh θ have the same sign.

Hence m > 0. Thus t = ξ +
√

ξ2 − 1 and tm = η +
√

η2 − 1, or t = ξ −
√

ξ2 − 1
and tm = η −

√

η2 − 1. Therefore, we have
(

ξ +
√

ξ2 − 1
)m

= η +
√

η2 − 1 .

If b < 0, then sinhmθ and sinh θ have different signs. Hence m < 0. Thus

t = ξ+
√

ξ2 − 1 and tm = η−
√

η2 − 1, or t = ξ−
√

ξ2 − 1 and tm = η+
√

η2 − 1.
Therefore, we have

(

ξ −
√

ξ2 − 1
)m

= η −
√

η2 − 1 .

The proof of necessity is complete.

Now we prove the sufficiency of the condition. Assume first that eθ = ξ +
√

ξ2 − 1, then

cosh(n−mt)θ =
1

2

{

(

ξ +
√

ξ2−1
)n−mt

+

(

ξ −
√

ξ2−1
)n−mt

}

, n ∈ Z, t ∈ N ,
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and

sinh(n−mt)θ =
1

2

{

(

ξ +
√

ξ2−1
)n−mt

−
(

ξ −
√

ξ2−1
)n−mt

}

, n ∈ Z, t ∈ N .

Suppose b > 0 and
(

ξ +
√

ξ2 − 1
)m
= η +

√

η2 − 1. Then the double sequence
{

u
(t)
n

}

= {cosh(n−mt)θ} satisfies

u(t+1)n =
1

2

[

(

ξ+
√

ξ2−1
)n−m(t+1)

+

(

ξ−
√

ξ2−1
)n−m(t+1)

]

=
1

2

[

(

ξ+
√

ξ2−1
)n−mt(

ξ+
√

ξ2−1
)−m

+

(

ξ−
√

ξ2−1
)n−mt(

ξ−
√

ξ2−1
)−m

]

=
1

2

[

(

ξ+
√

ξ2−1
)n−mt (

ξ−
√

ξ2−1
)m

+

(

ξ−
√

ξ2−1
)n−mt (

ξ+
√

ξ2−1
)m
]

=
1

2

[

(

ξ+
√

ξ2 − 1
)n−mt(

η−
√

η2−1
)

+

(

ξ−
√

ξ2−1
)n−mt(

η+
√

η2−1
)

]

,

and

u
(t)
n−1 =

1

2

[

(

ξ+
√

ξ2−1
)n−1−mt

+

(

ξ−
√

ξ2−1
)n−1−mt

]

=
1

2

[

(

ξ+
√

ξ2−1
)n−mt (

ξ+
√

ξ2−1
)−1

+

(

ξ−
√

ξ2−1
)n−mt (

ξ−
√

ξ2−1
)−1

]

=
1

2

[

(

ξ+
√

ξ2−1
)n−mt (

ξ−
√

ξ2−1
)

+

(

ξ−
√

ξ2−1
)n−mt (

ξ+
√

ξ2−1
)

]

.

Thus, we have

au(t)n + bu
(t)
n−1 =

1

2

{

(

ξ +
√

ξ2−1
)n−mt [

a+ b

(

ξ−
√

ξ2−1
)]

+

(

ξ −
√

ξ2−1
)n−mt [

a+ b

(

ξ+
√

ξ2−1
)]

}

.

To prove

u(t+1)n = au(t)n + bu
(t)
n−1 ,

we need to show that










η −
√

η2 − 1 = a+ b
(

ξ −
√

ξ2 − 1
)

η +
√

η2 − 1 = a+ b
(

ξ +
√

ξ2 − 1
)
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which is equivalent to






η = a+ bξ ,
√

η2 − 1 = b
√

ξ2 − 1 .

In the following, we verify this result:

a+ bξ = a+ b · 1− a2 − b2

2ab
= a+

1− a2 − b2

2a
=
1 + a2 − b2

2a
= η ,

and

√

η2 − 1 =
√

(

1 + a2 − b2

2a

)2

− 1

=
1

|2a|
√

(1 + a2 − b2)2 − 4a2

=
1

|2a|

√

[

(1 + a2 − b2)− 2a
] [

(1 + a2 − b2) + 2a
]

=
1

|2a|

√

[

(1− a)2 − b2
] [

(1 + a)2 − b2
]

=
1

|2a|
√

(1− a− b) (1− a+ b) (1 + a− b) (1 + a+ b) ,

b
√

ξ2 − 1 = b

√

(

1− a2 − b2

2ab

)2

− 1

= b

√

(1− a2 − b2)2

4a2b2
− 1

=
b

2|ab|
√

(1− a2 − b2)2 − 4a2b2

=
1

2|a|
√

(1− a2 − b2 − 2ab) (1− a2 − b2 + 2ab)

=
1

2|a|

√

[

1− (a+ b)2
] [

1− (a− b)2
]

=
1

2|a|

√

[

1− (a+ b)
] [

1 + (a+ b)
] [

1− (a− b)
] [

1 + (a− b)
]

=
1

2|a|
√

(1− a− b) (1 + a+ b) (1− a+ b) (1 + a− b)

=
√

η2 − 1 .
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Hence, we prove
{

u
(t)
n

}

is a traveling wave solution of (2) under the conditions

eθ = ξ+
√

ξ2 − 1 and b > 0 as well as
(

ξ +
√

ξ2 − 1
)m
= η+

√

η2 − 1. The other
cases can be proved in a similar manner. The proof is complete.

Corollary 3. Assume that b = −1 and a > 2. Then equation (2) has

traveling solutions
{

u
(t)
n

}

and
{

v
(t)
n

}

with velocity m = −1 defined by

u(t)n =
1

2







(

a+
√
a2 − 4
2

)n+t

+

(

a−
√
a2 − 4
2

)n+t






, n ∈ Z, t ∈ N .

and

u(t)n =
1

2







(

a+
√
a2 − 4
2

)n+t

−
(

a−
√
a2 − 4
2

)n+t






, n ∈ Z, t ∈ N .

Corollary 4. Assume that a = −1 and b > 2. Then equation (2) has

traveling solutions
{

u
(t)
n

}

and
{

v
(t)
n

}

with velocity m = 2 defined by

u(t)n =
1

2







(

b+
√
b2 − 4
2

)n−2t

+

(

b−
√
b2 − 4
2

)n−2t






, n ∈ Z, t ∈ N ,

and

u(t)n =
1

2







(

b+
√
b2 − 4
2

)n−2t

−
(

b−
√
b2 − 4
2

)n−2t






, n ∈ Z, t ∈ N .

As an example, consider the equation

u(t+1)n = 3
√
5u(t)n − 4u(t)n−1 , n ∈ Z, t ∈ N .

Simple calculation shows that m = −3 and eθ =
(√
5± 1

)

/2. Hence this equa-

tion has traveling wave solutions
{

u
(t)
n

}

and
{

v
(t)
n

}

defined by

u(t)n =
1

2







(√
5− 1
2

)n+3t

+

(√
5 + 1

2

)n+3t






, n ∈ Z, t ∈ N ,

and

u(t)n =
1

2







(√
5− 1
2

)n+3t

−
(√
5 + 1

2

)n+3t






, n ∈ Z, t ∈ N .
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4 – Applications

As applications of our results, we first consider the following partial difference

equation

u(t+1)n = au(t)n + bu
(t)
n−1 , ab 6= 0 ,(35)

defined on the ‘discrete cylinder’: (n, t) ∈ {1, 2, ...,M}×N. Let us seek its solu-

tions of the form
{

u
(t)
n

}

defined for

(n, t) ∈ Ψ = {0, 1, ...,M}×N

under the periodic boundary condition

u
(t)
0 = u

(t)
M , t ∈ N .(36)

Note that the equations in (35) and (36) can be written as











































u
(t+1)
1 = au

(t)
1 + bu

(t)
M

u
(t+1)
2 = au

(t)
2 + bu

(t)
1

· · ·
u
(t+1)
n = au

(t)
n + bu

(t)
n−1

· · ·
u
(t+1)
M = au

(t)
M + bu

(t)
M−1

(37)

for each t ∈ N . If
{

u
(t)
n

}

(n,t)∈Z×N
={ei(n−mt)θ} is a traveling solution of (2), then

it is easy to see that
{

u
(t)
n

}

(n,t)∈Ψ
= {ei(n−mt)θ}(n,t)∈Ψ satisfies all the equations

of (37) except the first one. In order that the first equation is also satisfied,

it suffices to require

e−imtθ = ei(M−mt)θ ,

or equivalently,

eiMθ = 1 .

Thus, we have the following result in view of Theorem 2.

Theorem 4. Suppose ab 6= 0 and (a, b) ∈ Ω where Ω is defined by (10).

Suppose θ ∈ [0, π] and m ∈ Z satisfy (12). Suppose further that eiMθ = 1. Then
{

eiθ(n−mt)
}

(n,t)∈Ψ
is a (complex valued) solution of the dynamical system (37).
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For example, dynamical system


























u
(t+1)
1 = −2u(t)1 +

√
3u
(t)
12

u
(t+1)
2 = −2u(t)2 +

√
3u
(t)
1

......

u
(t+1)
12 = −2u(t)12 +

√
3u
(t)
11

, t ∈ N ,(38)

has the solution

u(t)n = eiθ(n−mt) = ei
π

6
(n−(4+12k)t) , n ∈ {1, 2, ..., 12}, t ∈ N .(39)

On the other hand, (35)–(36) or (37) can also be expressed as the dynamical

system

u(t+1) = au(t) + bΛMu(t) , t ∈ N ,(40)

where u(t) =
(

u
(t)
1 , ..., u

(t)
M

)T
and ΛM is the circulant matrix

ΛM =















0 0 ... 0 1
1 0 ... 0 0
0 1 ... 0 0
... ... ... .. ...
0 0 ... 1 0















M×M

.

In terms of vectors, a solution of (40) takes the form
{

u(t)
}

t∈N
. Let us now seek

a solution of (40) which is periodic in time, where a vector sequence
{

u(t)
}

is

said to be ω-periodic if ω is a positive integer such that u(t+ω) = u(t) for t ∈ N.

Clearly, if
{

u
(t)
n

}

(n,t)∈Ψ
is a solution of (37), then

{

(

u
(t)
1 , ..., u

(t)
M

)T
}

t∈N

will be a ω-periodic solution of (40) provided

u(t+ω)n = u(t)n , n = 1, ...,M ; t ∈ N .(41)

Corollary 5. Suppose
{

ei(n−mt)θ
}

(n,t)∈Ψ
is a solution of (35) such that 2lπmθ

is a positive integer for certain l ∈ Z. Then
{

(

ei(1−mt)θ, ei(2−mt)θ, ..., ei(M−mt)θ
)T
}

t∈N

is a periodic solution of (40) with period ω = 2lπ
mθ .



... WAVE SOLUTIONS FOR DISCRETE CONSERVATION LAWS 107

Indeed, this follows from

u(t+ω)n = ei(n−m(t+ω))θ = ei(n−mt)θ−imωθ = ei(n−mt)θ−i2lπ = u(t)n

for n ∈ {1, ...,M} and t ∈ N.

As an example, consider the following discrete time dynamical system

u(t+1) = −2u(t) +
√
3Λ12u

(t) , t ∈ N .(42)

As we know

{eiθ(n−mt)} = {eiπ6 (n−(4+12k)t)}(43)

is a solution of (42) where θ = π
6 and m = 4 + 12k. Since

2lπ

mθ
=

12l

(4 + 12k)
,

which is equal to 3 when k = 0 and l = 1, hence
{

(

ei
π

6
(1−(4+12k)t), ..., ei

π

6
(12−(4+12k)t)

)T
}

t∈N

is a periodic solution of (42) with period ω = 3.

As a final example, note that if we set

WM = aI + bΛM =















a 0 ... 0 b
b a ... 0 0
0 b ... 0 0
... ... ... .. ...
0 0 ... b a















M×M

,

from (40), we have

u(t+1) =WMu(t) .(44)

Thus we get u(1) = WMu(0), u(2) = WMu(1) = W 2
Mu(0), and in general u(t) =

W t
Mu(0) for t ≥ 1. If

{

u(t)
}

t∈N
is a nontrivial ω-periodic solution of (44), then

Wω
Mu(0) = u(0) ,(45)

that is, 1 is an eigenvalue of the matrix W ω
M . For example, consider the previous

example (42), where

W12 =















−2 0 ... 0
√
3√

3 −2 ... 0 0

0
√
3 ... 0 0

... ... ... .. ...

0 0 ...
√
3 −2















12×12

.
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Since we have a nontrivial 3-periodic solution of (44) in this case, 1 is an eigenvalue

of W 3
12.
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