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Abstract: Let A be a set of integers. For every integer n, let rA,h(n) denote the
number of representations of n in the form n = a1+a2+ · · ·+ah, where a1, a2, ..., ah ∈ A
and a1 ≤ a2 ≤ · · · ≤ ah. The function

rA,h : Z → N0 ∪ {∞}

is the representation function of order h for A. The set A is called an asymptotic basis of

order h if r−1
A,h(0) is finite, that is, if every integer with at most a finite number of excep-

tions can be represented as the sum of exactly h not necessarily distinct elements of A.

It is proved that every function is a representation function, that is, if f : Z → N0∪{∞}

is any function such that f−1(0) is finite, then there exists a set A of integers such that

f(n) = rA,h(n) for all n ∈ Z. Moreover, the set A can be arbitrarily sparse in the sense

that, if ϕ(x) ≥ 0 for x ≥ 0 and ϕ(x)→∞, then there exists a set A with f(n) = rA,h(n)

and card ({a ∈ A : |a| ≤ x}) < ϕ(x) for all x.

It is an open problem to construct dense sets of integers with a prescribed represen-

tation function. Other open problems are also discussed.
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1 – Additive bases and the Erdős–Turán conjecture

Let N,N0, and Z denote the positive integers, nonnegative integers, and in-

tegers, respectively. Let A be a set of integers. For every positive integer h, we

define the sumset

hA =
{

a1 + · · ·+ ah : ai ∈ A for all i = 1, ..., h
}

.

We denote by rA,h(n) the number of representations of n in the form n = a1 +

a2 + · · ·+ ah, where a1, a2, ..., ah ∈ A and a1 ≤ a2 ≤ · · · ≤ ah. The function rA,h
is called the representation function of order h of the set A.

In this paper we consider additive bases for the set of all integers. The set A

of integers is called a basis of order h for Z if every integer can be represented

as the sum of h not necessarily distinct elements of A. The set A of integers is

called an asymptotic basis of order h for Z if every integer with at most a finite

number of exceptions can be represented as the sum of h not necessarily distinct

elements of A. Equivalently, the set A is an asymptotic basis of order h if the

representation function rA,h : Z→ N0 ∪ {∞} satisfies the condition

card
(

r−1
A,h(0)

)

<∞ .

For any set X, let F0(X) denote the set of all functions

f : X → N0 ∪ {∞}

such that

card
(

f−1(0)
)

<∞ .

We ask: Which functions in F0(Z) are representation functions of asymptotic

bases for the integers? This question has a remarkably simple and surprising

answer. In the case h = 1 we observe that f ∈ F0(Z) is a representation function

if and only if f(n) = 1 for all integers n 6∈ f−1(0). For h ≥ 2 we shall prove

that every function in F0(Z) is a representation function. Indeed, if f ∈ F0(Z)
and h ≥ 2, then there exist infinitely many sets A such that f(n) = rA,h(n) for

every n ∈ Z. Moreover, we shall prove that we can construct arbitrarily sparse

asymptotic bases A with this property. Nathanson [7] previously proved this

theorem for h = 2 and the function f(n) = 1 for all n ∈ Z.
This result about asymptotic bases for the integers contrasts sharply with

the case of the nonnegative integers. The set A of nonnegative integers is called

an asymptotic basis of order h for N0 if every sufficiently large integer can be
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represented as the sum of h not necessarily distinct elements of A. Very little

is known about the class of representation functions of asymptotic bases for N0.

However, if f ∈ F0(N0), then Nathanson [5] proved that there exists at most one

set A such that rA,h(n) = f(n).

Many of the results that have been proved about asymptotic bases for N0 are

negative. For example, Dirac [2] showed that the representation function of an

asymptotic basis of order 2 cannot be eventually constant. Erdős and Fuchs [4]

proved that the average value of a representation function of order 2 cannot

even be approximately constant, in the sense that, for every infinite set A of

nonnegative integers and every real number c > 0,
∑

n≤N
rA,2(n) 6= cN + o

(

N1/4 log−1/2 N
)

.

Erdős and Turán [3] conjectured that if A is an asymptotic basis of order h

for the nonnegative integers, then the representation function rA,h(n) must be

unbounded, that is,

lim sup
n→∞

rA,h(n) =∞ .

This famous unsolved problem in additive number theory is only a special case

of the general problem of classifying the representation functions of asymptotic

bases of finite order for the nonnegative integers.

2 – Two lemmas

We use the following notation. For sets A and B of integers and for any

integer t, we define the sumset

A+B = {a+ b : a ∈ A, b ∈ B} ,

the translation

A+ t = {a+ t : a ∈ A} ,

and the difference set

A−B = {a− b : a ∈ A, b ∈ B} .

For every nonnegative integer h we define the h-fold sumset hA by induction:

0A = {0} ,

hA = A+ (h− 1)A = {a1 + a2 + · · ·+ ah : a1, a2, ..., ah ∈ A} .
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We denote the cardinality of a set S by card(S). The counting function for the

set A is

A(y, x) = card
(

{a ∈ A : y ≤ a ≤ x}
)

.

In particular, A(−x, x) counts the number of integers a ∈ A with |a| ≤ x. If A is

a finite set of integers, we denote the maximum element of A by max(A).

Let [x] denote the integer part of the real number x.

Lemma 1. Let f : Z → N0 ∪ {∞} be a function such that f−1(0) is finite.

Let ∆ denote the cardinality of the set f−1(0). Then there exists a sequence

U = {uk}
∞
k=1 of integers such that, for every n ∈ Z and k ∈ N,

f(n) = card
(

{k ≥ 1: uk = n}
)

and

|uk| ≤

[

k +∆

2

]

.

Proof: Every positive integer m can be written uniquely in the form

m = s2 + s+ 1 + r ,

where s is a nonnegative integer and |r| ≤ s. We construct the sequence

V = {0,−1, 0, 1,−2,−1, 0, 1, 2,−3,−2,−1, 0, 1, 2, 3, ...}

= {vm}
∞
m=1 ,

where

vs2+s+1+r = r for |r| ≤ s .

For every nonnegative integer k, the first occurrence of −k in this sequence is

vk2+1 = −k, and the first occurrence of k in this sequence is v(k+1)2 = k.

The sequence U will be the unique subsequence of V constructed as follows.

Let n ∈ Z. If f(n) = ∞, then U will contain the terms vs2+s+1+n for every

s ≥ |n|. If f(n) = ` < ∞, then U will contain the ` terms vs2+s+1+n for

s = |n|, |n|+ 1, ..., |n|+ `− 1 in the subsequence U , but not the terms vs2+s+1+n

for s ≥ |n| + `. Let m1 < m2 < m3 < · · · be the strictly increasing sequence

of positive integers such that {vmk
}∞k=1 is the resulting subsequence of V . Let

U = {uk}
∞
k=1, where uk = vmk

. Then

f(n) = card
(

{k ≥ 1: uk = n}
)

.
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Let card
(

f−1(0)
)

= ∆. The sequence U also has the following property:

If |uk| = n, then for every integer m 6∈ f−1(0) with |m| < n there is a positive

integer j < k with uj = m. It follows that

{0, 1,−1, 2,−2, ..., n− 1,−(n− 1)}\f−1(0) ⊆ {u1, u2, ..., uk−1} ,

and so

k − 1 ≥ 2(n− 1) + 1−∆ .

This implies that

|uk| = n ≤
k +∆

2
.

Since uk is an integer, we have

|uk| ≤

[

k +∆

2

]

.

This completes the proof.

Lemma 1 is best possible in the sense that for every nonnegative integer ∆

there is a function f : Z → N0 ∪ {∞} with card
(

f−1(0)
)

= ∆ and a sequence

U = {uk}
∞
k=1 of integers such that

|uk| =

[

k +∆

2

]

for all k ≥ 1 .(1)

For example, if ∆ = 2δ + 1 is odd, define the function f by

f(n) =

{

0 if |n| ≤ δ

1 if |n| ≥ δ + 1

and the sequence U by

u2i−1 = δ + i ,

u2i = −(δ + i)

for all i ≥ 1.

If ∆ = 2δ is even, define f by

f(n) =

{

0 if −δ ≤ n ≤ δ − 1

1 if n ≥ δ or n ≤ −δ − 1

and the sequence U by u1 = δ and

u2i = δ + i ,

u2i+1 = −(δ + i)

for all i ≥ 1. In both cases the sequence U satisfies (1).
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The set A is called a Sidon set of order h if rA,h(n) = 0 or 1 for every integer n.

If A is a Sidon set of order h, then A is a Sidon set of order j for all j = 1, 2, ..., h.

Lemma 2. Let A be a finite Sidon set of order h and d = max({|a| : a ∈ A}).

If |c| > (2h− 1)d, then A ∪ {c} is also a Sidon set of order h.

Proof: Let n ∈ h (A ∪ {c}) . Suppose that

n = a1 + · · ·+ aj + (h− j) c = a′1 + · · ·+ a′` + (h− `) c ,

where

0 ≤ j ≤ ` ≤ h ,

a1, ..., aj , a
′
1, ..., a

′
` ∈ A ,

and

a1 ≤ · · · ≤ aj and a′1 ≤ · · · ≤ a′` .

If j < `, then

|c| ≤ |(`− j)c|

=
∣

∣a′1 + · · ·+ a′` − (a1 + · · ·+ aj)
∣

∣

≤ (`+ j)d

≤ (2h− 1)d

< |c| ,

which is absurd. Therefore, j = ` and a1 + · · · + aj = a′1 + · · · + a′j . Since A is

a Sidon set of order j, it follows that ai = a′i for all i = 1, ..., j. Consequently,

A ∪ {c} is a Sidon set of order h.

3 – Construction of asymptotic bases

We can now construct asymptotic bases of order h for the integers with arbi-

trary representation functions.

Theorem 1. Let f : Z → N0 ∪ {∞} be a function such that the set f−1(0)

is finite. Let ϕ : N0 → R be a nonnegative function such that limx→∞ ϕ(x) =∞.

For every h ≥ 2 there exist infinitely many asymptotic bases A of order h for the

integers such that

rA,h(n) = f(n) for all n ∈ Z ,
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and

A(−x, x) ≤ ϕ(x)

for all x ≥ 0.

Proof: By Lemma 1, there is a sequence U = {uk}
∞
k=1 of integers such that

f(n) = card
(

{k ≥ 1: uk = n}
)

for every integer n.

Let h ≥ 2. We shall construct an ascending sequence of finite sets A1 ⊆ A2 ⊆

A3 ⊆ · · · such that, for all positive integers k and for all integers n,

(i)
rAk,h(n) ≤ f(n) ,

(ii)
rAk,h(n) ≥ card

(

{i : 1 ≤ i ≤ k and ui = n}
)

,

(iii)
card(Ak) ≤ 2k ,

(iv)
Ak is a Sidon set of order h− 1 .

Conditions (i) and (ii) imply that the infinite set

A =
∞
⋃

k=1

Ak

is an asymptotic basis of order h for the integers such that rA,h(n) = f(n) for all

n ∈ Z.
We construct the sets Ak by induction. Since the set f−1(0) is finite, there

exists a nonnegative integer d0 such that f(n) ≥ 1 for all integers n with |n| ≥ d0.

If u1 ≥ 0, choose a positive integer c1 > 2hd0. If u1 < 0, choose a negative integer

c1 < −2hd0. Then

|c1| > 2hd0 .

Let

A1 = {−c1, (h−1)c1 + u1} .
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The sumset hA1 is the finite arithmetic progression

hA1 = {−hc1 + (hc1 + u1)i : i = 0, 1, ..., h}

= {−hc1, u1, hc1 + 2u1, 2hc1 + 3u1, ..., (h− 1)hc1 + hu1} .

Then |n| ≥ h|c1| > d0 for all n ∈ hA1\{u1}. Since f(u1) ≥ 1, we have rA1,h(n) =

1 ≤ f(n) for all n ∈ hA1. Similarly, since rA1,h(n) = 0 for all n 6∈ hA1, it follows

that

rA1,h(n) ≤ f(n)

for all n ∈ Z. The set A1 is a Sidon set of order h, hence also a Sidon set of order

h− 1. Thus, the set A1 satisfies conditions (i)–(iv).

We assume that for some integer k ≥ 2 we have constructed a set Ak−1

satisfying conditions (i)–(iv). If

rAk−1,h
(n) ≥ card

(

{i : 1 ≤ i ≤ k and ui = n}
)

for all n ∈ Z, then the set Ak = Ak−1 satisfies conditions (i)–(iv). Otherwise,

rAk−1,h(uk) = card
(

{i : 1 ≤ i ≤ k and ui = uk}
)

− 1 < f(uk) .

We shall construct a Sidon set Ak of order h− 1 such that

card(Ak) = card(Ak−1) + 2

and

rAk,h(n) =















rAk−1,h(n) + 1 if n = uk

rAk−1,h(n) if n ∈ hAk−1\{uk}

1 if n ∈ hAk\ (hAk−1 ∪ {uk}) .

(2)

Define the nonnegative integer

dk−1 = max
(

{|a| : a ∈ Ak−1 ∪ {uk}}
)

.(3)

Then

Ak−1 ⊆ [−dk−1, dk−1] .

If uk ≥ 0, choose a positive integer ck such that ck > 2hdk−1. If uk < 0, choose a

negative integer ck such that ck < −2hdk−1. Then

|ck| > 2hdk−1 .(4)

Let

Ak = Ak−1 ∪ {−ck, (h−1)ck + uk} .
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Then

card(Ak) = card(Ak−1) + 2 ≤ 2k .

We shall assume that uk ≥ 0, hence ck > 0. (The argument in the case uk < 0

is similar.) We decompose the sumset hAk as follows:

hAk =
⋃

r+i+j=h
r,i,j≥0

(

r(h−1)ck + ruk − ick + jAk−1

)

=
h
⋃

r=0

Br ,

where

Br = r(h−1)ck + ruk +
h−r
⋃

i=0

(

−ick + (h−r−i)Ak−1

)

.

If n ∈ Br, then there exist integers i ∈ {0, 1, ..., h − r} and y ∈ (h − r − i)Ak−1

such that

n = r(h−1)ck + ruk − ick + y .

Since

|y| ≤ (h− r − i)dk−1 ,

it follows that

n ≥ r(h−1)ck + ruk − ick − (h−r−i)dk−1(5)

and

n ≤ r(h−1)ck + ruk − ick + (h−r−i)dk−1 .

Let m ∈ Br−1 and n ∈ Br for some r ∈ {1, ..., h}. There exist nonnegative

integers i ≤ h− r and j ≤ h− r + 1 such that

n−m ≥
(

r(h−1)ck + ruk − ick − (h−r−i)dk−1

)

−
(

(r−1)(h−1)ck + (r−1)uk − jck + (h−r+1−j)dk−1

)

= (h−1+j−i)ck + uk − (2h−2r−i−j+1)dk−1

≥ (h−1−i)ck − 2hdk−1 .

If r ≥ 2, then i ≤ h− 2 and inequality (4) implies that

n−m ≥ ck − 2hdk−1 > 0 .

Therefore, if m ∈ Br−1 and n ∈ Br for some r ∈ {2, ..., h}, then m < n.

In the case r = 1 we have m ∈ B0 and n ∈ B1. If i ≤ h− 2, then (4) implies

that

n−m ≥ (h−1−i)ck − 2hdk−1 ≥ ck − 2hdk−1 > 0
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and (5) implies that

n ≥ (h−1−i)ck + uk − (h−1−i)dk−1 > ck − hdk−1 > d0 .

If r = 1 and i = h − 1, then n = uk. Therefore, if m ∈ B0 and n ∈ B1, then

m < n unless m = n = uk. It follows that the sets B0, B1\{uk}, B2, ..., Bh are

pairwise disjoint.

Let n ∈ Br for some r ≥ 1. Suppose that 0 ≤ i ≤ j ≤ h− r, and that

n = r(h−1)ck + ruk − ick + y for some y ∈ (h−r−i)Ak−1

and

n = r(h−1)ck + ruk − jck + z for some z ∈ (h−r−j)Ak−1 .

Subtracting these equations, we obtain

z − y = (j − i)ck .

Recall that |a| ≤ dk−1 for all a ∈ Ak−1. If i < j, then

ck ≤ (j − i)ck = z − y

≤ |y|+ |z| ≤ (2h− 2r − i− j)dk−1

< 2hdk−1 < ck ,

which is impossible. Therefore, i = j and y = z. Since 0 ≤ h− r− i ≤ h− 1 and

Ak−1 is a Sidon set of order h− 1, it follows that

rAk−1,h−r−i(y) = 1

and so

rAk,h(n) = 1 ≤ f(n) for all n ∈ (B1\{uk}) ∪
h
⋃

r=2

Br .

Next we consider the set

B0 = hAk−1 ∪
h
⋃

i=1

(

−ick + (h−i)Ak−1

)

.

For i = 1, ..., h, we have

ck > 2hdk−1 ≥ (2h− 2i+ 1)dk−1
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and so

max
(

−ick + (h−i)Ak−1

)

≤ −ick + (h−i)dk−1

< −(i− 1)ck − (h−i+1)dk−1

≤ min
(

−(i−1)ck + (h−i+1)Ak−1

)

.

Therefore, the sets −ick + (h − i)Ak−1 are pairwise disjoint for i = 0, 1, ..., h.

In particular, if n ∈ B0\hAk−1, then

n ≤ max
(

−ck + (h−1)Ak−1

)

≤ −ck + (h−1)dk−1 < −dk−1 ≤ −d0

and f(n) ≥ 1. Since Ak−1 is a Sidon set of order h− 1, it follows that

rAk,h(n) = 1 ≤ f(n)

for all

n ∈
h
⋃

i=1

(

−ick + (h−i)Ak−1

)

= B0\hAk−1 .

It follows from (3) that for any n ∈ B0\hAk−1 we have

n < −dk−1 ≤ uk ,

and so uk 6∈ B0\hAk−1. Therefore,

rAk,h(uk) = rAk−1,h(uk) + 1 ,

and the representation function rAk,h satisfies the three requirements of (2).

We shall prove that

Ak = Ak−1 ∪ {−ck, (h−1)ck + uk} .

is a Sidon set of order h − 1. Since Ak−1 is a Sidon set of order h − 1 with

dk−1 ≥ max{|a| : a ∈ Ak−1}, and since

ck > 2hdk−1 >
(

2(h−1)− 1
)

dk−1 ,

Lemma 2 implies that Ak−1 ∪ {−ck} is a Sidon set of order h− 1.

Let n ∈ (h− 1)Ak. Suppose that

n = r(h−1)ck + ruk − ick + x

= s(h−1)ck + suk − jck + y ,
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where

0 ≤ r ≤ s ≤ h− 1 ,

0 ≤ i ≤ h− 1− r ,

0 ≤ j ≤ h− 1− s ,

x ∈ (h− 1− r − i)Ak−1 ,
and

y ∈ (h− 1− s− j)Ak−1 .

Then

|x| ≤ (h− 1− r − i)dk−1

and

|y| ≤ (h− 1− s− j)dk−1 .

If r < s, then j ≤ h− 2 and

(h− 1)ck ≤ (s− r)(h− 1)ck + (s− r)uk

= (j − i)ck + x− y

≤ (j − i)ck + (2h− 2− r − s− i− j)dk−1

≤ (h− 2)ck + 2hdk−1

< (h− 1)ck ,

which is absurd. Therefore, r = s and

−ick + x = −jck + y ∈ (h− 1− r) (Ak ∪ {−ck}) .

Since Ak ∪ {−ck} is a Sidon set of order h − 1, it follows that i = j and that x

has a unique representation as the sum of h− 1− r− i elements of Ak. Thus, Ak

is a Sidon set of order h− 1.

The setAk satisfies conditions (i)–(iv). It follows by induction that there exists

an infinite increasing sequence A1 ⊆ A2 ⊆ · · · of finite sets with these properties,

and that A = ∪∞k=1Ak is an asymptotic basis of order h with representation

function rA,h(n) = f(n) for all n ∈ Z.
Finally, we shall prove that, for every nonnegative function ϕ(x) with

limx→∞ ϕ(x) = ∞, there exist infinitely many asymptotic bases A of order h

such that rA,h(n) = f(n) for all n ∈ Z and A(−x, x) ≤ ϕ(x) for all x ∈ N0. Let

A0 = ∅, and let K ′ be the set of all positive integers k such that Ak 6= Ak−1.

Then 1 ∈ K ′ and

A =
⋃

k∈K′
Ak =

⋃

k∈K′
{−ck, (h−1)ck} .
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For each k ∈ K ′, the only constraints on the choice of the number ck in the

construction of the set Ak were the sign of ck and the growth condition (4)

|ck| > 2hdk−1 .

Since ϕ(x) → ∞ as x → ∞, for every integer k ≥ 0 there exists an integer wk

such that

ϕ(x) ≥ 2k for all x ≥ wk .

We now impose the following additional constraint: Choose ck such that

|ck| ≥ wk for all integers k ∈ K ′ .

Then

A1(−x, x) = 0 ≤ ϕ(x) for 0 ≤ x < |c1|

and

A1(−x, x) ≤ 2 ≤ ϕ(x) for x ≥ |c1| ≥ w1 .

Suppose that k ≥ 2 and the set Ak−1 satisfies Ak−1(−x, x) ≤ ϕ(x) for all x ≥ 0.

If k 6∈ K ′, then Ak = Ak−1 and Ak(−x, x) ≤ ϕ(x) for all x ≥ 0. If k ∈ K, then

Ak ∩ (−|ck|, |ck|) = Ak−1 ∩ (−|ck|, |ck|) = Ak−1 ,

and so

Ak(−x, x) = Ak−1(−x, x) ≤ ϕ(x) for 0 ≤ x < |ck|

and

Ak(−x, x) ≤ 2k ≤ ϕ(x) for x ≥ |ck| ≥ wk .

It follows by induction that the finite sets Ak satisfy Ak(−x, x) ≤ ϕ(x) for all k

and x. The infinite set A = ∪k∈K′Ak is an asymptotic basis with rA,h(n) = f(n)

for all n ∈ Z. Since limk→∞ |ck| = ∞, for every nonnegative integer x we can

choose k ∈ K ′ such that |ck| > x. It follows that

A(−x, x) = Ak(−x, x) ≤ ϕ(x) .

For every integer k ∈ K ′ we had infinitely many choices for the integer ck to use

in the construction of the set Ak, and so there are infinitely many asymptotic

bases A with the property that rA(n) = f(n) for all n ∈ Z and A(−x, x) ≤ ϕ(x)

for all x ∈ N0. This completes the proof.
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4 – Sums of pairwise distinct integers

Let A be a set of integers and h a positive integer. We define the sumset

h ∧ A as the set consisting of all sums of h pairwise distinct elements of A, and

the restricted representation function

r̂A,h : Z→ N0 ∪ {∞}

by

r̂A,h(n) = card
({

{a1, ..., ah} ⊆ A : a1 + · · ·+ ah = n and a1 < · · · < ah
})

.

The set A of integers is called a restricted asymptotic basis of order h if h ∧ A

contains all but finitely many integers, or, equivalently, if r̂−1
A,h(0) is a finite subset

of Z.

We can obtain the following result by the same method used to prove

Theorem 1.

Theorem 2. Let f : Z → N0 ∪ {∞} be a function such that f−1(0) is a

finite set of integers. Let ϕ : N0 → R be a nonnegative function such that

limx→∞ ϕ(x) =∞. For every h ≥ 2 there exist infinitely many sets A of integers

such that

r̂A,h(n) = f(n) for all n ∈ Z

and

A(−x, x) ≤ ϕ(x)

for all x ≥ 0.

5 – Open problems

Let X be an abelian semigroup, written additively, and let A be a subset

of X. We define the h-fold sumset hA as the set consisting of all sums of h not

necessarily distinct elements of A. The set A is called an asymptotic basis of order

h for X if the sumset hA consists of all but at most finitely many elements of X.

We also define the h-fold restricted sumset h∧A as the set consisting of all sums

of h pairwise distinct elements of A. The set A is called a restricted asymptotic

basis of order h for X if the restricted sumset h ∧ A consists of all but at most
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finitely many elements of X. The classical problems of additive number theory

concern the semigroups N0 and Z.
There are four different representation functions that we can associate to ev-

ery subset A of X and every positive integer h. Let (a1, ..., ah) and (a′1, ..., a
′
h) be

h-tuples of elements of X. We call these h-tuples equivalent if there is a permuta-

tion σ of the set {1, ..., h} such that a′σ(i) = ai for all i = 1, ..., h. For every x ∈ X,

let rA,h(x) denote the number of equivalence classes of h-tuples (a1, ..., ah) of ele-

ments of A such that a1 + · · ·+ ah = x. The function rA,h is called the unordered

representation function of A. This is the function that we studied in this paper.

The set A is an asymptotic basis of order h if r−1
A,h(0) is a finite subset of X.

Let RA,h(x) denote the number of h-tuples (a1, ..., ah) of elements of A such

that a1 + · · · + ah = x. The function RA,h is called the ordered representation

function of A.

Let r̂A,h(x) denote the number of equivalence classes of h-tuples (a1, ..., ah)

of pairwise distinct elements of A such that a1 + · · · + ah = x, and let R̂A,h(x)

denote the number of h-tuples (a1, ..., ah) of pairwise distinct elements of A such

that a1 + · · ·+ ah = x. These functions are called the unordered restricted repre-

sentation function of A and the ordered restricted representation function of A,

respectively. The two restricted representation functions are essentially identical,

since R̂A,h(x) = h! r̂A,h(x) for all x ∈ X.

In the discussion below, we use only the unordered representation function

rA,h, but each of the problems can be reformulated in terms of the other repre-

sentation functions.

For every countable abelian semigroup X, let F(X) denote the set of all

functions f : X → N0 ∪ {∞}, and let F0(X) denote the set of all functions

f : X → N0 ∪ {∞} such that f−1(0) is a finite subset of X. Let Fc(X) denote

the set of all functions f : X → N0 ∪{∞} such that f−1(0) is a cofinite subset of

X, that is, f(x) 6= 0 for only finitely many x ∈ X, or, equivalently,

card
(

f−1(N ∪ {∞})
)

<∞ .

Let R(X,h) denote the set of all h-fold representation functions of subsets A

of X. If rA,h is the representation function of an asymptotic basis A of order h for

X, then r−1
A,h(0) is a finite subset of X, and so rA,h ∈ F0(X). Let R0(X,h) denote

the set of all h-fold representation functions of asymptotic bases A of order h for

X. Let Rc(X,h) denote the set of all h-fold representation functions of finite

subsets of X. We have

R(X,h) ⊆ F(X) ,
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R0(X,h) ⊆ F0(X) ,

and

Rc(X,h) ⊆ Fc(X) .

In the case h = 1, we have, for every set A ⊆ X,

rA,1(x) =

{

1 if x ∈ A ,

0 if x 6∈ A ,

and so

R(X, 1) =
{

f : X → {0, 1}
}

,

R0(X, 1) =
{

f : X → {0, 1} : card(f−1(0)) <∞
}

,

and

Rc(X, 1) =
{

f : X → {0, 1} : card
(

f−1(N ∪ {∞})
)

<∞
}

.

In this paper we proved that

R0(Z, h) = F0(Z) for all h ≥ 2 .

Nathanson [8] has extended this result to certain countably infinite groups and

semigroups. Let G be any countably infinite abelian group such that {2g : g ∈ G}

is infinite. For the unordered restricted representation function r̂A,2, we have

R0(G, 2) = F0(G) .

More generally, let S is any countable abelian semigroup such that for every s ∈ S

there exist s′, s′′ ∈ S with s = s′ + s′′. In the abelian semigroup X = S ⊕G, we

have

R0(X, 2) = F0(X) .

If {12g : g ∈ G} is infinite, then R0(X, 2) = F0(X) for the unordered representa-

tion function rA,2.

The following problems are open for all h ≥ 2:

1. Determine R0(N0, h). Equivalently, describe the representation functions

of additive bases for the nonnegative integers. This is a major unsolved

problem in additive number theory, of which the Erdős–Turán conjecture is

only a special case.
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2. Determine R(Z, h). In this paper we computed R0(Z, h), the set of repre-

sentation functions of additive bases for the integers, but it is not known

under what conditions a function f : Z → N0 ∪ {∞} with f−1(0) infinite

is the representation function of a subset A of X. It can be proved that if

f−1(0) is infinite but sufficiently sparse, then f ∈ R(Z, h).

3. Determine R(N0, h). Is there a simple list of necessary and sufficient condi-

tions for a function f : N0 → N0 to be the representation function of some

set of nonnegative integers?

4. Determine Rc(Z, h). Equivalently, describe the representation functions of

finite sets of integers, and identify the functions f ∈ Fc(Z) such that f(n) =

rA,h(n) for some finite set A of integers. If A is a set of integers and t is an

integer, then for the translated set t+A we have

rt+A,h(n) = rA,h(n− ht)

for all integers n. This implies that if f(n) ∈ Rc(Z, h), then f(n − ht) ∈

Rc(Z, h) for every integer t, so it suffices to consider only finite sets A of

nonnegative integers with 0 ∈ A. Similarly, if gcd(A) = d, then rA,h(n) > 0

only if d divides n. Setting B = {a/d : d ∈ A}, we have rh,A(n) = rB,h(n/d).

It follows that we need to consider only finite sets A of relatively prime

nonnegative integers with 0 ∈ A.

5. Determine R0(G, 2), R(G, 2), and Rc(G, 2) for the infinite abelian group

G =
⊕∞

i=1 Z/2Z. Note that {2g : g ∈ G} = {0} for this group.

6. Determine R0(G, h) and R(G, h), where G is an arbitrary countably infinite

abelian group and h ≥ 2.

7. There is a class of problems of the following type. Do there exist integers h

and k with 2 ≤ h < k such that

R(Z, h) 6= R(Z, k) ?

We can easily find sets of integers to show that that R0(N0, h) 6= R0(N0, k).

For example, let A = N be the set of all positive integers, and let h ≥ 1.

Then rN,h(0) = 0 and rN,h(h) = 1. If B is any set of nonnegative integers

and k > h, then rB,k(h) = 0, and so rN,h 6∈ R0(N0, k). Is it true that

R0(N0, h) ∩R0(N0, k) = ∅

for all h 6= k?
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8. By Theorem 1, for every h ≥ 2 and every function f ∈ F0(Z), there exist

arbitrarily sparse sets A of integers such that rA,h(n) = f(n) for all n. It is

an open problem to determine how dense the sets A can be. For example, in

the special case h = 2 and f(n) = 1, Nathanson [7] proved that there exists

a set A such that rA,2(n) = 1 for all n, and log x ¿ A(−x, x) ¿ log x. For

an arbitrary representation function f ∈ F0(Z), Nathanson [6] constructed

an asymptotic basis of order h with A(−x, x)À x1/(2h−1). In the case h = 2,

Cilleruelo and Nathanson [1] improved this to A(−x, x)À x
√

2−1+o(1).
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