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Abstract: We consider semilinear equations, where the linear part L is non-

symmetric and has a possibly infinite dimensional kernel. We shall show that, under

certain monotonicity conditions for the nonlinearity, a generalized Leray–Schauder de-

gree can be defined for these problems. In order to build the degree theory, we introduce,

for the nonlinearity N , monotonicity properties with respect to a linear map T , e.g.

T -pseudomonotonicity or maps of class (S+)T . As applications, we obtain new existence

results for semilinear equations, in particular in resonance situations. In this latter case,

we modify the standard inequalities of Landesman–Lazer type by replacing the iden-

tity map I by a linear homeomorphism J , which will then appear in the monotonicity

conditions.

1 – Introduction

We consider equations of the form

Lu = N(u) + h , u ∈ D(L) ,(1)

where L : D(L) ⊂ H → H is a densely defined unbounded closed linear opera-

tor on a real separable Hilbert space H, N : H → H is nonlinear and h ∈ H.
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We assume that the range ImL is closed, implying that the partial inverse of L,

denoted by K : ImL→ ImL∗ ∩D(L), is bounded. Our main objective is to con-

sider problem (1) under the assumptions that K is compact, that

KerL 6= KerL∗ and dimKerL = dimKerL∗ ≤ ∞ .

It is well-known that the solvability of equation (1), as well as the methods

available, depend crucially on the kernels of L and L∗. Indeed, if L is selfadjoint

or normal, then KerL = KerL∗, and (1) can be equivalently written as

P̃
(

u−KP̃N(u)
)

+ PN(u) = ĥ , u ∈ H ,

where P : H→KerL is the orthogonal projection, P̃ = I−P and ĥ=KP̃h−Ph.

If dimKerL < ∞ and K is compact, then the classical Leray–Schauder degree

or the coincidence degree can be applied. A more challenging situation is en-

countered when dimKerL = ∞. If K is compact and N is of class (S+) or of

more general class (S+)P , then the degree theory constructed in [2] and [1] can

be used.

The application of the topological degree to equation (1) is based on the use

of homotopies and on suitable a priori bounds. Essential for obtaining a priori

bounds is an inequality of the form

‖Lu‖2 ≥ ρ 〈Lu, u〉 for all u ∈ D(L) ,(2)

where ρ ∈ R. It is easy to see that inequality (2) is satisfied for some constant

ρ 6= 0, when L is self-adjoint or normal. However, when KerL 6⊂ KerL∗, the

inequality (2) fails for any ρ 6= 0 (see Lemma 4.1). To circumvent this difficulty,

we shall replace, as in [8], the identity map I by some linear homeomorphism

J : H → H and consider, instead of (2), the inequality

‖Lu‖2 ≥ ρ 〈Lu,J u〉 for all u ∈ D(L) .(3)

Inequalities of the type (3) and its implications are studied in [8] for the case

dimKerL<∞, dimKerL∗<∞, and in a more general setting in [7]. Of course, if

(3) is used, the hypotheses about the nonlinearity have to be modified accordingly.

In relation with (3), it is useful to study, for J given, the set

AJ =
{

ρ ∈ R | ‖Lu‖2 ≥ ρ 〈Lu,J u〉 for all u ∈ D(L)
}

.

As recalled in Lemma 4.1, if J (KerL) ⊂ KerL∗, the set AJ is a closed interval

containing the origin in its interior.
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The paper is organized as follows. In Section 2, we give the definitions of

some generalized classes of mappings of monotone type, e.g., the class (S+)T and

T-pseudomonotone maps. We present briefly the basic properties of the general-

ized Leray–Schauder degree needed in this paper. In Section 3, we show how the

problem (1) can be reformulated using a linear homeomorphism J : H → H, for

which it turns advantageous to have J (KerL) = KerL∗. Section 4 is devoted to

the study of the set AJ , whereas Section 5 proposes a particular construction of

a homeomorphism J having the desired properties in the case KerL 6= KerL∗,

dimKerL = dimKerL∗ < ∞. In Section 6, we prove existence results which

generalize those obtained earlier in the case dimKerL <∞, (see [6], [8], [9]), or

in the case dimKerL = ∞, J = I, (see [4], [5], [6], for instance). In Section 7,

we particularize the existence results to the case of two-component systems, with

a diagonal linear part. We close this paper by results concerning semi-abstract

equations, giving some indication on the kind of problem to which the abstract

results of Sections 6 and 7 can be applied.

2 – Prerequisites

Throughout this paper, H will denote a real separable Hilbert space with

inner product 〈·, ·〉 and corresponding norm ‖·‖. We recall some basic definitions.

A mapping F : H → H is

– bounded, if it takes any bounded set into a bounded set;

– demicontinuous, if uj → u (norm convergence) implies F (uj)⇀ F (u)

(weak convergence);

– compact, if it is continuous and the image of any bounded set is relatively

compact;

– of Leray–Schauder type, if it is of the form I − C, where C is compact.

Let T : H → H be a bounded linear operator. Then a mapping F : H → H

is said

– T -monotone, if 〈F (u)−F (v), T (u−v)〉 ≥ 0 for all u, v ∈ H;

– of class (S+)T , if for any sequence (uj), uj=vj+zj , vj∈KerT , zj∈(KerT )⊥

with uj⇀u and vj→v such that lim sup〈F (uj), T (uj − u)〉 ≤ 0, it follows

that uj → u;
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– T -pseudomonotone (F ∈ (PM)T ), if for any sequence (uj), uj = vj + zj ,

vj ∈ KerT , zj ∈ (KerT )⊥ with uj ⇀ u and vj → v such that

lim sup〈F (uj), T (uj − u)〉 ≤ 0, it follows that F (uj)⇀ F (u) and

〈F (uj), T (uj−u)〉 → 0;

– T -quasimonotone (F ∈ (QM)T ), if for any sequence (uj), uj = vj + zj ,

vj ∈ KerT , zj ∈ (KerT )⊥ with uj ⇀ u and vj → v, we have

lim sup〈F (uj), T (uj−u)〉 ≥ 0.

With T =I, we get the standard definitions for monotonicity and the classes

(S+), (PM), (QM) widely used in the literature (we denote here (S+)I = (S+),

etc...). Assuming that all mappings are bounded and demicontinuous, it is easy

to prove that (S+)T ⊂ (PM)T ⊂ (QM)T and (S+)T + (QM)T = (S+)T , i.e., the

class (S+)T is stable under T -quasimonotone perturbations. Notice also that,

when dim(KerT )⊥<∞, all mappings are of class (S+)T .

In this note, we shall deal with the following cases:

(a) Let T = J , a given linear homeomorphism. Then KerJ = {0} and we

obviously have N ∈ (S+)J if and only if J ∗N ∈ (S+). Similar observation holds

for J -pseudomonotone and J -quasimonotone mappings.

(b) Let T =P , an orthogonal projection and denote P̃ = I − P . A detailed

study of the classes (S+)P , (PM)P and (QM)P can be found in [1], where also

a topological degree theory is constructed for mappings of the type

F = P̃ (I − C) + PN : G→ H ,(4)

where G is an open bounded set in H, C is compact and N is a bounded

demicontinuous map of class (S+)P . Any mapping of the type (4) is called ad-

missible for degree. Since each Leray–Schauder type map is of class (S+) and

(S+) ⊂ (S+)P , we can write any Leray–Schauder type map in the form (4), i.e.,

I −C = P̃ (I −C) + P (I −C). Hence, the degree theory constructed in [1] is an

extension of the classical Leray–Schauder degree in Hilbert space. It is unique,

single-valued and has the usual properties of degree, such as additivity of do-

mains and invariance under homotopies. Let us denote the corresponding degree

function by dH .

(c) Let T = JP , where J a linear homeomorphism and P an orthogonal

projection. Then KerT = KerP and it is easy to see that N ∈ (S+)JP if and

only if J ∗N ∈ (S+)P . A similar observation holds for JP -pseudomonotone and

JP -quasimonotone mappings. Note that a mapping F is admissible for degree



SEMILINEAR PROBLEMS WITH A NON-SYMMETRIC LINEAR PART 443

if it is of the form

F = P̃ (I − C) + PJ ∗N : G→ H ,

where G is an open bounded set in H, C is compact and N is a bounded demicon-

tinuous map of class (S+)JP . This observation will be used in Section 3, where

a definition of the degree is presented for maps of the above type. The degree

can then be used to obtain existence results for (1) when N is of class (S+)JP .

Moreover, using a standard perturbation procedure, the treatment of equation

(1) can be extended to situations where N satisfies weaker conditions, namely

N ∈(PM)JP or even N ∈(QM)JP . These existence results appear in Section 6.

The following observation may be useful. With J and P as above, we notice

that (S+)J ⊂ (S+)JP and by the results given in [1], (S+)J = (S+)JP if and

only if dimKerP <∞.

3 – Reformulation of the equation

Let L : D(L) ⊂ H → H be a densely defined closed linear operator with closed

range ImL. Then the adjoint L∗ : D(L∗) ⊂ H → H of L inherits these properties,

i.e., also L∗ is a densely defined closed linear operator having closed range. Since

ImL∗ = (KerL)⊥ and ImL = (KerL∗)⊥ ,

the space H has the orthogonal direct sum decompositions

H = KerL⊕ ImL∗ = KerL∗ ⊕ ImL .

Denote the corresponding orthogonal projections by P : H→ KerL, P̃ = I−P :

H→ ImL∗, Q : H→ KerL∗ and Q̃ = I−Q : H→ ImL. Let L0 stand for the

restriction of L to ImL∗∩D(L). Hence L0 is injective and by the assumptions, its

inverse K= L−1
0 : ImL→ ImL∗ ∩D(L) is bounded. Let N : H → H be a given

mapping and h ∈ H. Let J : H → H be a linear homeomorphism. We shall

frequently apply the following lemma for J and J −1.

Lemma 3.1. Let T : H → H be a linear homeomorphism and E, M closed

linear subspaces of H. Then E ⊂ T (M) if and only if M⊥⊂ T ∗(E⊥).
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Lemma 3.2.

(a) With L,P,Q as above, let J : H → H be a linear homeomorphism such

that

J (KerL) ⊂ KerL∗ .

Assume that u ∈ D(L) satisfies

Lu−N(u) = h .(5)

Then

P̃
(

u−KQ̃N(u)
)

+ PJ ∗N(u) = ĥ ,(6)

where ĥ = KQ̃h− PJ ∗h.

(b) Let J : H→H be a linear homeomorphism such that KerL∗⊂J (KerL).

If u ∈ H is a solution of (6), then u ∈ D(L) and u is a solution of (5).

Hence, the solution sets of the equations (5) and (6) coincide whenever

KerL∗ = J (KerL).

Proof: (a) Assume that J (KerL) ⊂ KerL∗ and u ∈ D(L) is a solution

of (5). Then Q(N(u) + h) = 0 and P̃ u = KQ̃(N(u) + h). By Lemma 3.1,

J ∗(ImL) ⊂ ImL∗ and, since N(u)+h ∈ ImL, we obtain J ∗(N(u)+h) ∈ ImL∗,

i.e., PJ ∗(N(u) + h) = 0. Consequently,

P̃
(

u−KQ̃N(u)
)

+ PJ ∗N(u) = KQ̃h− PJ ∗h .

(b) By (6), P̃ (u−KQ̃(N(u) + h)) = 0. Hence, u−KQ̃(N(u) + h) ∈ KerL,

implying u ∈ D(L) and

Lu− Q̃(N(u) + h) = 0 .

By (6), we also have PJ ∗(N(u)+h) = 0, i.e., J ∗(N(u)+h) ∈ ImL∗. By Lemma

3.1, ImL∗ ⊂ J ∗(ImL), and thus we get N(u) + h ∈ ImL, i.e., Q(N(u) + h) = 0,

completing the proof.

Notice that, by Lemma 3.1, the condition

KerL∗ = J (KerL) .

is equivalent to

ImL∗ = J ∗(ImL) .
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Define

F (u) = P̃
(

u−KQ̃N(u)
)

+ PJ ∗N(u) .

Assume that K is compact and N : H → H is bounded, demicontinuous and

of class (S+)JP . Then J ∗N ∈ (S+)P and F is admissible for degree. Assume

KerL∗ ⊂ J (KerL). In order to simplify our notations we define a further degree

function ‘deg’ by setting

deg(L−N,G, h) ≡ dH
(

P̃ (I−KQ̃N) + PJ ∗N, G, KQ̃h− PJ ∗h
)

for any open bounded set G ⊂ H such that h /∈ (L−N)(∂G∩D(L)). Definition

is relevant in view of Lemma 3.2 (b).

4 – About the set AJ

Let L be as in section 3, J being a linear homeomorphism. As explained in

the introduction, our aim is to use a generalized form of condition (2) by replacing

I by J . Denote

AJ =
{

ρ ∈ R | ‖Lu‖2 ≥ ρ 〈Lu,J u〉 for all u ∈ D(L)
}

.

It is easy to see that

AJ =

{

ρ ∈ R |

∥

∥

∥

∥

Lu−
ρ

2
J u

∥

∥

∥

∥

≥

∥

∥

∥

∥

ρ

2
J u

∥

∥

∥

∥

for all u ∈ D(L)

}

.

The following important result is proved in [8] in a slightly different setting, but

the same proof applies here.

Lemma 4.1. Let J : H → H be a linear homeomorphism. The set AJ is a

closed interval containing 0. If J (KerL)⊂KerL∗, then 0 is an interior point ofAJ.

Otherwise, AJ = {0}.

As will appear below, in order to obtain a priori bounds for the solutions of (1),

it is advantageous to have AJ 6= {0}. But, by the above lemma, AI = {0} when

dimKerL = dimKerL∗ <∞ and KerL 6= KerL∗, which justifies the interest of

replacing I by some other map J . On the other hand, an elementary calculation

shows that [−ρ1, ρ1] ⊂ AJ , where ρ1 = ‖JK‖−1, whenever J : H → H is such

that J (KerL) ⊂ KerL∗. The following possible characterization of the set AJ

is given in [8].
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Lemma 4.2. Let J : H → H be a linear homeomorphism such that

J (D(L)) ⊂ D(L∗) and J (KerL) ⊂ KerL∗. Assume that the right inverse K of L

is compact. Then, supAJ (resp. inf AJ ) is the least positive (resp. greatest

negative) eigenvalue of the problem

2L∗Lu = λ(J ∗Lu+ L∗J u) ,

where u ∈ D(L∗L) ∩ ImL.

In our next result, we make some observations about the boundedness of the

interval AJ .

Lemma 4.3. Let J : H → H be a linear homeomorphism such that

J (KerL) ⊂ KerL∗. Then

(1) AJ is unbounded below if and only if L is J -monotone.

(2) AJ is unbounded above if and only if −L is J -monotone.

Proof: We shall prove the first assertion. Assume that L is J -monotone.

Then

‖Lu‖2 ≥ ρ 〈Lu,J u〉 for all u ∈ D(L) and all ρ ≤ 0 .

Thus ]−∞, 0] ⊂ AJ . On the other hand, assume that AJ is unbounded below.

Then −n ∈ AJ (recall that AJ is an interval with 0 as an interior point).

Consequently,

−
1

n
‖Lu‖2 ≤ 〈Lu,J u〉 for all u ∈ D(L) and all n ∈ Z+ .

Hence necessarily 〈Lu,J u〉 ≥ 0 for all u ∈ D(L).

Assume that J (KerL) ⊂ KerL∗. By the previous lemma, we conclude that

AJ =R if and only if 〈Lu,J u〉 = 0 for all u ∈ D(L). Moreover, AJ is a bounded

closed interval with 0 as an interior point if and only if neither L nor −L is

J -monotone.

By Lemma 4.1, since we want (3) to be satisfied for some ρ 6= 0, it is natural

to require that J (KerL) ⊂ KerL∗. Actually, we shall frequently assume

J (KerL) = KerL∗ ,(7)

in order to have the equivalence between (5) and (6). Note that the condition

(7) does not imply J (ImL∗) = ImL, except when J ∗= J −1.
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5 – A special choice for J

In this section, we indicate how a linear homeomorphism J having the desired

properties can easily be built in the case

dimKerL = dimKerL∗ <∞ .(8)

This construction can be helpful in the treatment of problems of the form

Lu = g(x, u) + h , (u ∈ D(L)) ,

where L acts, for instance, on the space H = L2(Ω;Rm), where Ω is a bounded

domain in some space Rp. For such problems, it is advantageous to have a linear

homeomorphism J is induced by a function J ∈ L∞(Ω;Rm×Rm), so that J

acts pointwise on u ∈ L2(Ω;Rm). With such a J , the hypotheses required on

the nonlinearity N for the existence results of Section 6 can be deduced from

pointwise conditions on g.

Under (8), let {φ(j)}, {ψ(j)} (j=1, ..., n) denote bases of KerL ⊂ L2(Ω;Rm)

and KerL∗ respectively. We introduce the matrices

Φ(x) =
(

φ
(j)
i

)m,n

i,j=1
, Ψ(x) =

(

ψ
(j)
i

)m,n

i,j=1
.

We are looking for a matrix J(x) such that J(x) Φ(x) = Ψ(x). Let (Φ(x))† be the

generalized inverse of Φ(x). If rank Φ(x) = n, defining the m×m matrix J(x) by

J(x) = Ψ(x) (Φ(x))†, it is immediate by definition of the generalized inverse that

J(x)φ(j)(x) = ψ(j)(x) (j=1, ..., n) .

Therefore, assuming that J ∈ L∞(Ω;Rm×Rm), and that J(x) is regular for a.e.

x ∈ Ω, the operator J : L2(Ω;Rm)→ L2(Ω;Rm) defined by (J u)(x) = J(x)u(x),

is such that J (KerL) = KerL∗.

If m = 1 and dimKerL = dimKerL∗ = 1, the above construction leads

simply to J(x) = ψ
(1)
1 (x)/φ

(1)
1 (x), a choice that has been used in [8]. It turns out

in Section 7 that the above construction can also be used in certain cases, where

dimKerL = dimKerL∗ =∞.

6 – Abstract resonance results

Let H be a real separable Hilbert space and L : D(L) ⊂ H → H be a

densely defined closed linear operator with closed range ImL and with compact
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partial inverse K : ImL→ ImL∗ ∩D(L). As above, let P, Q denote the orthog-

onal projections onto KerL and KerL∗ respectively; the kernels may be infinite

dimensional. Let J : H → H be a linear homeomorphism such that

J (KerL) = KerL∗ .(9)

We can now generalize the existence results obtained in [8], where dimKerL =

dimKerL∗<∞. Our first result is actually a nonresonance theorem giving the

surjectivity of L−N , if N ∈ (S+)JP or N ∈ (PM)JP . Recall that (S+)JP ⊂

(PM)JP ⊂ (QM)JP and that the class (S+)JP is stable under JP -quasi-

monotone perturbations. We shall use the fact (see [1]) that for any linear injec-

tion L−S admissible for degree

deg
(

L− S, BR(0), 0
)

6= 0

for all R > 0.

Theorem 6.1. Let L, J be as indicated above. Assume that (9) holds

and N : H → H is a bounded demicontinuous map. Suppose that there exist

ρ ∈ ]0, supAJ ], µ ∈ [0, ρ/2[ and α ∈ [0, 1[ such that

∥

∥

∥

∥

N(u)−
ρ

2
J u

∥

∥

∥

∥

≤ µ ‖J u‖+O(‖u‖α)(10)

for u ∈ H, ‖u‖ → ∞. If N is JP -pseudomonotone, then the equation

Lu−N(u) = h , u ∈ D(L)(11)

admits a solution for any h ∈ H. In case N is only JP -quasimonotone, the range

of L−N is dense in H.

Proof: We consider the homotopy equation

Lu = (1− t)
ρ

2
J u+ t

(

N(u) + h
)

, 0 ≤ t ≤ 1 .(12)

We notice first that for t = 0 the operator L− ρ
2J is injective since ρ ∈ AJ and

thus (12) with t = 0 has only the trivial solution. Moreover,

deg

(

L−
ρ

2
J , BR(0), 0

)

6= 0
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for all R > 0. Let us show that the solution set of (12) remains bounded. Indeed,

by the definition of AJ , for any solution u ∈ D(L), we have the estimate

ρ

2
‖J u‖ ≤

∥

∥

∥

∥

Lu−
ρ

2
J u

∥

∥

∥

∥

= t

∥

∥

∥

∥

N(u)−
ρ

2
J u+ h

∥

∥

∥

∥

≤

∥

∥

∥

∥

N(u)−
ρ

2
J u

∥

∥

∥

∥

+ ‖h‖ ≤ µ ‖J u‖+O(‖u‖α) for ‖u‖ → ∞ .

Consequently, there exists R > 0 such that

Lu 6= (1− t)
ρ

2
J u+ t

(

N(u) + h
)

, for all 0 ≤ t ≤ 1, u ∈ D(L), ‖u‖ ≥ R .

Assume first that N ∈ (S+)JP . Then

deg
(

L−N, BR(0), h
)

= deg

(

L−
ρ

2
J , BR(0), 0

)

6= 0

and the conclusion follows.

Assume secondly that N is JP -quasimonotone. Let t̄ ∈ ]0, 1[ be arbitrary but

fixed. Then (1− t̄) ρ
2J + t̄(N + h) is of class (S+)JP and by the above reasoning

deg

(

L− (1− t̄)
ρ

2
J − t̄(N+ h), BR(0), h

)

= deg

(

L−
ρ

2
J , BR(0), 0

)

6= 0 .

Hence there exists ū ∈ D(L) such that

Lū = (1− t̄)
ρ

2
J ū + t̄

(

N(ū) + h
)

.

Consequently, for any sequence (tn) ⊂ [0, 1[, tn → 1−, we conclude by letting

t̄ = tn with corresponding solution ū = un ∈ D(L), that there exists a sequence

(un) ⊂ D(L) ∩B(0, R) such that

Lun − (1− tn)
ρ

2
J un − tn

(

N(un) + h
)

= 0 .

Clearly Lun−N(un) → h, that is, h ∈ R(L−N). If N is JP -pseudomonotone

we can continue the reasoning. Taking a subsequence if necessary we can assume

that un ⇀ u. On the other hand, QN(un) +Qh→ 0 from which follows that

lim
〈

QN(un) +Qh, JP (un− u)
〉

= 0

implying, since J (KerL) = KerL∗,

lim
〈

N(un), JP (un− u)
〉

= 0 .



450 J. BERKOVITS and C. FABRY

From the JP -pseudomonotonicity of N , we deduce that N(un) ⇀ N(u). Since

L is closed, we get u ∈ D(L) and Lu−N(u) = h, completing the proof.

If we allow µ = ρ/2 in condition (10) we need a further h-dependent resonance

type condition and the restriction ρ < supAJ .

Theorem 6.2. Assume that (9) holds and N : H → H is a bounded demi-

continuous map. Suppose that there exist ρ ∈ ]0, supAJ [ and α ∈ [0, 1[ such

that
∥

∥

∥

∥

N(u)−
ρ

2
J u

∥

∥

∥

∥

≤
ρ

2
‖J u‖+O(‖u‖α)(13)

for u ∈ H, ‖u‖→ ∞. Let h ∈ H be given and assume that for any sequence

(un)⊂ D(L) such that ‖un‖ → ∞ and ‖Lun‖ = o(‖un‖) for n→∞, there exists

n0 such that
〈

N(un) + h, JPun
〉

≥ 0 for all n ≥ n0 .(14)

If N is JP -pseudomonotone, then the equation (11) admits a solution. If N is

only JP -quasimonotone, then h ∈ R(L−N).

Proof: As in the previous theorem, we consider the homotopy equation (12).

We prove that the set of solutions of (12) remains bounded. Assume, by con-

tradiction, that there exist sequences (un) ⊂ D(L) and (tn) ⊂ ]0, 1[ such that

‖un‖ → ∞ and

Lun = (1− tn)
ρ

2
J un + tn

(

N(un) + h
)

.(15)

Take any ρ̄ > ρ, ρ̄ ∈ AJ . We then have the useful estimate

∥

∥

∥

∥

Lu−
ρ

2
J u

∥

∥

∥

∥

2

≥

(

1−
ρ

ρ̄

)

‖Lu‖2 +

(

ρ

2
‖J u‖

)2

for all u ∈ D(L) .

Hence we obtain
(

1−
ρ

ρ̄

)

‖Lun‖
2 +

(

ρ

2
‖J un‖

)2

≤

∥

∥

∥

∥

Lun −
ρ

2
J un

∥

∥

∥

∥

2

≤ t2
(∥

∥

∥

∥

N(un)−
ρ

2
J un

∥

∥

∥

∥

+ ‖h‖

)2

≤

(

ρ

2
‖J un‖+ ‖h‖+O(‖un‖

α)

)2

implying

‖Lun‖ = o(‖un‖) = o(‖J un‖) .
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Denote zn = un

‖J un‖
and wn = Lzn. Then wn→ 0 and hence P̃ zn = Kwn→ 0.

By (15),

〈

Lun −
ρ

2
J un, JPun

〉

= tn

〈

N(un) + h−
ρ

2
J un, JPun

〉

and, since JPun ∈ KerL∗= (ImL)⊥, we get

〈

N(un) + h, JPun
〉

= −(1− tn) t
−1
n

ρ

2

〈

J un,JPun
〉

.

Writing JPun = J un − J P̃ un leads to the equality

〈

N(un) + h, JPun
〉

= −(1− tn) t
−1
n

ρ

2
‖J un‖

2
[

1− 〈J zn,J P̃ zn〉
]

.

Clearly the righthandside will be negative for sufficiently large n, thus contradict-

ing the assumption (14). We can proceed exactly like in the proof of Theorem

6.1 to obtain the conclusions.

Corollary 6.1. Assume that (9) holds and N : H → H is a bounded demi-

continuous map. Suppose that there exist ρ ∈ ]0, supAJ [ and α ∈ [0, 1[ such that

(13) holds. Assume that h ∈ H and

〈−h,J v〉 < lim sup
〈

N(snvn), JPvn
〉

(16)

for any sequences (vn) ⊂ D(L), (sn) ⊂ R with vn⇀ v ∈ KerL and sn→∞.

If N is JP -pseudomonotone, then the equation (11) admits a solution.

If N is JP -quasimonotone, then h ∈ R(L−N).

Proof: It suffices to show that condition (14) is valid. Indeed, take (un) ⊂

D(L) such that ‖un‖ → ∞ and Lun = o(‖un‖). Assuming that (14) is not valid,

and taking a subsequence if necessary, we can assume that

〈

N(un) + h, JPun
〉

< 0 for all n .

Denote sn=‖un‖ and vn=‖un‖
−1 un. Since P̃ vn→0 we can write vn⇀v∈KerL

at least for a subsequence. Thus by (16)

〈−h,J v〉 < lim sup
〈

N(snvn), JPvn
〉

≤ 〈−h,J v〉 ,

a contradiction completing the proof.
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We point out the close connection of (16) with the recession function intro-

duced by Brezis and Nirenberg in [6]. Condition (16) gives, as a special case, the

classical Landesman–Lazer condition (cf. [3], [6], [9], [10]).

7 – Two-component systems

Let H1, H2 be real separable Hilbert spaces and denote H = H1 ×H2.

We use the same symbols for the scalar products in H1, H2, H; the same remark

applies to the norms. For k = 1, 2, let Lk : D(Lk) ⊂ Hk → Hk be a linear, densely

defined, closed operator with closed range ImLk = (KerL∗
k)

⊥. The inverse

Kk : ImLk→ ImL∗
k of the restriction of each Lk to ImL∗

k ∩D(Lk) is assumed to

be a compact linear operator. We define the diagonal operator L : D(L) ⊂ H→H

by setting

Lu = (L1u1, L2u2) , u = (u1, u2) ∈ D(L) ,

where D(L) = D(L1)×D(L2). The inverse K= L−1 : ImL→ ImL∗ is compact,

with Ku = (K1u1,K2u2) for u = (u1, u2) ∈ ImL. We denote by Pk and Qk

the orthogonal projections onto KerLk and KerL∗
k respectively (k=1, 2), and by

P, Q the orthogonal projections onto KerL and KerL∗; obviously

Pu = (P1u1, P2u2) and Qu = (Q1u1, Q2u2)

for any u = (u1, u2) ∈ H1×H2. As before, we denote P̃k = I− Pk, Q̃k = I−Qk

(k = 1, 2) and P̃ = I− P , Q̃ = I−Q. Let N : H → H be a (possibly nonlinear)

bounded demicontinuous map; we will write N(u) as

N(u) =
(

N1(u1, u2), N2(u1, u2)
)

,

where, for k = 1, 2, uk ∈ Hk, Nk(u1, u2) ∈ Hk. We will consider the equation

Lu−N(u) = 0 , u ∈ D(L) .(17)

For k = 1, 2, let Jk : Hk → Hk be linear homeomorphisms, J being naturally

defined, for u = (u1, u2), by J u = (J1u1,J2u2). Assuming that

KerL∗
1 = J1(KerL1) and KerL∗

2 = J2(KerL2) ,(18)

we have KerL∗= J (KerL). Hence by Lemma 3.2 equation (17) is equivalent to

F (u) = 0, where F is defined by

F (u) = P̃
(

u−KQ̃N(u)
)

+ PJ ∗N(u) , u ∈ H .
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Moreover, F is admissible for degree provided N ∈ (S+)JP .

We shall consider the following special case, where dimKerL1=dimKerL∗
1=

∞, dimKerL2 = dimKerL∗
2 <∞. Note that if KerL1= KerL∗

1, then it is

possible to take J1 = I and in certain cases use the procedure given in Section 5

to find J2.

The following lemma provides conditions under which N is of class (S+)JP .

Lemma 7.1. Let L1, L2 and J be as indicated above, assume (18) holds

and dimKerL1 =∞, dimKerL2 <∞. Let N : H → H be bounded and demi-

continuous. Assume that

(i) For each u2 ∈ H2, the mapping N1(·, u2) : H1 → H1 is of class (S+)J1P1
.

(ii) N1(u1, ·) : H2 → H2 is continuous, uniformly for u1 in any bounded set

B ⊂ H1.

Then N ∈ (S+)JP .

Proof: Let (u(j)) ⊂ H be a sequence such that, with u(j) = v(j) + z(j),

v(j) ∈ KerJP = ImL∗, z(j) ∈ (KerJP )⊥ = KerL,

u(j) ⇀ u, v(j) → v and lim sup
j→∞

〈

N(u(j)), JP (u(j) − u)
〉

≤ 0 .

We have to show that u(j)→ u. For k = 1, 2, denote respectively by u
(j)
k , v

(j)
k , z

(j)
k ,

uk, zk the components of u(j), v(j), z(j), u, z in Hk. Since dimKerL2 <∞ and

N is bounded,

lim
j→∞

〈

N2(u
(j)
1 , u

(j)
2 ), J2P2(u

(j)
2 − u2)

〉

= 0 .

Consequently, taking into account the diagonal structure of JP , we have

lim sup
j→∞

〈

N1(u
(j)
1 , u

(j)
2 ), J1P1(u

(j)
1 − u1)

〉

≤ 0 .

But, by hypothesis (ii),

lim
j→∞

[

〈

N1(u
(j)
1 , u

(j)
2 ), J1P1(u

(j)
1 − u1)

〉

−
〈

N1(u
(j)
1 , u2), J1P1(u

(j)
1 − u1)

〉

]

= 0 .

Subtracting this from the previous inequality gives

lim sup
j→∞

〈

N1(u
(j)
1 , u2), J1P1(u

(j)
1 − u1)

〉

≤ 0 .
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As N1(·, u2) : H1 → H1 is assumed to be of class (S+)J1P1
, we conclude that (u

(j)
1 )

converges to u1. Since KerL2 is finite dimensional, (u
(j)
2 ) also converges to u2;

this proves that N ∈ (S+)JP .

The main point in the previous lemma is that there is no monotonicity-type

hypothesis on the component N2. Note that to there is no obvious pseudomono-

tone variant of Lemma 7.1 due to the requirement N2(u
(j))⇀ N2(u) as u

(j) ⇀ u

needed for N ∈ (PM)JP .

For concrete situations it may be useful to introduce the following concepts:

If J : H → H is a linear homeomorphism, and P : H → H an orthogonal

projection, then a mapping N : H → H is J -strongly monotone, if there is a

constant c0 > 0 such that
〈

N(u)−N(v), J (u− v)
〉

≥ c0 ‖u− v‖
2 , for all u, v ∈ H

and correspondingly JP -strongly monotone, if
〈

N(u)−N(v), JP (u− v)
〉

≥ c0 ‖P (u− v)‖
2 , for all u, v ∈ H .

It is clear that any N which is strongly JP -monotone belong to class (S+)JP

and any N which is strongly J -monotone belong to class (S+)J ⊂ (S+)JP .

Hence in the previous lemma N1(·, u2) : H1 → H1 is of class (S+)J1P1
if it

is J1P1-strongly monotone, which is the case if it is J1-strongly monotone.

Therefore, Lemma 7.1 can be useful for instance in the study of systems like






L1u1 = N1,1(u1) +N1,2(u2) + h1 ,

L2u2 = N2(u1, u2) + h2 ,

where one would assume N1,1 to be J1-strongly monotone and N1,2 to be contin-

uous, whereas no monotonicity hypothesis would be made on N1,2 and N2.

Combining the above lemma with Theorem 6.1 provides existence results for

two-component systems.

Corollary 7.1. Let L1, L2 and J be as indicated above, assume (18) holds

and dimKerL1 =∞, dimKerL2 <∞. Let N : H → H be bounded and demi-

continuous and let N1 : H→H1, N2 : H→H2 satisfy the conditions of Lemma 7.1.

Assume that there exist ρ ∈ ]0, supAJ ], µ ∈ [0, ρ/2[ and α ∈ [0, 1[ such that
∥

∥

∥

∥

N1(u1, u2)−
ρ

2
J1u1

∥

∥

∥

∥

≤ µ ‖J1u1‖+O(‖u‖α) ,(19)

∥

∥

∥

∥

N2(u1, u2)−
ρ

2
J2u2

∥

∥

∥

∥

≤ µ ‖J2u2‖+O(‖u‖α) ,(20)
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for u ∈ H, ‖u‖ → ∞. Then, for any h1 ∈ H1, h2 ∈ H2, the system






L1u1 = N1(u1, u2) + h1

L2u2 = N2(u1, u2) + h2

has a solution.

Again, the interest of the above corollary lies in the fact that no monotonicity

hypothesis is required on the component N2. Notice that (19), (20) imply that

the growth of N1 with respect to u2 and the growth of N2 with respect to u1 is

sublinear, restricting the possible couplings between the two components of the

system.

8 – Semi-abstract applications

We shall close this note by some examples in a semi-abstract setting. Let

Ω ⊂ Rn be a bounded domain and take H = L2(Ω;Rm). Let L : D(L) ⊂ H → H

be a linear densely defined closed operator with closed range ImL. Assume that

the partial inverse K of L is compact. We denote by (· | ·) and | · | the usual inner

product and norm in Rm.

Throughout this section, we will assume that the linear homeomorphism J

is induced by a function J ∈ L∞(Ω;Rm×Rm), J(x) being a regular matrix for

a.e. x ∈ Ω, and J being assumed to be such that J (KerL) = KerL∗. With this

assumption, AJ is a closed interval containing the origin.

We will consider equations of the type

Lu = g(x, u) + h (u ∈ D(L)) ,

where g satisfies at least the usual Carathéodory conditions and a linear growth

condition. We denote by N the Nemytski operator associated to g; with the

above hypotheses, it is well defined as operator from L2(Ω;Rm) to L2(Ω;Rm),

and is continuous and bounded. The following lemmas provide conditions under

which N is J -monotone and thus J -pseudomonotone. The proof of the first one

is trivial and hence omitted.

Lemma 8.1. Let L,J be as indicated above, J being induced by a function

J ∈ L∞(Ω;Rm×Rm). Let g : Ω×Rm→ Rm satisfy L2-Carathéodory conditions

and a linear growth condition. Assume that
(

g(x, u)−g(x, v) | J(x)(u−v)
)

≥ 0 for a.e. x ∈ Ω, for all u, v ∈ Rm .(21)
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Then, the the Nemytski operator N, defined by (N(u))(x) = g(x, u(x)), is

J -monotone.

Lemma 8.2. Let L,J be as indicated above, J being induced by a function

J ∈ L∞(Ω;Rm×Rm). Assume that the matrix J(x) is orthogonal for a.e. x ∈ Ω.

Let f : Ω×R+→ R+ be a bounded function such that f(x, ·) is continuous for a.e.

x ∈ Ω and f(·, t) is measurable for all t ≥ 0. Assume that the map t 7→ f(x, t) t,

t ≥ 0, is nondecreasing. Define the mapping N : H → H by setting

N(u)(x) = f(x, |u(x)|) J(x)u(x) for all u ∈ H a.e. x ∈ Ω .

Then N is bounded, continuous and N is J -monotone.

Proof: By the assumptions N is bounded and continuous and
(

f(x, |u|) J(x)u− f(x, |v|) J(x) v | J(x)u− J(x)v
)

≥

≥ f(x, |u|) |J(x)u|2 − f(x, |v|) |J(x)v| |J(x)u|

+ f(x, |v|) |J(x)v|2 − f(x, |u|) |J(x)u| |J(x)v|

=
(

f(x, |u|) |J(x)u| − f(x, |v|) |J(x)v|
) (

|J(x)u| − |J(x)v|
)

=
(

f(x, |u|) |u| − f(x, |v|) |v|
) (

|u| − |v|
)

≥ 0

for all u, v ∈ Rm, a.e. x ∈ Ω. Integration over the set Ω gives
〈

N(u)−N(v), J (u− v)
〉

≥ 0 for all u, v ∈ H .

Hence N is J -monotone.

Combining the above lemmas with Theorem 6.1, we can deduce existence

results.

Theorem 8.1. Let L,J be as in Lemma 8.1. Let g : Ω×Rm→ Rm satisfy

L2-Carathéodory conditions, as well as condition (21). Assume moreover that

there exists ρ ∈ ]0, supAJ ], µ∈ [0, ρ/2[, α∈ [0, 1[ and functions k1, k2∈L
∞(Ω;R),

such that
∣

∣

∣

∣

g(x, u)−
ρ

2
J(x)u

∣

∣

∣

∣

≤ µ|J(x)u|+ k1(x) |u|
α + k2(x) .(22)

for a.e. x ∈ Ω, u ∈ Rm. Then, the equation

Lu−N(u) = h , u ∈ D(L)

admits a solution for any h ∈ H.
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Proof: With (N(u))(x) = g(x, u(x)), it is easily shown, integrating over Ω,

that (22) implies that, for some µ′∈ ]µ, ρ/2[ ,
∥

∥

∥

∥

N(u)−
ρ

2
J u

∥

∥

∥

∥

≤ µ′‖J u‖+O (‖u‖α) for ‖u‖ → ∞ .

On the other hand, by Lemma8.1, N is J -monotone and, consequently J -pseudo-

monotone and, hence, JP -pseudomonotone. Therefore, Theorem 6.1 applies.

In the case of linear equations, the hypotheses can be simplified.

Corollary 8.1. Let L, J be as in Lemma 8.1. Let M ∈ L∞(Ω;Rm×Rm) be

such that there exist ρ ∈ ]0, supAJ ] and µ ∈ [0, ρ/2[ such that
∣

∣

∣

∣

M(x)u−
ρ

2
J(x)u

∣

∣

∣

∣

≤ µ |J(x)u| for all u ∈ Rm, a.e. x ∈ Ω .(23)

Then the equation

Lu =M(x)u+ h(x) , u ∈ D(L)

admits a solution for any h ∈ H.

Proof: With g(x, u) =M(x)u, condition (22) is clearly satisfied with α = 0,

k1= k2 ≡ 0. On the other hand, rewriting (23) as

(

M(x)u | J(x)u
)

≥
1

ρ
|M(x)u|2 +

1

ρ

[(

ρ

2

)2

− µ2
]

|J(x)u|2

shows that (21) holds. Hence, Theorem 8.1 applies.

Theorem 8.2. Let L, J , N be as in Lemma 8.2. Assume that there exist

constants a, b such that

0 < a ≤ f(x, t) ≤ b < supAJ for all t ≥ 0, a.e. x ∈ Ω .(24)

Then the equation

Lu = N(u) + h , u ∈ D(L)

admits a solution for any h ∈ H.

Proof: We shall again apply Theorem 8.1. In view of Lemma 8.2, it suffices

to prove that condition (22) holds. Take any ρ such that b < ρ ≤ supAJ and

µ = max

(

∣

∣

∣a−
ρ

2

∣

∣

∣,
∣

∣

∣b−
ρ

2

∣

∣

∣

)

.
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Then 0 < µ < ρ
2 and

∣

∣

∣

∣

f(x, |u|) J(x)u−
ρ

2
J(x)u

∣

∣

∣

∣

≤ µ|J(x)u| for all u ∈ Rm, a.e. x ∈ Ω ,

giving the desired inequality with k1= k2 ≡ 0. The proof is thus completed.
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