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Abstract: We study the existence of periodic solutions for an ordinary differential

equation of resonant type. Under suitable conditions we prove the existence of at least

one periodic solution of the problem applying Mawhin Coincidence degree theory.

1 – Introduction

In the last years there has been an increasing interest in higher order problems

which have applications in many fields, such as beam theory [4], [5] and multi-ion

electrodiffusion problems [8].

In this work, we consider the problem:

Lx+ g(x, x′, ..., x(N−2)) = p(t)(1)

where

Lx = x(N) + aN−1x
(N−1) + ...+ a0x(2)

under periodic conditions

x(0) = x(2π)

x′(0) = x′(2π)
...

x(N−1)(0) = x(N−1)(2π)

for continuous and bounded g.
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We assume that L is a resonant operator, i.e. that the homogeneous prob-

lem Lx = 0 admits nontrivial periodic solutions. Namely, we assume that the

polynomial

P (λ) = λN + aN−1λ
N−1 + ...+ a0(3)

admits imaginary roots ±im (m ∈ Z).
For notational convenience, we introduce the n-dimensional symbolic vectors

V±± given by

V++ = (+∞,+∞,−∞,−∞, ...)

V+− = (+∞,−∞,−∞,+∞, ...)

V−+ = (−∞,+∞,+∞,−∞, ...)

V−− = (−∞,−∞,+∞,+∞, ...)

where the sequences of signs are 4-periodic.

Our main result is:

Theorem 1.1. Let us assume that

1. The polynomial (3) has exactly two roots ±im in iZ, which are simple.

2. g : RN−1 → R is a continuous bounded function such that the four limits

lim
s→V±±

g(s) := g±±

exist.

Let p ∈ L2(0, 2π) and consider the m-th Fourier coefficients of p, namely:

am(p) =
1

π

∫ 2π

0
p(t) cos(mt) dt ,

bm(p) =
1

π

∫ 2π

0
p(t) sin(mt) dt .

If furthermore, we assume that

a2
m(p) + b

2
m(p) <

2

π2

[
(g+− − g−+)

2 + (g++ − g−−)
2
]

(4)

then equation (1) has at least one 2π-periodic solution in HN (0, 2π).
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Remark 1.1. The particular case N = 3 with g = g(x′) has been considered

in [1].

Remark 1.2. In the same way as in [1], Proposition 3.1, it is easy to see that

condition (4) is “almost” necessary: namely, if (1) admits a 2π-periodic solution

then

a2
m(p) + b

2
m(p) ≤

16

π2
‖g‖2L∞ .(5)

In particular, if g verifies

|g+− − g−+| = |g++ − g−−| = 2 ‖g‖L∞ ,

and inequality (5) holds stricly, then (4) holds.

Remark 1.3. We observe that (4) is a Landesman-Lazer type condition (see

e.g. [7],[10]). Thus, Theorem 1.1 can be regarded as a Nth-order analogue of

Theorem 1 in [11].

2 – Auxiliary results

2.1. Mawhin coincidence degree theory

Let us briefly summarize some aspects of Mawhin theory. This technique has

been applied to many problems, see e.g. [2] and [6]. For further details see [9],

[3].

Let X and Y be real normed spaces, L : dom(L) → Y be a linear mapping,

and N : X → Y be a continuous mapping. The mapping L is called a Fredholm

mapping of index 0 if Im(L) is a closed subspace of Y and

dim(Ker(L)) = codim(Im(L)) < ∞ .

If L is a Fredholm mapping of index 0, then there exists continuous projectors

P : X → X and Q : Y → Y such that Im(P ) = Ker(L) and Ker(Q) = Im(L).

It follows that

LP = L|dom(L)∩Ker(P ) : dom(L) ∩Ker(P ) → Im(L) = Ker(Q)
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is one-to-one and onto Im(L). We denote its inverse by KP . If Ω is a bounded

open subset of X, N is called L-compact on Ω if QN(Ω) is bounded and

KP (I − Q)N : Ω → X is compact. Since Im(Q) is isomorphic to Ker(L), there

exists and isomorphism J : Im(Q)→ Ker(L).

The following continuation theorem is due to Mawhin [9]:

Theorem 2.1. Let L be a Fredholm mapping of index zero and N be

L-compact on Ω. Suppose

1. For each λ ∈ (0, 1], x ∈ ∂Ω we have that Lx 6= λNx;

2. QNx 6= 0 for each x ∈ Ker(L) ∩ ∂Ω;

3. The Brouwer degree dB(JQN,Ω ∩Ker(L), 0) 6= 0.

Then the equation Lx = Nx has at least one solution in dom(L) ∩ Ω.

In our case, we shall work in the usual Sobolev space of periodic functions,

namely

HK
per(0, 2π) =

{
x ∈ HK(0, 2π) : x(j)(0) = x(j)(2π) ∀ j=0, ...,K−1

}
.

More precisely, we shall consider X = HN−1
per (0, 2π), Y = L2(0, 2π) and L the

linear differential operator given by (2), with dom(L) = HN
per(0, 2π). Under

the assumption 1 of Theorem 1.1, it is immediate to see that Ker(L) = Em is

the subspace generated by sin(mt) and cos(mt), and Im(L) = E⊥m; thus L is a

Fredholm mapping of index zero. Moreover, we may take Q as the orthogonal

projection Pm onto Em in L
2(0, 2π) and P as the restriction of Pm toH

N−1
per (0, 2π).

Ω will be an appropriate open bounded subset of HN−1
per (0, 2π). Then, if Nx =

p(t) − g(x, ..., x(N−2)), it will follow from the estimates in section 2.2 that N is

L-compact on Ω.

2.2. Estimates for the linear operator L

We assume throughout this section that assumption 1 of Theorem 1.1 holds.

We recall the following lemma from [1]:

Lemma 2.2. There exists a constant c such that for any x ∈ H2(0, 2π) we

have

‖x− Pm(x)‖H1 ≤ c ‖x′′ +m2x‖L2

where Pm is the orthogonal projection on Em in L
2(0, 2π).
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Then we have:

Lemma 2.3. There exists a constant c such that

‖x− Pm(x)‖HN−1 ≤ c ‖Lx‖L2 ∀x ∈ HN
per(0, 2π) .

Proof: Writing P (λ) = (λ2 +m2) P̃ (λ) we may decompose the operator L

as

L = L2 L̃

where L2x = x′′ +m2x and L̃ is the differential operator associated to P̃ .

For x ∈ E⊥m in L
2(0, 2π), let us write the equality Lx = f as a system:

{
L2y = f

L̃x = y .

Since y = L̃x ∈ E⊥m, from Lemma 2.2, we have that

‖y‖H1 ≤ c ‖f‖L2 .

We claim that

‖x‖HN−1 ≤ c ‖y‖H1 .(6)

Indeed, as P (0) 6= 0, from Lemma 4.3 in [1] we know that (6) holds for N = 3.

Assume that (6) holds for N−1, and let a be any root of P̃ . Thus, if P̃ (λ) =

(λ− a)P̂ (λ), by inductive hypothesis we have that
∥∥x′
∥∥
HN−2 ≤ c ‖L̂(x′)‖H1 ≤ c ‖L̂x‖H2

and from Lemma 4.3 in [1] we know that

‖L̂x‖H2 ≤ c ‖y‖H1 .

It follows that ∥∥x′
∥∥
HN−2 ≤ c ‖y‖H1 .

On the other hand, it is easy to see that
∣∣∣∣
∫ 2π

0
z(t) dt

∣∣∣∣ ≤ c ‖L̃z‖L2

for any z ∈ HN
per(0, 2π), and the claim follows from Wirtinger inequality.

For x 6∈ E⊥m, it suffices to write

‖x− Pm(x)‖HN−1 ≤ c ‖L(x− Pm(x))‖L2 = c ‖Lx‖L2 .
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Remark 2.1. It follows that the operator Nx = p− g(x, ..., x(N−2))

defined in the previous section is L-compact on Ω for any open bounded

Ω ⊂ HN−1
per (0, 2π).

3 – A priori estimates

Lemma 3.1. Assume that g : RN−1 → R is a continuous bounded function,
that the four limits g±± exist, and that

a2
m(p) + b

2
m(p) 6=

2

π2

[
(g+− − g−+)

2 + (g++ − g−−)
2
]
.

Then the solutions of

L(x) = λ
(
p(t)− g(x, ..., x(N−2))

)

with λ ∈ (0, 1] are a priori bounded in HN−1(0, 2π).

Proof: Let xn(t) be a solution of

Lxn = λn

(
p(t)− g(xn, ..., x

(N−2)
n )

)

with λn ∈ (0, 1] and assume that ‖xn‖HN−1 → +∞. Let us write

xn = yn + zn

where yn = Pm(xn) and zn = xn − Pm(xn) ∈ E
⊥
m. We have that

‖zn‖HN−1 ≤ c1

∥∥∥p(t)− g(xn, ..., x(N−2)
n )

∥∥∥
L2
≤ c2 .

From the compactness of the imbedding HN−1 ↪→ CN−2[0, 2π] there exists a

convergent subsequence, still denoted zn, with

zn → z in CN−2[0, 2π] .

We have that ‖yn‖HN−1 →∞. Since Pm(xn) ∈ Em,

yn(t) = αn cos(mt− βn)
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where αn ≥ 0, αn → +∞ and βn ∈ [0, 2π]. Taking a subsequence, we may

assume that βn → β. On the other hand, if ϕ ∈ Em and L
∗x = (−1)Nx(N) +

(−1)N−1aN−1 x
(N−1) + ...+ a0x, integrating by parts we have:

0 =

∫ 2π

0
xnL

∗(ϕ) dt = λn

∫ 2π

0

[
p(t)− g(xn, ..., x

(N−2)
n )

]
ϕ dt .

In particular, choosing ϕ = cos(mt)

am(p) =
1

π

∫ 2π

0
p(t) cos(mt) dt =

1

π

∫ 2π

0
g(xn, ..., x

(N−2)
n ) cos(mt) dt

and choosing ϕ = sin(mt)

bm(p) =
1

π

∫ 2π

0
p(t) sin(mt) dt =

1

π

∫ 2π

0
g(xn, ..., x

(N−2)
n ) sin(mt) dt .

From the identities

xn(t) = z′n(t) + αn cos(mt− βn)

x′n(t) = z′n(t)− αnm sin(mt− βn)

x′′n(t) = z′′n(t)− αnm
2 cos(mt− βn)

...

we obtain:

g
(
xn(t), ..., x

(N−2)
n (t)

)
→





g+− if t ∈ C++
β

g−− if t ∈ C−+
β

g−+ if t ∈ C−−β

g++ if t ∈ C+−
β

where

C++
β =

{
t ∈ [0, 2π] : cos(mt− β) > 0, sin(mt− β) > 0

}

C−+
β =

{
t ∈ [0, 2π] : cos(mt− β) < 0, sin(mt− β) > 0

}

C−−β =
{
t ∈ [0, 2π] : cos(mt− β) < 0, sin(mt− β) < 0

}

C+−
β =

{
t ∈ [0, 2π] : cos(mt− β) > 0, sin(mt− β) < 0

}
.

As n→∞, by dominated convergence we obtain:

am(p) =
1

π

[
g+−

∫

C++

β

cos(mt) dt + g−−

∫

C−+

β

cos(mt) dt

+ g−+

∫

C−−
β

cos(mt) dt + g++

∫

C+−
β

cos(mt) dt

]
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and

bm(p) =
1

π

[
g+−

∫

C++

β

sin(mt) dt + g−−

∫

C−+

β

sin(mt) dt

+ g−+

∫

C−−
β

sin(mt) dt + g++

∫

C+−
β

sin(mt) dt

]
.

Moreover,

∫

C++

β

eimt dt = eiβ
∫

C++
0

eims ds = eiβm

∫ π/2m

0
eims ds = (1 + i) eiβ

and in a similar way we compute:

∫

C−+

β

eimt dt = eiβ
∫

C−+
0

eims ds = eiβm

∫ π/m

π/2m
eims ds = (−1 + i) eiβ

∫

C−−
β

eimt dt = eiβ
∫

C−−
0

eims ds = eiβm

∫ 3π/2m

π/m
eims ds = (−1− i) eiβ

∫

C−+

β

eimt dt = eiβ
∫

C−+
0

eims ds = eiβm

∫ 2π/m

3π/2m
eims ds = (1− i) eiβ .

Hence we have that

am(p) =
1

π

[
(g+− − g−+) (cosβ − sinβ) + (g++ − g−−) (cosβ + sinβ)

]

and

bm(p) =
1

π

[
(g+− − g−+) (cosβ + sinβ) + (g++ − g−−) (cosβ − sinβ)

]
.

Then

a2
m(p)+b

2
m(p) =

1

π2

[
(cosβ−sinβ)2+(cosβ+sinβ)2

][
(g+−− g−+)

2+(g++− g−−)
2
]

=
2

π2

[
(g+− − g−+)

2 + (g++ − g−−)
2
]
,

a contradiction.
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4 – A degree computation

In this section we compute the degree

d
(
QN, Ω ∩Ker(L), 0

)

where

Ω =
{
u ∈ HN−1

per (0, 2π) : ‖u‖HN−1 < R
}

for some R to be chosen. With this aim, let us consider the isomorphism

ψ : R2 → Em = Ker(L) given by

ψ(a, b) = a cos(mt) + b sin(mt)

and define

h = ψ−1QNψ .

Let us call Ω̃ = ψ−1(Ω ∩ Em) ⊂ R2. As we shall prove, if R is large enough, then

h does not vanish on ∂Ω̃, and hence

d
(
QN, Ω ∩Ker(L), 0

)
= d(h, Ω̃, 0) .(7)

If we introduce polar coordinates a = r cosω, b = r sinω, a simple computa-

tion shows that the components of h = (h1, h2) are

h1(r cosω, r sinω) =

= am(p)−
1

π

∫ 2π

0
g
(
r cos(mt−ω),−mr sin(mt−ω),−m2r cos(mt−ω), ...

)
cos(mt) dt

and

h2(r cosω, r sinω) =

= bm(p)−
1

π

∫ 2π

0
g
(
r cos(mt−ω),−mr sin(mt−ω),−m2r cos(mt−ω), ...

)
sin(mt) dt .

In the same way as before we obtain:

lim
r→∞

h(r cosω, r sinω) = (am(p), bm(p))− C(ω)

where C(ω) ∈ R2 is given by

C(ω) =
1

π

(
A(cosω− sinω)+B(cosω+sinω), A(cosω+sinω)+B(cosω− sinω)

)

with A = g+− − g−+ and B = g++ − g−−.
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Remark 4.1. In the same way as in [1] it can be proved that the previous

limits are uniform in ω ∈ [0, 2π).

Lemma 4.1. Assume that g : RN−1 → R is continuous and bounded, that

the four limits g±± exist, and that

a2
m(p) + b

2
m(p) <

2

π2

[
(g+− − g−+)

2 + (g++ − g−−)
2
]
.

Then for R large enough

d
(
QN, Ω ∩Ker(L), 0

)
= −1 .

Proof: Let us introduce the function

h̃(x, y) =





(
am(p), bm(p)

)
− T

(
x

‖(x, y)‖
,

y

‖(x, y)‖

)
if ‖(x, y)‖ ≥ 1

(
am(p), bm(p)

)
− T (x, y) if ‖(x, y)‖ < 1

where T : R2 → R2 is the linear operator given by

T (x, y) =
1

π

(
A(x− y) +B(x+ y), A(x+ y)−B(x− y)

)

with A and B as above. Next, define the homotopy

H(x, y, λ) = λh(x, y) + (1− λ) h̃(x, y) .

From the previous computations, for λ 6= 0 it is clear that H(x, y, λ) 6= 0 for

‖(x, y)‖ large. On the other hand, for λ = 0, H = h̃. If h̃(x0, y0) = 0 for some

(x0, y0) with ‖(x0, y0)‖ ≥ 1, then

a2
m(p) + b

2
m(p) =

2

π2
(A2 +B2) ,

a contradiction. Note that dist(∂Ω̃, 0)→ +∞ for R→ +∞. Hence, if R is large

enough, by the homotopy invariance and the excision property of the degree:

d(h, Ω̃, 0) = d(h̃, Ω̃, 0) = d(h̃, B1, 0) .

But h̃|B1
has a unique zero at

(x0, y0)=
π

2(A2+B2)

(
(A+B)am(p)+(A−B)bm(p),−(A−B)am(p)+(A+B)bm(p)

)
.
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Moreover,

Dh̃(x0, y0) = −
1

π

(
A+B −(A−B)

A−B A+B

)
.

Hence sgn(Dh̃(x0, y0)) = −1, and we conclude that d(h,BR, 0) = −1.

Proof of Theorem 1.1: From Lemma 3.1 and Lemma 4.1, if we choose

R large enough, all the conditions of Theorem 2.1 are fulfilled, and the proof is

complete.
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