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EULER SCHEME FOR SOLUTIONS OF
STOCHASTIC DIFFERENTIAL EQUATIONS
WITH NON-LIPSCHITZ COEFFICIENTS

A. Berkaoui *

Abstract: Firstly, we investigate existence and uniqueness of solutions of stochastic

differential equations when the coefficients are random Lipschitz or of class C1. Secondly,

we prove the strong convergence of the associated Euler scheme. The usual rates of

convergence are obtained.

1 – Introduction and notations

The theory of stochastic differential equations (SDE’s) provide a useful tool

to introduce stochasticity into models and to characterize the evolution of many

processes in finance, biology and others. In many cases, the solutions are not given

explicitly, therefore numerical approximations are used to study the properties

of these models. Unfortunately current results concerning the convergence of

such schemes impose conditions on the drift and diffusion coefficients of these

equations, namely the linear growth and global Lipschitz conditions (see Skorohod

1965, Kloeden and Platen 1992 and Mao 1997). We note that Yamada (1978)

relaxed the global Lipschitz condition, whilst Kaneko and Nakao (1988) have

shown that the Euler scheme converges in the strong sense, to the solution of the

stochastic differential equation whenever path-wise uniqueness of the solution
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holds. However, both results require the linear growth condition whilst the latter

provides no information on the order of the approximation. Recently, Mao et

al (2002) have shown the convergence in Probability, of the Euler scheme under

specific conditions on the coefficients.

In this paper, we study existence and uniqueness of solutions of stochastic

differential equations even where the coefficients are not necessarily Lipschitz.

We study also their approximation in Lp by the well known Euler scheme under

Novikov’s conditions (see conditions in sections 3 and 4). The usual rates of

convergence are obtained.

Let (Ω,F , (Ft)0≤t≤T ,P) be a filtered space and {Wt , 0 ≤ t ≤ T} be an

Rl-valued Brownian motion. We consider the multidimensional stochastic dif-

ferential equation:

Xt = X0 +

∫ t

0
B(s,Xs) ds +

∫ t

0
A(s,Xs) dWs ,(1)

where X0 ∈ Rd, B : Ω×R+×Rd → Rd and A : Ω×R+×Rd → Rd ⊗ Rl are two

functions satisfying some hypotheses that we will precise later in sections 3 and 4.

Through this paper, we adopt the following notations. Let Πn = {0 = tn,0 <

tn,1 < ... < tn,n = T} be a subdivision on the interval [0, T ] for each integer n

with the discretization step δn = supk(tn,k+1− tn,k). Let 1C be the characteristic

function of a subset C defined by 1C(x) = 1 if x ∈ C and 1C(x) = 0 if x /∈ C ,

C([0, T ];Rk) be the space of continuous functions defined on [0, T ], with values

in Rk. Let define ρn(t) = sup{tn,k ≤ t , k = 0...n} and Y ρn(t) = Y (ρnt ). We will

design the inner product and the norm in Rk respectively by 〈 ., . 〉 and ‖ . ‖ .

This paper is organized as follows. In section 2, we state in Lemma 2.1, a

stochastic version of the well known Gronwall Lemma. We apply this result to

investigate some estimates on the Euler scheme associated to the stochastic differ-

ential equation (1), it is the subject of Proposition 2.1. In section 3, we consider

a SDE where the random coefficients are supposed to be Lipschitz and the Lips-

chitz constants are random functions satisfying some hypotheses of integrability

and continuity. Theorem 3.1 gives us existence and uniqueness of the solution.

Furthermore, it is proved that the Euler scheme converges strongly and the rates

are given. At the end, in section 4, the coefficients of our SDE, are considered to

be of class C1. Under some conditions on the solution, we prove in Theorem 4.1

the convergence of the Euler scheme and give the rates of convergence.
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2 – Some preliminaries results

In this section, we prove some intermediate results which will be useful in the

next.

Lemma 2.1. Let {Gt , 0 ≤ t ≤ T} be an increasing and continuous progres-

sively measurable process with G0 = 0, {Fq(t) ; 0 ≤ t ≤ T, q ≥ 0} be a family

of nonnegative increasing random functions. We suppose that there exists reals

ν > 0 and p ≥ 0, such that the nonnegative random function {Ut , 0 ≤ t ≤ T}

satisfies for every stopping time 0 ≤ τ ≤ T and every real q ∈ [p, p+ ν[, the

following inequality:

E(Uτ )
q ≤ Kq E

∫ τ

0
(Us)

q dGs +EFq(τ) ,(2)

where Kq is a positive constant. Then for every t ∈ [0, T ], q ∈ [p, p+ ν[, r > 1,

r′ its conjugate and a > 0 such that ar′ > Kqr′ and qr
′< p+ ν, we have for every

R > 0, η ∈ [0, 1], e > 1 and e′ its conjugate :

E(Ut)
q ≤ EFq(t) + zq(T ) ,(3)

where

zq(T ) = η
r′

ar′−Kqr′

{

EFqr′(T )
}

1

r′
{

E exp(ar GT )
}

1

r

+(1−η)

{

C(R,Kq)EFq(T ) +
1

R
[E(GT )

e]
1

e

[

E

(
∫ T

0
(Us)

q dGs

)e′ ] 1

e′

}

,

with C(R,Kq) a positive constant depending essentially on R. If furthermore,

for q ∈ [p, 2p+ ν[, we have that:

E sup
0≤t≤T

(U(t))q ≤ Kq E

∫ T

0
(Us)

q dGs + Kq

(

E

∫ T

0
(Us)

2q dGs

)
1

2

(4)

+ EFq(T ) + (EF2q(T ))
1

2 ,

then for every q ∈ [p, p+ ν[:

E sup
0≤t≤T

(U(t))q ≤ EFq(T ) + (EF2q(T ))
1

2 + zq(T ) + (z2q(T ))
1

2 .(5)

In particular, when the relation (2) is satisfied with Fq ≡ 0 and for some e > 1 and

e′ its conjugate, E(GT )
e < +∞ and E

{

∫ T
0 (Us)

q dGs

}e′

< +∞, then U(t) = 0 a.s

for every t ∈ [0, T ].
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Remark 2.1. When the stochastic process G is not progressively measur-

able, the formula (2) has to be fulfilled for every random time τ ∈ [0, T ].

Proof: Let define:

τt = inf
{

s ∈ [0, T ], Gs ≥ t
}

,

and inf Ø = +∞. From (2), we obtain that:

E(U(T ∧ τt))
q ≤ Kq E

∫ T∧τt

0
(U(s))q dGs + EFq(T ∧ τt) .

The function Fq is increasing, then Fq(T ∧ τt) ≤ Fq(T ). By change of variables,

we have:

E

∫ T∧τt

0
(U(s))q dGs ≤ E

∫ t

0
(U(T ∧ τs))

q ds .

Then the function b(t) := E(U(T ∧ τt))
q satisfies the following inequality:

b(t) ≤ Kq

∫ t

0
b(s) ds + EFq(T ) .

From Gronwall’s Lemma, we deduce that:

b(t) ≤ exp(Kq t) EFq(T ) .(6)

Now by change of variables and application of Hölder’s inequality, we obtain that:

E

∫ t

0
(Us)

q dGs = E

∫ Gt

0
(U(T ∧ τs))

q ds

=

∫ +∞

0
E
{

1(Gt≥s) (U(T ∧ τs))
q
}

ds

≤

∫ +∞

0

{

E(1(Gt≥s))
r
}

1

r
{

E(U(T ∧ τs))
qr′
}

1

r′ ds

≤

∫ +∞

0
{P(Gt ≥ s)}

1

r

{

E(U(T ∧ τs))
qr′
}

1

r′ ds ,

with r > 1 and r′ its conjugate satisfying qr′< p+ ν. By Markov’s inequality, we

have that for each positive real a:

P(Gt ≥ s) ≤ exp(−a r s) E exp(a r Gt) .
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We apply (6) and the last inequality to obtain that:

E

∫ t

0
(Us)

q dGs ≤
[

EFqr′(T )
]

1

r′
[

E exp (ar Gt)
]

1

r

∫ ∞

0
exp

[

−

(

a−
Kqr′

r′

)

s

]

ds .

We take then a such that ar′> Kqr′ , by consequence:

∫ ∞

0
exp

[

−

(

a−
Kqr′

r′

)

s

]

ds < +∞ .

From (2) and the previous estimates, we have:

E(Ut)
q ≤ EFq(t) +

r′

ar′−Kqr′

[

EFqr′(T )
]

1

r′
[

E exp(ar Gt)
]

1

r .(7)

We also remark by change of variables and application of Hölder’s and Markov’s

inequalities that for every R > 0:

E

∫ t

0
(U(s))q dGs = E

[

1(Gt≤R)

∫ Gt

0
(U(T ∧ τs))

q ds

]

+E

[

1(Gt≥R)

∫ t

0
(U(s))q dGs

]

≤ E

∫ R

0
(U(T ∧ τs))

q ds+
1

R
[E(GT )

e]
1

e

[

E

(
∫ t

0
(U(s))q dGs

)e′
]

1

e′

,

with e > 1 and e′ its conjugate. From (6), we have that:

E

∫ R

0
(U(T ∧ τs))

q ds ≤ R exp(Kq R) EFq(T ) .

Then

E(Ut)
q ≤ EFq(t) +R exp(Kq R)EFq(T )(8)

+
1

R
[E(GT )

e]
1

e



E

(

∫ T

0
(Us)

q dGs

)e′




1

e′

.

Henceforth by combining (7) and (8), it suffices to see that:

E(U(t))q = ηE(U(t))q + (1− η)E(U(t))q .
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If furthermore, (4) is satisfied, from previous results, we obtain (5). At the end,

when Fq ≡ 0, we obtain from (8) that:

E(U(t))q ≤
1

R
(E(GT )

e)
1

e

[

E

(
∫ t

0
(U(s))q dGs

)e′
]

1

e′

.

For every real R > 0. We let R tend to infinity and the result is obtained.

In what follows, we will state the second result of this section. Let

B : Ω×R+×Rd → Rd and A : Ω×R+×Rd → Rd ⊗ Rl be two measurable random

functions such that for every x ∈ Rd, the processes (B(t, x), t ≥ 0) and

(A(t, x), t ≥ 0) are progressively measurable. For an integer n, Let Xn be the

sequence of stochastic processes given by:

Xn
t = X0 +

∫ t

0
B(ρns , X

n,ρn

s ) ds +

∫ t

0
A(ρns , X

n,ρn

s ) dWs .(9)

We define for integers n,m, the following quantities:

1. The process ξn,m = (ξn,ms , 0 ≤ s ≤ T ):

ξn,ms = 1
(Xn,ρn

s 6=Xm,ρm

s )

∥

∥

∥B(ρns , X
n,ρn
s )−B(ρns , X

m,ρm
s )

∥

∥

∥

‖Xn,ρn
s −Xm,ρm

s ‖

+ 1
(Xn,ρn

s 6=Xm,ρm

s )

∥

∥

∥A(ρns , X
n,ρn
s )−A(ρns , X

m,ρm
s )

∥

∥

∥

2

‖Xn,ρn
s −Xm,ρm

s ‖2
+ 1 .

2. The process φn,m,q = (φn,m,q
s , 0 ≤ s ≤ T ):

φn,m,q
s = ξn,ms

(

‖Xn
s −Xn,ρn

s ‖2q + ‖Xm
s −Xm,ρm

s ‖2q
)

.

3. The process ϕn,m,q = (ϕn,m,q
s , 0 ≤ s ≤ T ):

ϕn,m,q
s =

∥

∥

∥B(ρns , X
n,ρn
s )−B(ρms , X

n,ρn
s )

∥

∥

∥

2q
+
∥

∥

∥A(ρns , X
n,ρn
s )−A(ρms , X

n,ρn
s )

∥

∥

∥

2q
.

4. The process F n,m,q = (Fn,m,q
s , 0 ≤ s ≤ T ):

Fn,m,q
s =

∫ s

0
(φn,m,q

u + ϕn,m,q
u ) du .
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5. The process γn,m = (γn,ms , 0 ≤ s ≤ T ):

γn,ms =

∫ s

0
ξn,mu du .

6. The process Sn,m
a = (Sn,m

a,s , 0 ≤ s ≤ T ):

Sn,m
a,s = E exp(a γn,ms ) .

Proposition 2.1. Let p be an integer, r > 1 and r′ its conjugate. Then

there exists a real a > 4r′p2 and a constant C(p, r) > 0 such that for every n,m,

η ∈ [0, 1], e > 1, e′ its conjugate and R > 0, we have:

E sup
0≤t≤T

‖Xn
t −X

m
t ‖

2p ≤ C(p, r)
{

zn,m,p
T + (zn,m,2p

T )
1

2

}

,(10)

where

zn,m,p(T ) = η
{

EFn,m,pr′(T )
}

1

r′
{

Sn,m
ar,T

}
1

r +
{

1 + (1−η)CR

}

EFn,m,p(T )

+ (1−η)
1

R

{

E (γn,mT )
e
}

1

e

{

E

(
∫ T

0
ξn,ms

(

‖Xn,ρn

s ‖2p+‖Xm,ρm

s ‖2p
)

ds

)e′
}

1

e′

,

with CR is a positive constant.

Proof: We suppose at first that the term on the right hand in (10) is finite.

Let define the processes Un,m
s = Xn

s −Xm
s , Bn(s) = B(ρns , X

n,ρn
s ), An(s) =

A(ρns , X
n,ρn
s ) and the stopping time:

Tn,m
N = inf

{

t ∈ [0, T ] ; ‖Bn
t ‖+ ‖B

m
t ‖+ ‖A

n
t ‖+ ‖A

m
t ‖ ≥ N

}

.

For an integer p and t∈ [0, T ], we apply Itô’s formula with the function x→‖x‖2p

and obtain that:

‖Un,m(t ∧ Tn,m
N )‖2p = 2 p

∫ t∧Tn,m
N

0
‖Un,m

s ‖2(p−1)
〈

Un,m
s , Bn

s −B
m
s

〉

ds

+ 2 p

∫ t∧Tn,m
N

0
‖Un,m

s ‖2(p−1)
〈

Un,m
s , (An

s−A
m
s ) dWs

〉

+ p

∫ t∧Tn,m
N

0
‖Un,m

s ‖2(p−1) ‖An
s−A

m
s ‖

2 ds

+ 2 p(p−1)

∫ t∧Tn,m
N

0
‖Un,m

s ‖2(p−2)
∥

∥

∥

〈

Un,m
s , An

s−A
m
s

〉∥

∥

∥

2
ds .
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From Schwartz’s inequality, we have:

‖Un,m(t ∧ Tn,m
N )‖2p ≤ 2 p

∫ t∧Tn,m
N

0
‖Un,m

s ‖2p−1 ‖Bn
s −B

m
s ‖ ds

+ 2 p

∫ t∧Tn,m
N

0
‖Un,m

s ‖2(p−1)
〈

Un,m
s , (An

s−A
m
s ) dWs

〉

+ (p+ 2 p(p−1))

∫ t∧Tn,m
N

0
‖Un,m

s ‖2p−2 ‖An
s−A

m
s ‖

2 ds .

By taking the expectation, we obtain:

E‖Un,m(t ∧ Tn,m
N )‖2p ≤ 2 pE

∫ t∧Tn,m
N

0
‖Un,m

s ‖2p−1 ‖Bn
s −B

m
s ‖ ds

+ (p+ 2 p(p−1))E

∫ t∧Tn,m
N

0
‖Un,m

s ‖2p−2 ‖An
s−A

m
s ‖

2 ds .(11)

In order to further bound the first term in the right hand of (11) we note that:

‖Bn
s −B

m
s ‖ ≤

∥

∥

∥B(ρns , X
n,ρn

s )−B(ρms , X
n,ρn

s )
∥

∥

∥+
∥

∥

∥B(ρms , X
n,ρn

s )−B(ρms , X
m,ρm

s )
∥

∥

∥

≤
∥

∥

∥B(ρns , X
n,ρn

s )−B(ρms , X
n,ρn

s )
∥

∥

∥+Kn,m
s (B) ‖Xn,ρn

s −Xm,ρm

s ‖
(12)

≤
∥

∥

∥B(ρns , X
n,ρn

s )−B(ρms , X
n,ρn

s )
∥

∥

∥

+ Kn,m
s (B)

(

‖Xn
s −X

n,ρn

s ‖+ ‖Un,m
s ‖+ ‖Xm

s −X
m,ρm

s ‖
)

,

where

Kn,m
s (B) = 1

(Xn,ρn

s 6=Xm,ρm

s )

∥

∥

∥B(ρms , X
n,ρn
s )−B(ρms , X

m,ρm
s )

∥

∥

∥

‖Xn,ρn
s −Xm,ρm

s ‖
.(13)

Substituting relation (12) in the integrand of the first integral of (11) and next

applying Young’s inequality, there exists a constant Cp such that:

‖Un,m
s ‖2p−1 ‖Bn

s −Bm
s ‖ ≤ ‖Un,m

s ‖2p
(

1 +Kn,m
s (B)

)

+ Cp

[

∥

∥

∥B(ρns , X
n,ρn

s )−B(ρms , X
n,ρn

s )
∥

∥

∥

2p

+ Kn,m
s (B)

(

‖Xn
s −X

n,ρn

s ‖2p + ‖Xm
s −X

m,ρm

s ‖2p
)

]

.
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In the same way the integrand in the last term of the right hand of (11) is bounded

above:

‖Un,m
s ‖2p−2 ‖An

s−A
m
s ‖

2 ≤ ‖Un,m
s ‖2p

(

1 + (Kn,m
s (A))2

)

+ Cp

[

∥

∥

∥A(ρns , X
n,ρn

s )−A(ρms , X
n,ρn

s )
∥

∥

∥

2p

+ (Kn,m
s (A))2

(

‖Xn
s −X

n,ρn

s ‖2p + ‖Xm
s −X

m,ρm

s ‖2p
)

]

,

where Kn,m
s (A) is defined by (13) when replacing B by A. Therefore for every

stopping time 0 ≤ τ ≤ T and by using the notations introduced before:

E
∥

∥

∥Un,m(τ ∧ Tn,m
N )

∥

∥

∥

2p
≤ 4 p2E

∫ τ

0
‖Un,m

s ‖2p ξn,ms ds + CpEF
n,m,p(T ) .

We apply Fatou’s Lemma and let N tend to infinity to obtain:

E‖Un,m(τ)‖2p ≤ 4 p2E

∫ τ

0
‖Un,m

s ‖2p ξn,ms ds + CpEF
n,m,p(T ) .(14)

By applying Itô’s formula again, Burkholder’s and Schwartz’s inequalities yield:

E sup
0≤t≤T

‖Un,m(t)‖2p ≤ 2 pE

∫ T

0
‖Un,m

s ‖(2p−1) ‖Bn
s −Bm

s ‖ ds

+ 2 p

(

E

∫ T

0
‖Un,m

s ‖(4p−2) ‖An
s −Am

s ‖
2 ds

)
1

2

+ (p+ 2 p(p−1))E

∫ T

0
‖Un,m

s ‖(2p−2) ‖An
s −Am

s ‖
2 ds .

We use the same arguments as before to obtain that:

E sup
0≤t≤T

‖Un,m(t)‖2p ≤ Cp(T )
{

Kn,m,p(T ) + (Kn,m,2p(T ))
1

2

}

+ Cp(T )
{

EFn,m,p(T ) + (EF n,m,2p(T ))
1

2

}

,(15)

where

Kn,m,p(T ) = E

∫ T

0
‖Un,m

s ‖2p ξn,ms ds .

By combining (14), (15) and Lemma 2.1, we obtain our estimate (10).
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3 – The SDE’s coefficients are random Lipschitz

In this section, we consider the following stochastic differential equation:

Xt = X0 +

∫ t

0
B(s,Xs) ds +

∫ t

0
A(s,Xs) dWs ,(16)

where X0 ∈ Rd and (Wt , t ∈ [0, T ]) is an Rl-valued Brownian motion. Let q > 0

and set the following hypotheses (Hq):

1. The random functions B : Ω×R+×Rd → Rd and A : Ω×R+×Rd → Rd⊗Rl

are measurable.

2. There exists a constant M > 0 such that for every (t, x) ∈ R+×Rd, we

have:

‖B(t, x)‖+ ‖A(t, x)‖ ≤ M .

3. For each x ∈ Rd, the processes B(t, x) and A(t, x) are progressively mea-

surable.

4. There exists two nonnegative random functions Γ(t) and Γ′(t) such that

for every real vectors (x, x′), we have:

‖B(t, x)−B(t, x′)‖ ≤ Γ(t) ‖x− x′‖ ,

and

‖A(t, x)−A(t, x′)‖2 ≤ Γ′(t) ‖x− x′‖2 .

5. The random functions Γ(t) and Γ′(t) satisfy:

lim
n→∞

∫ T

0
E
[

Γ(ρn(s)) + Γ′(ρn(s))
]2
ds < +∞ .

6. For every R > 0, the sequences (ωn,q
R (z, T ))n≥0 (z=A,B) converge towards

zero, where

ωn,q
R (z, T ) = sup

x,‖x‖≤R
E

∫ T

0

∥

∥

∥z(ρns , x)− z(s, x)
∥

∥

∥

q
ds .

7. For some a > 4q2:

lim
n→∞

E exp

{

a

∫ T

0

[

Γ(ρn(s)) + Γ′(ρn(s))
]

ds

}

< +∞ .
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Remark 3.1. We remark that:

1. The hypothesis (Hq; 2) may be replaced by the following:

E

∫ T

0

(

‖B(t, 0)‖q + ‖A(t, 0)‖q
)

ds < +∞ .

2. One of the following conditions implies (Hq; 5): The random functions Γ

and Γ′ are increasing and

E
[

Γ(T ) + Γ′(T )
]2

< +∞ ,

or the random functions Γ and Γ′ are uniformly continuous in t w.r.t ω∈Ω

and
∫ T

0
E
[

Γ(s) + Γ′(s)
]2
ds < +∞ .

3. The following condition implies (Hq; 6): The random functions A and B

are uniformly continuous in t w.r.t ω and x .

4. One of the following conditions implies (Hq; 7): The random functions Γ

and Γ′ are increasing and

E exp
{

aT
(

Γ(T ) + Γ′(T )
)}

< +∞ ,

or the random functions Γ and Γ′ are uniformly continuous in t w.r.t ω ∈ Ω

and

E exp

{

a

∫ T

0

[

Γ(s) + Γ′(s)
]

ds

}

< +∞ .

Let Xn be the Euler scheme associated to the equation (16), defined by:

Xn
t = X0 +

∫ t

0
B(ρns , X

n,ρn

s ) ds +

∫ t

0
A(ρns , X

n,ρn

s ) dWs .(17)

Then the main result of this section is:

Theorem 3.1. Let p ≥ 1 be an integer. Under the assumptions (Hq0 ; 1−6)

for q0 > 4p, there exists a unique solution for the equation (16) and the Euler

schemeXn converges towards this solution in L2p(Ω, C([0, T ];Rd)). If furthermore

the assumption (Hq0 ; 7) is satisfied, then there exists a constant Kp(T ) > 0 such

that for every R > 0 and n ∈ N, we have:

E sup
0≤t≤T

‖Xn
t −Xt‖

2p ≤ Kp(T )
{

zR,n,p
T + (zR,n,2p

T )
1

2

}

(18)
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where

zR,n,p
T = |δn|

p +
1

R
+ ωn,p

R (B, T ) + ωn,p
R (A, T ) .

Remark 3.2. If the random functions A and B are Hölder continuous in t

with respectively αA(x, ω) and αB(x, ω) their Hölder constants such that:

sup
x∈Rd

E
{

‖αA(x)‖
2q + ‖αB(x)‖

2q
}

< +∞ ,

then

E sup
0≤t≤T

‖Xn
t −Xt‖

2p ≤ Kp(T ) |δn|
pν ,

where ν = inf(1, βA, βB) with βA and βB are respectively the Hölder orders of

A and B.

Proof: To prove this Theorem, we will use the result of Proposition 2.1.

Existence: In Proposition 2.1, we take η = 0 and e = e′= 2. Then from

hypothesis (Hq0 ; 4), we have:

ξn,ms ≤ Γ(ρms ) + Γ′(ρms ) + 1 ,

and

φn,m,q
s ≤

(

Γ(ρms ) + Γ′(ρms ) + 1
) (

‖Xn
s −X

n,ρn

s ‖2q + ‖Xm
s −X

m,ρm

s ‖2q
)

.

From the assumption (Hq0 ; 2) and (17), we have:

sup
0≤t≤T

E‖Xn
t ‖

2q ≤ Cq(T ) ,(19)

and

sup
0≤s≤T

E‖Xn
s −X

n,ρn

s ‖2q ≤ Cq(T ) |δn|
q .(20)

We remark also that:

ϕn,m,q
s =

∥

∥

∥B(ρns , X
n,ρn

s )−B(ρms , X
n,ρn

s )
∥

∥

∥

2q
+
∥

∥

∥A(ρns , X
n,ρn

s )−A(ρms , X
n,ρn

s )
∥

∥

∥

2q

≤ 22q
∥

∥

∥B(ρns , X
n,ρn

s )−B(s,Xn,ρn

s )
∥

∥

∥

2q
+ 22q

∥

∥

∥B(s,Xn,ρn

s )−B(ρms , X
n,ρn

s )
∥

∥

∥

2q

+ 22q
∥

∥

∥A(ρns , X
n,ρn

s )−A(s,Xn,ρn

s )
∥

∥

∥

2q
+ 22q

∥

∥

∥A(s,Xn,ρn

s )−A(ρms , X
n,ρn

s )
∥

∥

∥

2q

=: 22q
(

J1(s) + J2(s) + J3(s) + J4(s)
)

.
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Then for every R′ > 0 and by applying Markov’s inequality, we obtain from (19),

(Hq0 ; 6) and the boundedness of B that:

E

∫ T

0
J1(s) ds =

= E

∫ T

0

∥

∥

∥B(ρns , X
n,ρn

s )−B(s,Xn,ρn

s )
∥

∥

∥

2q (

1
(‖Xn,ρn

s ‖≤R′)
+ 1

(‖Xn,ρn

s ‖≥R′)

)

ds(21)

≤ ωn,q
R′ (B, T ) +

1

R′
Cq(T ) .

The same calculus may be done for Ji, i = 2, 3, 4. By consequence from Propo-

sition 2.1, we obtain for η = 0:

E sup
0≤t≤T

‖Xn
t −X

m
t ‖

2p ≤ C(p, T )
{

zn,m,p(T ) + (zn,m,2p(T ))
1

2

}

,

where

zn,m,p(T ) ≤ (1 + CR)

(

|δn|
p + |δm|

p +Ψn,m,p
R′ (T ) +

1

R′

)

+
1

R
,

with

Ψn,m,q
R′ (T ) = ωn,q

R′ (B, T ) + ωn,q
R′ (A, T ) + ωm,q

R′ (B, T ) + ωm,q
R′ (A, T ) .

We let n,m,R′ and R, in this order, tend to infinity then it is easily seen that

the sequence Xn is a Cauchy sequence in L2p(Ω, C([0, T ];Rd)). So there exists a

process X in the same space to which the sequence Xn converges. Further there

exists also a subsequence Xnk which converges uniformly a.s to X. So X is a

solution of the equation (16).

Uniqueness: Let X,X ′ be two solutions of the equation (16). By applying

Itô formula and using the assumption (Hq0 ; 4), we have for every stopping time

0 ≤ τ ≤ T :

E‖Xτ−X
′
τ‖

2q ≤ K(q, T )E

∫ τ

0
‖Xs−X

′
s‖

2q (Γs + Γ′s) ds .

We take Ut := Xt − X ′
t and Gt :=

∫ t
0 (Γs + Γ′s) ds to obtain from Lemma 2.1

that ‖Xt−X
′
t‖

2q = 0 a.s for every t ∈ [0, T ]. By Itô’s formula again, Hölder’s

and Burkholder’s inequalities yield:

E sup
0≤t≤T

‖Xt −X ′
t‖

2q ≤ K(q, T )E

∫ T

0
‖Xs −X ′

s‖
2q (Γs + Γ′s) ds

+ K ′(q, T )

(

E

∫ T

0
‖Xs −X ′

s‖
4q Γ′s ds

)
1

2

.
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Then

E sup
0≤t≤T

‖Xt −X ′
t‖

2q = 0 .

Approximation: The convergence of the Euler scheme to the solution is al-

ready shown. If in addition, (Hq0 ; 7) is satisfied, we take η = 1 in Proposition

2.1. Then from previous result and Fatou’s Lemma, the result is obtained.

4 – The SDE’s coefficients are of class C1

In this section, we consider the following stochastic differential equation:

Xt = X0 +

∫ t

0
b(Xs) ds +

∫ t

0
g(Xs) dWs ,(22)

where X0 ∈ Rd, b : Rd → Rd and g : Rd → Rd ⊗ Rl are two regular functions.

To state the main result of this section, we introduce the following hypotheses

(H∗q):

1. The equation (22) has a unique solution.

2. The functions b and g are of class C1.

3. The functions b and g satisfy:

E

∫ T

0

{

(

‖b′(Xs)‖+ ‖g
′(Xs)‖

2
) (

‖b(Xs)‖
q + ‖g(Xs)‖

q
)

}2

ds < +∞ ,

and

E

∫ T

0

{

‖b′(Xs)‖
2 + ‖g′(Xs)‖

4
}

ds < +∞ ,

where b′ and g′ denote respectively the derivatives of b and g.

4. For some a > 4q2:

E exp

{

a

∫ T

0

(

‖b′(Xs)‖+ ‖g
′(Xs)‖

2
)

ds

}

< +∞ .

We consider also the Euler scheme Xn associated to the solution X, defined by:

Xn
t = X0 +

∫ t

0
b(Xn,ρn

s ) ds +

∫ t

0
g(Xn,ρn

s ) dWs .(23)
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Theorem 4.1. Let p ≥ 1 be an integer. Under hypotheses (H∗q0 ; 1−3)

with q0>2p, the Euler scheme Xn converges to X in L2p(Ω, C([0, T ];Rd)) norm.

If furthermore, the hypothesis (H∗q0 ; 4) is satisfied, then there exists a constant

Kp(T ) > 0 such that for every n:

E sup
0≤t≤T

‖Xn
t −Xt‖

p ≤ Kp(T ) |δn|
p/2 .(24)

Proof: We prove firstly that the Euler scheme converges to the unique

solution X. In order to use the result of Proposition 2.1, we take B(t, ω, x) = b(x)

and A(t, ω, x) = g(x). Then for η = 0 and e = 2 in Proposition 2.1, we obtain

that:

E sup
0≤t≤T

‖Xn
t −X

m
t ‖

2p ≤ Cp(T )
{

zn,m,p(T ) + (zn,m,2p(T ))
1

2

}

,

where

zn,m,p(T ) = (1 + CR)EF
n,m,p(T )

+
1

R

[

E(γn,m(T ))2
]

1

2

{

E

[
∫ T

0
ξn,ms

(

‖Xn,ρn

s ‖2p+‖Xm,ρm

s ‖2p
)

ds

]2
}

1

2

,

and

Fn,m,p(T ) =

∫ T

0
ξn,ms

(

‖Xn
s −X

n,ρn

s ‖2p + ‖Xm
s −X

m,ρm

s ‖2p
)

ds .

From (22) and (23), we obtain that:

EFn,m,p(T ) ≤

[

E

∫ T

0

(

ξn,ms

(

‖b(Xn,ρn

s )‖2p + ‖g(Xn,ρn

s )‖2p
)

)2

ds

]
1

2

|δn|
p

+

[

E

∫ T

0

(

ξn,ms

(

‖b(Xm,ρm

s )‖2p + ‖g(Xm,ρm

s )‖2p
)

)2

ds

]
1

2

|δm|
p .

Since b and g are differentiable, the intermediate value Theorem yields:

ξn,mt ≤

∫ 1

0

[

∥

∥

∥b′
(

θXn,ρn

t + (1−θ)Xm,ρm

t

)∥

∥

∥+
∥

∥

∥g′
(

θXn,ρn

t + (1−θ)Xm,ρm

t

)∥

∥

∥

2
]

dθ

=: Ψn,m
t .

Then for every R > 0:

(zn,m,p(T ))2 ≤ (1+Cp(R))
[

Πn,m,p
1 |δn|

2p +Πn,m,p
2 |δm|

2p
]

+
1

R
Πn,m,p

3 Πn,m,p
4 ,
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where

Πn,m,p
1 = E

∫ T

0

[

Ψn,m
s

(

‖b(Xn,ρn

s )‖2p + ‖g(Xn,ρn

s )‖2p
)

]2

ds ,

Πn,m,p
2 = E

∫ T

0

[

Ψn,m
s

(

‖b(Xm,ρm

s )‖2p + ‖g(Xm,ρm

s )‖2p
)

]2

ds ,

Πn,m,p
3 = E

∫ T

0
[Ψn,m

s ]2 ds

and

Πn,m,p
4 = E

∫ T

0

[

Ψn,m
s

(

‖Xn,ρn

s ‖2p + ‖Xn,ρn

s ‖2p
)

]2

ds .

We remark that the terms Πn,m,p
1 , Πn,m,p

2 , Πn,m,p
3 and Πn,m,p

4 are of the form

Φn,m = E

∫ T

0
K(Xn,ρn

s , Xm,ρm

s ) ds ,

with K is a positive and continuous real function. To prove that the sequence

Xn is of Cauchy, it suffices to show that

sup
n,m

Φn,m < +∞ .(25)

To do this, let define for a real L> 0 large enough, the functions bL and gL by

bL= b and gL= g on the set {x ∈ Rd, ‖x‖ ≤ L} such that bL and gL are of class

C1. Let XL be the solution of the following stochastic differential equation:

XL
t = X0 +

∫ t

0
bL(X

L
s ) ds +

∫ t

0
gL(X

L
s ) dWs ,(26)

and let XL,n be the Euler scheme associated to the solution XL. The functions

bL and gL are globally Lipschitz, then the solution XL exists and it is unique.

We conclude also that for fixed L, the sequence XL,n converges uniformly in L2p

and a.s to XL. To prove (25), we apply Fatou’s Lemma:

lim
n,m→∞

Φn,m
T := lim

n,m→∞
E

∫ T

0
K(Xn,ρn

s , Xm,ρm

s ) ds ≤

≤ lim
M,L→∞

lim
n,m→∞

E

∫ T

0
K(XL,n,ρn

s , XL,m,ρm

s )1{
‖XL,n,ρn

s ‖+‖XL,m,ρm

s ‖<M
} ds

≤ lim
M,L→∞

E

∫ T

0
K(XL

s , X
L
s )1{2‖XL

s ‖<M} ds

≤ E

∫ T

0
K(Xs, Xs) ds < +∞ .
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Now we state the rate of convergence of the Euler Scheme. In this case, we

take η = 1 and r = r′ = 2 in Proposition 2.1. Then

E sup
0≤t≤T

‖Xn
t −X

m
t ‖

2p ≤ Cp(T )
{

zn,m,p(T ) + (zn,m,2p(T ))
1

2

}

,

where

zn,m,p(T ) = EF n,m,p(T ) +
{

Sn,m(a, T )EF n,m,2p(T )
}

1

2 .

We proved previously that:

EFn,m,p(T ) ≤ Πn,m,p
1 |δn|

p + Πn,m,p
2 |δm|

p .

Then

zn,m,p(T ) ≤ Cp(T )
(

|δn|
p + |δm|

p
) [

1 + (Sn,m(a, T ))
1

2

]

.

To obtain the result, it suffices to prove that supn,m Sn,m(a, T ) < +∞. By the

same way as before, we have:

lim
n,m→∞

Sn,m(a, T ) ≤ E exp

(

a

∫ T

0

(

‖b′(Xs)‖+ ‖g
′(Xs)‖

2
)

ds

)

,

which is finite from (H∗q0 ; 4). The Theorem is proved.

5 – Example

It is generally acknowledged that the volatility of many financial return series

is not constant over time and that these series exhibit prolonged periods of high

and low volatility, often referred to as volatility clustering. Over the past two

decades, the Stochastic Volatility (SV) model is one of the prominent classes of

models that has been developed which capture this time-varying autocorrelated

volatility process. The variance in this model is modelled as an unobserved

component that follows some stochastic process. The most popular version of

the SV model defines volatility as a logarithmic Ornstein–Uhlenbeck diffusion

process which is used in the option pricing literature. In Hull and White (1987),

they consider the price process x of a derivative asset as the solution of the

following stochastic differential equation:

xt = x0 +

∫ t

0
µ1 xs ds +

∫ t

0
σs xs dWs ,(27)
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with the process y := σ2 satisfying:

yt = y0 +

∫ t

0
µ2 ys ds +

∫ t

0
η ys dZs ,(28)

x0, y0 ∈ R+, µ1, µ2, η ∈ R+, (Wt, t∈ [0, T ]) and (Zt, t∈ [0, T ]) are two correlated

real Brownian motions with correlation ρ . Let xn be the Euler scheme associated

to the equation (27), defined by:

xnt = x0 +

∫ t

0
µ1 x

n,ρn

s ds +

∫ t

0
σn
s x

n,ρn

s dWs ,(29)

with σn
s = σ(ρns ) . Then the Euler scheme xn converges strongly towards the

solution x with the usual rates of convergence. It suffices to apply theorem 3.1

and remark (3.1,4.) with B(t, x) = µ1 x and A(t, x) = σt x and to verify that the

condition:

E exp

{
∫ T

0
(σs)

2 ds

}

< +∞ ,

is satisfied which is the case .
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