EVERY FUNCTION IS THE REPRESENTATION FUNCTION OF AN ADDITIVE BASIS FOR THE INTEGERS

Melvyn B. Nathanson*

Recommended by J.P. Dias da Silva

Abstract

Let A be a set of integers. For every integer n, let $r_{A, h}(n)$ denote the number of representations of n in the form $n=a_{1}+a_{2}+\cdots+a_{h}$, where $a_{1}, a_{2}, \ldots, a_{h} \in A$ and $a_{1} \leq a_{2} \leq \cdots \leq a_{h}$. The function $$
r_{A, h}: \mathbb{Z} \rightarrow \mathbb{N}_{0} \cup\{\infty\}
$$ is the representation function of order h for A. The set A is called an asymptotic basis of order h if $r_{A, h}^{-1}(0)$ is finite, that is, if every integer with at most a finite number of exceptions can be represented as the sum of exactly h not necessarily distinct elements of A. It is proved that every function is a representation function, that is, if $f: \mathbb{Z} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ is any function such that $f^{-1}(0)$ is finite, then there exists a set A of integers such that $f(n)=r_{A, h}(n)$ for all $n \in \mathbb{Z}$. Moreover, the set A can be arbitrarily sparse in the sense that, if $\varphi(x) \geq 0$ for $x \geq 0$ and $\varphi(x) \rightarrow \infty$, then there exists a set A with $f(n)=r_{A, h}(n)$ and $\operatorname{card}(\{a \in A:|a| \leq x\})<\varphi(x)$ for all x.

It is an open problem to construct dense sets of integers with a prescribed representation function. Other open problems are also discussed.

[^0]
1 - Additive bases and the Erdős-Turán conjecture

Let $\mathbb{N}, \mathbb{N}_{0}$, and \mathbb{Z} denote the positive integers, nonnegative integers, and integers, respectively. Let A be a set of integers. For every positive integer h, we define the sumset

$$
h A=\left\{a_{1}+\cdots+a_{h}: a_{i} \in A \text { for all } i=1, \ldots, h\right\}
$$

We denote by $r_{A, h}(n)$ the number of representations of n in the form $n=a_{1}+$ $a_{2}+\cdots+a_{h}$, where $a_{1}, a_{2}, \ldots, a_{h} \in A$ and $a_{1} \leq a_{2} \leq \cdots \leq a_{h}$. The function $r_{A, h}$ is called the representation function of order h of the set A.

In this paper we consider additive bases for the set of all integers. The set A of integers is called a basis of order h for \mathbb{Z} if every integer can be represented as the sum of h not necessarily distinct elements of A. The set A of integers is called an asymptotic basis of order h for \mathbb{Z} if every integer with at most a finite number of exceptions can be represented as the sum of h not necessarily distinct elements of A. Equivalently, the set A is an asymptotic basis of order h if the representation function $r_{A, h}: \mathbb{Z} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ satisfies the condition

$$
\operatorname{card}\left(r_{A, h}^{-1}(0)\right)<\infty
$$

For any set X, let $\mathcal{F}_{0}(X)$ denote the set of all functions

$$
f: X \rightarrow \mathbb{N}_{0} \cup\{\infty\}
$$

such that

$$
\operatorname{card}\left(f^{-1}(0)\right)<\infty
$$

We ask: Which functions in $\mathcal{F}_{0}(\mathbb{Z})$ are representation functions of asymptotic bases for the integers? This question has a remarkably simple and surprising answer. In the case $h=1$ we observe that $f \in \mathcal{F}_{0}(\mathbb{Z})$ is a representation function if and only if $f(n)=1$ for all integers $n \notin f^{-1}(0)$. For $h \geq 2$ we shall prove that every function in $\mathcal{F}_{0}(\mathbb{Z})$ is a representation function. Indeed, if $f \in \mathcal{F}_{0}(\mathbb{Z})$ and $h \geq 2$, then there exist infinitely many sets A such that $f(n)=r_{A, h}(n)$ for every $n \in \mathbb{Z}$. Moreover, we shall prove that we can construct arbitrarily sparse asymptotic bases A with this property. Nathanson [7] previously proved this theorem for $h=2$ and the function $f(n)=1$ for all $n \in \mathbb{Z}$.

This result about asymptotic bases for the integers contrasts sharply with the case of the nonnegative integers. The set A of nonnegative integers is called an asymptotic basis of order h for \mathbb{N}_{0} if every sufficiently large integer can be
represented as the sum of h not necessarily distinct elements of A. Very little is known about the class of representation functions of asymptotic bases for \mathbb{N}_{0}. However, if $f \in \mathcal{F}_{0}\left(\mathbb{N}_{0}\right)$, then Nathanson [5] proved that there exists at most one set A such that $r_{A, h}(n)=f(n)$.

Many of the results that have been proved about asymptotic bases for \mathbb{N}_{0} are negative. For example, Dirac [2] showed that the representation function of an asymptotic basis of order 2 cannot be eventually constant. Erdős and Fuchs [4] proved that the average value of a representation function of order 2 cannot even be approximately constant, in the sense that, for every infinite set A of nonnegative integers and every real number $c>0$,

$$
\sum_{n \leq N} r_{A, 2}(n) \neq c N+o\left(N^{1 / 4} \log ^{-1 / 2} N\right) .
$$

Erdős and Turán [3] conjectured that if A is an asymptotic basis of order h for the nonnegative integers, then the representation function $r_{A, h}(n)$ must be unbounded, that is,

$$
\limsup _{n \rightarrow \infty} r_{A, h}(n)=\infty
$$

This famous unsolved problem in additive number theory is only a special case of the general problem of classifying the representation functions of asymptotic bases of finite order for the nonnegative integers.

2 - Two lemmas

We use the following notation. For sets A and B of integers and for any integer t, we define the sumset

$$
A+B=\{a+b: a \in A, b \in B\},
$$

the translation

$$
A+t=\{a+t: a \in A\}
$$

and the difference set

$$
A-B=\{a-b: a \in A, b \in B\}
$$

For every nonnegative integer h we define the h-fold sumset $h A$ by induction:

$$
\begin{aligned}
0 A & =\{0\} \\
h A & =A+(h-1) A=\left\{a_{1}+a_{2}+\cdots+a_{h}: a_{1}, a_{2}, \ldots, a_{h} \in A\right\}
\end{aligned}
$$

We denote the cardinality of a set S by card (S). The counting function for the set A is

$$
A(y, x)=\operatorname{card}(\{a \in A: y \leq a \leq x\})
$$

In particular, $A(-x, x)$ counts the number of integers $a \in A$ with $|a| \leq x$. If A is a finite set of integers, we denote the maximum element of A by $\max (A)$.

Let $[x]$ denote the integer part of the real number x.
Lemma 1. Let $f: \mathbb{Z} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ be a function such that $f^{-1}(0)$ is finite. Let Δ denote the cardinality of the set $f^{-1}(0)$. Then there exists a sequence $U=\left\{u_{k}\right\}_{k=1}^{\infty}$ of integers such that, for every $n \in \mathbb{Z}$ and $k \in \mathbb{N}$,

$$
f(n)=\operatorname{card}\left(\left\{k \geq 1: u_{k}=n\right\}\right)
$$

and

$$
\left|u_{k}\right| \leq\left[\frac{k+\Delta}{2}\right]
$$

Proof: Every positive integer m can be written uniquely in the form

$$
m=s^{2}+s+1+r
$$

where s is a nonnegative integer and $|r| \leq s$. We construct the sequence

$$
\begin{aligned}
V & =\{0,-1,0,1,-2,-1,0,1,2,-3,-2,-1,0,1,2,3, \ldots\} \\
& =\left\{v_{m}\right\}_{m=1}^{\infty}
\end{aligned}
$$

where

$$
v_{s^{2}+s+1+r}=r \quad \text { for } \quad|r| \leq s
$$

For every nonnegative integer k, the first occurrence of $-k$ in this sequence is $v_{k^{2}+1}=-k$, and the first occurrence of k in this sequence is $v_{(k+1)^{2}}=k$.

The sequence U will be the unique subsequence of V constructed as follows. Let $n \in \mathbb{Z}$. If $f(n)=\infty$, then U will contain the terms $v_{s^{2}+s+1+n}$ for every $s \geq|n|$. If $f(n)=\ell<\infty$, then U will contain the ℓ terms $v_{s^{2}+s+1+n}$ for $s=|n|,|n|+1, \ldots,|n|+\ell-1$ in the subsequence U, but not the terms $v_{s^{2}+s+1+n}$ for $s \geq|n|+\ell$. Let $m_{1}<m_{2}<m_{3}<\cdots$ be the strictly increasing sequence of positive integers such that $\left\{v_{m_{k}}\right\}_{k=1}^{\infty}$ is the resulting subsequence of V. Let $U=\left\{u_{k}\right\}_{k=1}^{\infty}$, where $u_{k}=v_{m_{k}}$. Then

$$
f(n)=\operatorname{card}\left(\left\{k \geq 1: u_{k}=n\right\}\right)
$$

Let card $\left(f^{-1}(0)\right)=\Delta$. The sequence U also has the following property: If $\left|u_{k}\right|=n$, then for every integer $m \notin f^{-1}(0)$ with $|m|<n$ there is a positive integer $j<k$ with $u_{j}=m$. It follows that

$$
\{0,1,-1,2,-2, \ldots, n-1,-(n-1)\} \backslash f^{-1}(0) \subseteq\left\{u_{1}, u_{2}, \ldots, u_{k-1}\right\}
$$

and so

$$
k-1 \geq 2(n-1)+1-\Delta
$$

This implies that

$$
\left|u_{k}\right|=n \leq \frac{k+\Delta}{2}
$$

Since u_{k} is an integer, we have

$$
\left|u_{k}\right| \leq\left[\frac{k+\Delta}{2}\right]
$$

This completes the proof.
Lemma 1 is best possible in the sense that for every nonnegative integer Δ there is a function $f: \mathbb{Z} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ with card $\left(f^{-1}(0)\right)=\Delta$ and a sequence $U=\left\{u_{k}\right\}_{k=1}^{\infty}$ of integers such that

$$
\begin{equation*}
\left|u_{k}\right|=\left[\frac{k+\Delta}{2}\right] \quad \text { for all } k \geq 1 \tag{1}
\end{equation*}
$$

For example, if $\Delta=2 \delta+1$ is odd, define the function f by

$$
f(n)= \begin{cases}0 & \text { if }|n| \leq \delta \\ 1 & \text { if }|n| \geq \delta+1\end{cases}
$$

and the sequence U by

$$
\begin{aligned}
u_{2 i-1} & =\delta+i \\
u_{2 i} & =-(\delta+i)
\end{aligned}
$$

for all $i \geq 1$.
If $\Delta=2 \delta$ is even, define f by

$$
f(n)= \begin{cases}0 & \text { if }-\delta \leq n \leq \delta-1 \\ 1 & \text { if } n \geq \delta \text { or } n \leq-\delta-1\end{cases}
$$

and the sequence U by $u_{1}=\delta$ and

$$
\begin{aligned}
u_{2 i} & =\delta+i \\
u_{2 i+1} & =-(\delta+i)
\end{aligned}
$$

for all $i \geq 1$. In both cases the sequence U satisfies (1).

The set A is called a Sidon set of order h if $r_{A, h}(n)=0$ or 1 for every integer n. If A is a Sidon set of order h, then A is a Sidon set of order j for all $j=1,2, \ldots, h$.

Lemma 2. Let A be a finite Sidon set of order h and $d=\max (\{|a|: a \in A\})$. If $|c|>(2 h-1) d$, then $A \cup\{c\}$ is also a Sidon set of order h.

Proof: Let $n \in h(A \cup\{c\})$. Suppose that

$$
n=a_{1}+\cdots+a_{j}+(h-j) c=a_{1}^{\prime}+\cdots+a_{\ell}^{\prime}+(h-\ell) c
$$

where

$$
\begin{gathered}
0 \leq j \leq \ell \leq h \\
a_{1}, \ldots, a_{j}, a_{1}^{\prime}, \ldots, a_{\ell}^{\prime} \in A
\end{gathered}
$$

and

$$
a_{1} \leq \cdots \leq a_{j} \quad \text { and } \quad a_{1}^{\prime} \leq \cdots \leq a_{\ell}^{\prime}
$$

If $j<\ell$, then

$$
\begin{aligned}
|c| & \leq|(\ell-j) c| \\
& =\left|a_{1}^{\prime}+\cdots+a_{\ell}^{\prime}-\left(a_{1}+\cdots+a_{j}\right)\right| \\
& \leq(\ell+j) d \\
& \leq(2 h-1) d \\
& <|c|
\end{aligned}
$$

which is absurd. Therefore, $j=\ell$ and $a_{1}+\cdots+a_{j}=a_{1}^{\prime}+\cdots+a_{j}^{\prime}$. Since A is a Sidon set of order j, it follows that $a_{i}=a_{i}^{\prime}$ for all $i=1, \ldots, j$. Consequently, $A \cup\{c\}$ is a Sidon set of order h.

3 - Construction of asymptotic bases

We can now construct asymptotic bases of order h for the integers with arbitrary representation functions.

Theorem 1. Let $f: \mathbb{Z} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ be a function such that the set $f^{-1}(0)$ is finite. Let $\varphi: \mathbb{N}_{0} \rightarrow \mathbb{R}$ be a nonnegative function such that $\lim _{x \rightarrow \infty} \varphi(x)=\infty$. For every $h \geq 2$ there exist infinitely many asymptotic bases A of order h for the integers such that

$$
r_{A, h}(n)=f(n) \quad \text { for all } n \in \mathbb{Z}
$$

and

$$
A(-x, x) \leq \varphi(x)
$$

for all $x \geq 0$.

Proof: By Lemma 1, there is a sequence $U=\left\{u_{k}\right\}_{k=1}^{\infty}$ of integers such that

$$
f(n)=\operatorname{card}\left(\left\{k \geq 1: u_{k}=n\right\}\right)
$$

for every integer n.
Let $h \geq 2$. We shall construct an ascending sequence of finite sets $A_{1} \subseteq A_{2} \subseteq$ $A_{3} \subseteq \cdots$ such that, for all positive integers k and for all integers n,
(i)

$$
r_{A_{k}, h}(n) \leq f(n)
$$

(ii)

$$
r_{A_{k}, h}(n) \geq \operatorname{card}\left(\left\{i: 1 \leq i \leq k \text { and } u_{i}=n\right\}\right)
$$

(iii)

$$
\operatorname{card}\left(A_{k}\right) \leq 2 k
$$

(iv)

$$
A_{k} \text { is a Sidon set of order } h-1 .
$$

Conditions (i) and (ii) imply that the infinite set

$$
A=\bigcup_{k=1}^{\infty} A_{k}
$$

is an asymptotic basis of order h for the integers such that $r_{A, h}(n)=f(n)$ for all $n \in \mathbb{Z}$.

We construct the sets A_{k} by induction. Since the set $f^{-1}(0)$ is finite, there exists a nonnegative integer d_{0} such that $f(n) \geq 1$ for all integers n with $|n| \geq d_{0}$. If $u_{1} \geq 0$, choose a positive integer $c_{1}>2 h d_{0}$. If $u_{1}<0$, choose a negative integer $c_{1}<-2 h d_{0}$. Then

$$
\left|c_{1}\right|>2 h d_{0}
$$

Let

$$
A_{1}=\left\{-c_{1},(h-1) c_{1}+u_{1}\right\} .
$$

The sumset $h A_{1}$ is the finite arithmetic progression

$$
\begin{aligned}
h A_{1} & =\left\{-h c_{1}+\left(h c_{1}+u_{1}\right) i: i=0,1, \ldots, h\right\} \\
& =\left\{-h c_{1}, u_{1}, h c_{1}+2 u_{1}, 2 h c_{1}+3 u_{1}, \ldots,(h-1) h c_{1}+h u_{1}\right\} .
\end{aligned}
$$

Then $|n| \geq h\left|c_{1}\right|>d_{0}$ for all $n \in h A_{1} \backslash\left\{u_{1}\right\}$. Since $f\left(u_{1}\right) \geq 1$, we have $r_{A_{1}, h}(n)=$ $1 \leq f(n)$ for all $n \in h A_{1}$. Similarly, since $r_{A_{1}, h}(n)=0$ for all $n \notin h A_{1}$, it follows that

$$
r_{A_{1}, h}(n) \leq f(n)
$$

for all $n \in \mathbb{Z}$. The set A_{1} is a Sidon set of order h, hence also a Sidon set of order $h-1$. Thus, the set A_{1} satisfies conditions (i)-(iv).

We assume that for some integer $k \geq 2$ we have constructed a set A_{k-1} satisfying conditions (i)-(iv). If

$$
r_{A_{k-1, h}}(n) \geq \operatorname{card}\left(\left\{i: 1 \leq i \leq k \text { and } u_{i}=n\right\}\right)
$$

for all $n \in \mathbb{Z}$, then the set $A_{k}=A_{k-1}$ satisfies conditions (i)-(iv). Otherwise,

$$
r_{A_{k-1}, h}\left(u_{k}\right)=\operatorname{card}\left(\left\{i: 1 \leq i \leq k \text { and } u_{i}=u_{k}\right\}\right)-1<f\left(u_{k}\right) .
$$

We shall construct a Sidon set A_{k} of order $h-1$ such that

$$
\operatorname{card}\left(A_{k}\right)=\operatorname{card}\left(A_{k-1}\right)+2
$$

and

$$
r_{A_{k}, h}(n)= \begin{cases}r_{A_{k-1}, h}(n)+1 & \text { if } n=u_{k} \tag{2}\\ r_{A_{k-1}, h}(n) & \text { if } n \in h A_{k-1} \backslash\left\{u_{k}\right\} \\ 1 & \text { if } n \in h A_{k} \backslash\left(h A_{k-1} \cup\left\{u_{k}\right\}\right)\end{cases}
$$

Define the nonnegative integer

$$
\begin{equation*}
d_{k-1}=\max \left(\left\{|a|: a \in A_{k-1} \cup\left\{u_{k}\right\}\right\}\right) \tag{3}
\end{equation*}
$$

Then

$$
A_{k-1} \subseteq\left[-d_{k-1}, d_{k-1}\right]
$$

If $u_{k} \geq 0$, choose a positive integer c_{k} such that $c_{k}>2 h d_{k-1}$. If $u_{k}<0$, choose a negative integer c_{k} such that $c_{k}<-2 h d_{k-1}$. Then

$$
\begin{equation*}
\left|c_{k}\right|>2 h d_{k-1} \tag{4}
\end{equation*}
$$

Let

$$
A_{k}=A_{k-1} \cup\left\{-c_{k},(h-1) c_{k}+u_{k}\right\}
$$

Then

$$
\operatorname{card}\left(A_{k}\right)=\operatorname{card}\left(A_{k-1}\right)+2 \leq 2 k
$$

We shall assume that $u_{k} \geq 0$, hence $c_{k}>0$. (The argument in the case $u_{k}<0$ is similar.) We decompose the sumset $h A_{k}$ as follows:

$$
h A_{k}=\bigcup_{\substack{r+i+j=h \\ r, i, j \geq 0}}\left(r(h-1) c_{k}+r u_{k}-i c_{k}+j A_{k-1}\right)=\bigcup_{r=0}^{h} B_{r}
$$

where

$$
B_{r}=r(h-1) c_{k}+r u_{k}+\bigcup_{i=0}^{h-r}\left(-i c_{k}+(h-r-i) A_{k-1}\right)
$$

If $n \in B_{r}$, then there exist integers $i \in\{0,1, \ldots, h-r\}$ and $y \in(h-r-i) A_{k-1}$ such that

$$
n=r(h-1) c_{k}+r u_{k}-i c_{k}+y
$$

Since

$$
|y| \leq(h-r-i) d_{k-1},
$$

it follows that

$$
\begin{equation*}
n \geq r(h-1) c_{k}+r u_{k}-i c_{k}-(h-r-i) d_{k-1} \tag{5}
\end{equation*}
$$

and

$$
n \leq r(h-1) c_{k}+r u_{k}-i c_{k}+(h-r-i) d_{k-1}
$$

Let $m \in B_{r-1}$ and $n \in B_{r}$ for some $r \in\{1, \ldots, h\}$. There exist nonnegative integers $i \leq h-r$ and $j \leq h-r+1$ such that

$$
\begin{aligned}
n-m \geq & \left(r(h-1) c_{k}+r u_{k}-i c_{k}-(h-r-i) d_{k-1}\right) \\
& -\left((r-1)(h-1) c_{k}+(r-1) u_{k}-j c_{k}+(h-r+1-j) d_{k-1}\right) \\
= & (h-1+j-i) c_{k}+u_{k}-(2 h-2 r-i-j+1) d_{k-1} \\
\geq & (h-1-i) c_{k}-2 h d_{k-1} .
\end{aligned}
$$

If $r \geq 2$, then $i \leq h-2$ and inequality (4) implies that

$$
n-m \geq c_{k}-2 h d_{k-1}>0
$$

Therefore, if $m \in B_{r-1}$ and $n \in B_{r}$ for some $r \in\{2, \ldots, h\}$, then $m<n$.
In the case $r=1$ we have $m \in B_{0}$ and $n \in B_{1}$. If $i \leq h-2$, then (4) implies that

$$
n-m \geq(h-1-i) c_{k}-2 h d_{k-1} \geq c_{k}-2 h d_{k-1}>0
$$

and (5) implies that

$$
n \geq(h-1-i) c_{k}+u_{k}-(h-1-i) d_{k-1}>c_{k}-h d_{k-1}>d_{0} .
$$

If $r=1$ and $i=h-1$, then $n=u_{k}$. Therefore, if $m \in B_{0}$ and $n \in B_{1}$, then $m<n$ unless $m=n=u_{k}$. It follows that the sets $B_{0}, B_{1} \backslash\left\{u_{k}\right\}, B_{2}, \ldots, B_{h}$ are pairwise disjoint.

Let $n \in B_{r}$ for some $r \geq 1$. Suppose that $0 \leq i \leq j \leq h-r$, and that

$$
n=r(h-1) c_{k}+r u_{k}-i c_{k}+y \quad \text { for some } y \in(h-r-i) A_{k-1}
$$

and

$$
n=r(h-1) c_{k}+r u_{k}-j c_{k}+z \quad \text { for some } \quad z \in(h-r-j) A_{k-1} .
$$

Subtracting these equations, we obtain

$$
z-y=(j-i) c_{k} .
$$

Recall that $|a| \leq d_{k-1}$ for all $a \in A_{k-1}$. If $i<j$, then

$$
\begin{aligned}
c_{k} & \leq(j-i) c_{k}=z-y \\
& \leq|y|+|z| \leq(2 h-2 r-i-j) d_{k-1} \\
& <2 h d_{k-1}<c_{k},
\end{aligned}
$$

which is impossible. Therefore, $i=j$ and $y=z$. Since $0 \leq h-r-i \leq h-1$ and A_{k-1} is a Sidon set of order $h-1$, it follows that

$$
r_{A_{k-1}, h-r-i}(y)=1
$$

and so

$$
r_{A_{k}, h}(n)=1 \leq f(n) \quad \text { for all } n \in\left(B_{1} \backslash\left\{u_{k}\right\}\right) \cup \bigcup_{r=2}^{h} B_{r} .
$$

Next we consider the set

$$
B_{0}=h A_{k-1} \cup \bigcup_{i=1}^{h}\left(-i c_{k}+(h-i) A_{k-1}\right) .
$$

For $i=1, \ldots, h$, we have

$$
c_{k}>2 h d_{k-1} \geq(2 h-2 i+1) d_{k-1}
$$

and so

$$
\begin{aligned}
\max \left(-i c_{k}+(h-i) A_{k-1}\right) & \leq-i c_{k}+(h-i) d_{k-1} \\
& <-(i-1) c_{k}-(h-i+1) d_{k-1} \\
& \leq \min \left(-(i-1) c_{k}+(h-i+1) A_{k-1}\right) .
\end{aligned}
$$

Therefore, the sets $-i c_{k}+(h-i) A_{k-1}$ are pairwise disjoint for $i=0,1, \ldots, h$. In particular, if $n \in B_{0} \backslash h A_{k-1}$, then

$$
n \leq \max \left(-c_{k}+(h-1) A_{k-1}\right) \leq-c_{k}+(h-1) d_{k-1}<-d_{k-1} \leq-d_{0}
$$

and $f(n) \geq 1$. Since A_{k-1} is a Sidon set of order $h-1$, it follows that

$$
r_{A_{k}, h}(n)=1 \leq f(n)
$$

for all

$$
n \in \bigcup_{i=1}^{h}\left(-i c_{k}+(h-i) A_{k-1}\right)=B_{0} \backslash h A_{k-1} .
$$

It follows from (3) that for any $n \in B_{0} \backslash h A_{k-1}$ we have

$$
n<-d_{k-1} \leq u_{k},
$$

and so $u_{k} \notin B_{0} \backslash h A_{k-1}$. Therefore,

$$
r_{A_{k}, h}\left(u_{k}\right)=r_{A_{k-1}, h}\left(u_{k}\right)+1,
$$

and the representation function $r_{A_{k}, h}$ satisfies the three requirements of (2).
We shall prove that

$$
A_{k}=A_{k-1} \cup\left\{-c_{k},(h-1) c_{k}+u_{k}\right\}
$$

is a Sidon set of order $h-1$. Since A_{k-1} is a Sidon set of order $h-1$ with $d_{k-1} \geq \max \left\{|a|: a \in A_{k-1}\right\}$, and since

$$
c_{k}>2 h d_{k-1}>(2(h-1)-1) d_{k-1}
$$

Lemma 2 implies that $A_{k-1} \cup\left\{-c_{k}\right\}$ is a Sidon set of order $h-1$.
Let $n \in(h-1) A_{k}$. Suppose that

$$
\begin{aligned}
n & =r(h-1) c_{k}+r u_{k}-i c_{k}+x \\
& =s(h-1) c_{k}+s u_{k}-j c_{k}+y,
\end{aligned}
$$

where

$$
\begin{gathered}
0 \leq r \leq s \leq h-1, \\
0 \leq i \leq h-1-r, \\
0 \leq j \leq h-1-s, \\
x \in(h-1-r-i) A_{k-1},
\end{gathered}
$$

and

$$
y \in(h-1-s-j) A_{k-1} .
$$

Then

$$
|x| \leq(h-1-r-i) d_{k-1}
$$

and

$$
|y| \leq(h-1-s-j) d_{k-1} .
$$

If $r<s$, then $j \leq h-2$ and

$$
\begin{aligned}
(h-1) c_{k} & \leq(s-r)(h-1) c_{k}+(s-r) u_{k} \\
& =(j-i) c_{k}+x-y \\
& \leq(j-i) c_{k}+(2 h-2-r-s-i-j) d_{k-1} \\
& \leq(h-2) c_{k}+2 h d_{k-1} \\
& <(h-1) c_{k},
\end{aligned}
$$

which is absurd. Therefore, $r=s$ and

$$
-i c_{k}+x=-j c_{k}+y \in(h-1-r)\left(A_{k} \cup\left\{-c_{k}\right\}\right)
$$

Since $A_{k} \cup\left\{-c_{k}\right\}$ is a Sidon set of order $h-1$, it follows that $i=j$ and that x has a unique representation as the sum of $h-1-r-i$ elements of A_{k}. Thus, A_{k} is a Sidon set of order $h-1$.

The set A_{k} satisfies conditions (i)-(iv). It follows by induction that there exists an infinite increasing sequence $A_{1} \subseteq A_{2} \subseteq \cdots$ of finite sets with these properties, and that $A=\cup_{k=1}^{\infty} A_{k}$ is an asymptotic basis of order h with representation function $r_{A, h}(n)=f(n)$ for all $n \in \mathbb{Z}$.

Finally, we shall prove that, for every nonnegative function $\varphi(x)$ with $\lim _{x \rightarrow \infty} \varphi(x)=\infty$, there exist infinitely many asymptotic bases A of order h such that $r_{A, h}(n)=f(n)$ for all $n \in \mathbb{Z}$ and $A(-x, x) \leq \varphi(x)$ for all $x \in N_{0}$. Let $A_{0}=\emptyset$, and let K^{\prime} be the set of all positive integers k such that $A_{k} \neq A_{k-1}$. Then $1 \in K^{\prime}$ and

$$
A=\bigcup_{k \in K^{\prime}} A_{k}=\bigcup_{k \in K^{\prime}}\left\{-c_{k},(h-1) c_{k}\right\}
$$

For each $k \in K^{\prime}$, the only constraints on the choice of the number c_{k} in the construction of the set A_{k} were the sign of c_{k} and the growth condition (4)

$$
\left|c_{k}\right|>2 h d_{k-1} .
$$

Since $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$, for every integer $k \geq 0$ there exists an integer w_{k} such that

$$
\varphi(x) \geq 2 k \quad \text { for all } x \geq w_{k} .
$$

We now impose the following additional constraint: Choose c_{k} such that

$$
\left|c_{k}\right| \geq w_{k} \quad \text { for all integers } k \in K^{\prime} .
$$

Then

$$
A_{1}(-x, x)=0 \leq \varphi(x) \quad \text { for } 0 \leq x<\left|c_{1}\right|
$$

and

$$
A_{1}(-x, x) \leq 2 \leq \varphi(x) \quad \text { for } \quad x \geq\left|c_{1}\right| \geq w_{1} .
$$

Suppose that $k \geq 2$ and the set A_{k-1} satisfies $A_{k-1}(-x, x) \leq \varphi(x)$ for all $x \geq 0$. If $k \notin K^{\prime}$, then $A_{k}=A_{k-1}$ and $A_{k}(-x, x) \leq \varphi(x)$ for all $x \geq 0$. If $k \in K$, then

$$
A_{k} \cap\left(-\left|c_{k}\right|,\left|c_{k}\right|\right)=A_{k-1} \cap\left(-\left|c_{k}\right|,\left|c_{k}\right|\right)=A_{k-1},
$$

and so

$$
A_{k}(-x, x)=A_{k-1}(-x, x) \leq \varphi(x) \quad \text { for } \quad 0 \leq x<\left|c_{k}\right|
$$

and

$$
A_{k}(-x, x) \leq 2 k \leq \varphi(x) \quad \text { for } \quad x \geq\left|c_{k}\right| \geq w_{k}
$$

It follows by induction that the finite sets A_{k} satisfy $A_{k}(-x, x) \leq \varphi(x)$ for all k and x. The infinite set $A=\cup_{k \in K^{\prime}} A_{k}$ is an asymptotic basis with $r_{A, h}(n)=f(n)$ for all $n \in \mathbb{Z}$. Since $\lim _{k \rightarrow \infty}\left|c_{k}\right|=\infty$, for every nonnegative integer x we can choose $k \in K^{\prime}$ such that $\left|c_{k}\right|>x$. It follows that

$$
A(-x, x)=A_{k}(-x, x) \leq \varphi(x) .
$$

For every integer $k \in K^{\prime}$ we had infinitely many choices for the integer c_{k} to use in the construction of the set A_{k}, and so there are infinitely many asymptotic bases A with the property that $r_{A}(n)=f(n)$ for all $n \in \mathbb{Z}$ and $A(-x, x) \leq \varphi(x)$ for all $x \in \mathbb{N}_{0}$. This completes the proof.

4 - Sums of pairwise distinct integers

Let A be a set of integers and h a positive integer. We define the sumset $h \wedge A$ as the set consisting of all sums of h pairwise distinct elements of A, and the restricted representation function

$$
\hat{r}_{A, h}: \mathbb{Z} \rightarrow \mathbb{N}_{0} \cup\{\infty\}
$$

by

$$
\hat{r}_{A, h}(n)=\operatorname{card}\left(\left\{\left\{a_{1}, \ldots, a_{h}\right\} \subseteq A: a_{1}+\cdots+a_{h}=n \text { and } a_{1}<\cdots<a_{h}\right\}\right)
$$

The set A of integers is called a restricted asymptotic basis of order h if $h \wedge A$ contains all but finitely many integers, or, equivalently, if $\hat{r}_{A, h}^{-1}(0)$ is a finite subset of Z.

We can obtain the following result by the same method used to prove Theorem 1.

Theorem 2. Let $f: \mathbb{Z} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ be a function such that $f^{-1}(0)$ is a finite set of integers. Let $\varphi: \mathbb{N}_{0} \rightarrow \mathbb{R}$ be a nonnegative function such that $\lim _{x \rightarrow \infty} \varphi(x)=\infty$. For every $h \geq 2$ there exist infinitely many sets A of integers such that

$$
\hat{r}_{A, h}(n)=f(n) \quad \text { for all } n \in \mathbb{Z}
$$

and

$$
A(-x, x) \leq \varphi(x)
$$

for all $x \geq 0$.

5 - Open problems

Let X be an abelian semigroup, written additively, and let A be a subset of X. We define the h-fold sumset $h A$ as the set consisting of all sums of h not necessarily distinct elements of A. The set A is called an asymptotic basis of order h for X if the sumset $h A$ consists of all but at most finitely many elements of X. We also define the h-fold restricted sumset $h \wedge A$ as the set consisting of all sums of h pairwise distinct elements of A. The set A is called a restricted asymptotic basis of order h for X if the restricted sumset $h \wedge A$ consists of all but at most
finitely many elements of X. The classical problems of additive number theory concern the semigroups \mathbb{N}_{0} and \mathbb{Z}.

There are four different representation functions that we can associate to every subset A of X and every positive integer h. Let $\left(a_{1}, \ldots, a_{h}\right)$ and $\left(a_{1}^{\prime}, \ldots, a_{h}^{\prime}\right)$ be h-tuples of elements of X. We call these h-tuples equivalent if there is a permutation σ of the set $\{1, \ldots, h\}$ such that $a_{\sigma(i)}^{\prime}=a_{i}$ for all $i=1, \ldots, h$. For every $x \in X$, let $r_{A, h}(x)$ denote the number of equivalence classes of h-tuples (a_{1}, \ldots, a_{h}) of elements of A such that $a_{1}+\cdots+a_{h}=x$. The function $r_{A, h}$ is called the unordered representation function of A. This is the function that we studied in this paper. The set A is an asymptotic basis of order h if $r_{A, h}^{-1}(0)$ is a finite subset of X.

Let $R_{A, h}(x)$ denote the number of h-tuples $\left(a_{1}, \ldots, a_{h}\right)$ of elements of A such that $a_{1}+\cdots+a_{h}=x$. The function $R_{A, h}$ is called the ordered representation function of A.

Let $\hat{r}_{A, h}(x)$ denote the number of equivalence classes of h-tuples $\left(a_{1}, \ldots, a_{h}\right)$ of pairwise distinct elements of A such that $a_{1}+\cdots+a_{h}=x$, and let $\hat{R}_{A, h}(x)$ denote the number of h-tuples $\left(a_{1}, \ldots, a_{h}\right)$ of pairwise distinct elements of A such that $a_{1}+\cdots+a_{h}=x$. These functions are called the unordered restricted representation function of A and the ordered restricted representation function of A, respectively. The two restricted representation functions are essentially identical, since $\hat{R}_{A, h}(x)=h!\hat{r}_{A, h}(x)$ for all $x \in X$.

In the discussion below, we use only the unordered representation function $r_{A, h}$, but each of the problems can be reformulated in terms of the other representation functions.

For every countable abelian semigroup X, let $\mathcal{F}(X)$ denote the set of all functions $f: X \rightarrow \mathbb{N}_{0} \cup\{\infty\}$, and let $\mathcal{F}_{0}(X)$ denote the set of all functions $f: X \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ such that $f^{-1}(0)$ is a finite subset of X. Let $\mathcal{F}_{c}(X)$ denote the set of all functions $f: X \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ such that $f^{-1}(0)$ is a cofinite subset of X, that is, $f(x) \neq 0$ for only finitely many $x \in X$, or, equivalently,

$$
\operatorname{card}\left(f^{-1}(\mathbb{N} \cup\{\infty\})\right)<\infty
$$

Let $\mathcal{R}(X, h)$ denote the set of all h-fold representation functions of subsets A of X. If $r_{A, h}$ is the representation function of an asymptotic basis A of order h for X, then $r_{A, h}^{-1}(0)$ is a finite subset of X, and so $r_{A, h} \in \mathcal{F}_{0}(X)$. Let $\mathcal{R}_{0}(X, h)$ denote the set of all h-fold representation functions of asymptotic bases A of order h for X. Let $\mathcal{R}_{c}(X, h)$ denote the set of all h-fold representation functions of finite subsets of X. We have

$$
\mathcal{R}(X, h) \subseteq \mathcal{F}(X),
$$

$$
\mathcal{R}_{0}(X, h) \subseteq \mathcal{F}_{0}(X)
$$

and

$$
\mathcal{R}_{c}(X, h) \subseteq \mathcal{F}_{c}(X) .
$$

In the case $h=1$, we have, for every set $A \subseteq X$,

$$
r_{A, 1}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

and so

$$
\begin{gathered}
\mathcal{R}(X, 1)=\{f: X \rightarrow\{0,1\}\} \\
\mathcal{R}_{0}(X, 1)=\left\{f: X \rightarrow\{0,1\}: \operatorname{card}\left(f^{-1}(0)\right)<\infty\right\}
\end{gathered}
$$

and

$$
\mathcal{R}_{c}(X, 1)=\left\{f: X \rightarrow\{0,1\}: \operatorname{card}\left(f^{-1}(\mathbb{N} \cup\{\infty\})\right)<\infty\right\}
$$

In this paper we proved that

$$
\mathcal{R}_{0}(\mathbb{Z}, h)=\mathcal{F}_{0}(\mathbb{Z}) \quad \text { for all } h \geq 2
$$

Nathanson [8] has extended this result to certain countably infinite groups and semigroups. Let G be any countably infinite abelian group such that $\{2 g: g \in G\}$ is infinite. For the unordered restricted representation function $\hat{r}_{A, 2}$, we have

$$
\mathcal{R}_{0}(G, 2)=\mathcal{F}_{0}(G)
$$

More generally, let S is any countable abelian semigroup such that for every $s \in S$ there exist $s^{\prime}, s^{\prime \prime} \in S$ with $s=s^{\prime}+s^{\prime \prime}$. In the abelian semigroup $X=S \oplus G$, we have

$$
\mathcal{R}_{0}(X, 2)=\mathcal{F}_{0}(X)
$$

If $\{12 g: g \in G\}$ is infinite, then $\mathcal{R}_{0}(X, 2)=\mathcal{F}_{0}(X)$ for the unordered representation function $r_{A, 2}$.

The following problems are open for all $h \geq 2$:

1. Determine $\mathcal{R}_{0}\left(\mathbb{N}_{0}, h\right)$. Equivalently, describe the representation functions of additive bases for the nonnegative integers. This is a major unsolved problem in additive number theory, of which the Erdős-Turán conjecture is only a special case.
2. Determine $\mathcal{R}(\mathbb{Z}, h)$. In this paper we computed $\mathcal{R}_{0}(\mathbb{Z}, h)$, the set of representation functions of additive bases for the integers, but it is not known under what conditions a function $f: \mathbb{Z} \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ with $f^{-1}(0)$ infinite is the representation function of a subset A of X. It can be proved that if $f^{-1}(0)$ is infinite but sufficiently sparse, then $f \in \mathcal{R}(\mathbb{Z}, h)$.
3. Determine $\mathcal{R}\left(\mathbb{N}_{0}, h\right)$. Is there a simple list of necessary and sufficient conditions for a function $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ to be the representation function of some set of nonnegative integers?
4. Determine $\mathcal{R}_{c}(\mathbb{Z}, h)$. Equivalently, describe the representation functions of finite sets of integers, and identify the functions $f \in \mathcal{F}_{c}(\mathbb{Z})$ such that $f(n)=$ $r_{A, h}(n)$ for some finite set A of integers. If A is a set of integers and t is an integer, then for the translated set $t+A$ we have

$$
r_{t+A, h}(n)=r_{A, h}(n-h t)
$$

for all integers n. This implies that if $f(n) \in \mathcal{R}_{c}(\mathbb{Z}, h)$, then $f(n-h t) \in$ $\mathcal{R}_{c}(\mathbb{Z}, h)$ for every integer t, so it suffices to consider only finite sets A of nonnegative integers with $0 \in A$. Similarly, if $\operatorname{gcd}(A)=d$, then $r_{A, h}(n)>0$ only if d divides n. Setting $B=\{a / d: d \in A\}$, we have $r_{h, A}(n)=r_{B, h}(n / d)$. It follows that we need to consider only finite sets A of relatively prime nonnegative integers with $0 \in A$.
5. Determine $\mathcal{R}_{0}(G, 2), \mathcal{R}(G, 2)$, and $\mathcal{R}_{c}(G, 2)$ for the infinite abelian group $G=\bigoplus_{i=1}^{\infty} \mathbb{Z} / 2 \mathbb{Z}$. Note that $\{2 g: g \in G\}=\{0\}$ for this group.
6. Determine $\mathcal{R}_{0}(G, h)$ and $\mathcal{R}(G, h)$, where G is an arbitrary countably infinite abelian group and $h \geq 2$.
7. There is a class of problems of the following type. Do there exist integers h and k with $2 \leq h<k$ such that

$$
\mathcal{R}(\mathbb{Z}, h) \neq \mathcal{R}(\mathbb{Z}, k) ?
$$

We can easily find sets of integers to show that that $\mathcal{R}_{0}\left(\mathbb{N}_{0}, h\right) \neq \mathcal{R}_{0}\left(\mathbb{N}_{0}, k\right)$. For example, let $A=\mathbb{N}$ be the set of all positive integers, and let $h \geq 1$. Then $r_{\mathbb{N}, h}(0)=0$ and $r_{\mathbb{N}, h}(h)=1$. If B is any set of nonnegative integers and $k>h$, then $r_{B, k}(h)=0$, and so $r_{\mathbb{N}, h} \notin \mathcal{R}_{0}\left(\mathbb{N}_{0}, k\right)$. Is it true that

$$
\mathcal{R}_{0}\left(\mathbb{N}_{0}, h\right) \cap \mathcal{R}_{0}\left(\mathbb{N}_{0}, k\right)=\emptyset
$$

for all $h \neq k$?
8. By Theorem 1 , for every $h \geq 2$ and every function $f \in \mathcal{F}_{0}(\mathbb{Z})$, there exist arbitrarily sparse sets A of integers such that $r_{A, h}(n)=f(n)$ for all n. It is an open problem to determine how dense the sets A can be. For example, in the special case $h=2$ and $f(n)=1$, Nathanson [7] proved that there exists a set A such that $r_{A, 2}(n)=1$ for all n, and $\log x \ll A(-x, x) \ll \log x$. For an arbitrary representation function $f \in \mathcal{F}_{0}(\mathbb{Z})$, Nathanson [6] constructed an asymptotic basis of order h with $A(-x, x) \gg x^{1 /(2 h-1)}$. In the case $h=2$, Cilleruelo and Nathanson [1] improved this to $A(-x, x) \gg x^{\sqrt{2}-1+o(1)}$.

REFERENCES

[1] Cilleruelo, J. and Nathanson, M.B. - Dense sets of integers with prescribed representation functions, in preparation.
[2] Dirac, G.A. - Note on a problem in additive number theory, J. London Math. Soc., 26 (1951), 312-313.
[3] Erdős, P. and Turán, P. - On a problem of Sidon in additive number theory and some related questions, J. London Math. Soc., 16 (1941), 212-215.
[4] Erdős, P. and Fuchs, W.H.J. - On a problem of additive number theory, J. London Math. Soc., 31 (1956), 67-73.
[5] Nathanson, M.B. - Representation functions of sequences in additive number theory, Proc. Amer. Math. Soc., 72 (1978), 16-20.
[6] Nathanson, M.B. - The inverse problem for representation functions of additive bases, in "Number Theory: New York Seminar 2003" (New York), Springer-Verlag, 2004, pp. 253-262.
[7] Nathanson, M.B. - Unique representation bases for the integers, Acta Arith., 108(1) (2003), 1-8.
[8] Nathanson, M.B. - Representation functions of additive bases for abelian semigroups, Int. J. Math. Math. Sci., 2004(30) (2004), 1589-1597.

Melvyn B. Nathanson,
Department of Mathematics, Lehman College (CUNY),
Bronx, New York 10468 - USA
E-mail: melvyn.nathanson@lehman.cuny.edu

[^0]: Received: December 2, 2003; Revised: March 14, 2004.
 AMS Subject Classification: 11B13, 11B34, 11B05.
 Keywords and Phrases: additive bases; sumsets; representation functions; density; ErdősTurán conjecture; Sidon set.

 * This work was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.

