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Abstract: We consider the Euler–Bernoulli equation in a bounded domain Ω with

a local dissipation ay′. The localizing coefficient a is of the form a(x) = α(x)/(d(x,Γ))s,

(0<s≤ 1), where Γ is the boundary of Ω, d(x,Γ) is the distance from x to Γ, and α is

a bounded nonnegative function such that a is unbounded. Using integral inequalities

and multiplier techniques, we prove exponential and polynomial decay estimates for the

energy of each solution of this equation. In particular, since the localizing coefficient a

is unbounded, an important technical difficulty occurs adding to the difficulty of dealing

with a local dissipation. A judicious application of Hardy inequality enables us to over-

come this difficulty. The results obtained improve existing results where the boundedness

of the function a is critical.

1 – Introduction and statement of the main results

The main purpose of this paper is to give precise decay estimates for the

energy of Euler–Bernoulli equations with a linear damping term localized in a

neighborhood of a suitable subset of the domain under consideration. For the

sequel, we need some notations. Let Ω be a bounded domain in RN (N ≥ 1)

having a sufficiently smooth boundary Γ= ∂Ω. We denote by ν the unit normal
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pointing into the exterior of Ω. We fix x0 ∈ RN and we set m(x) = x− x0,

R = sup
{

|m(x)|, x ∈ Ω
}

, Γ+ =
{

x ∈ Γ; m(x)·ν(x) > 0
}

and Γ− = Γ\Γ+

(u·v =
N
∑

1

uivi for all u, v ∈ RN ). Let a = α
ds

with d(x) = dist(x,Γ), 0<s≤ 1,

and α ∈ L∞(Ω) is a nonnegative function such that:

(1.1) α(x) ≥ a0 a.e. in ω ,

or

(1.2) ∃ p > 0 :

∫

ω

dx

α(x)p
<∞ ,

where ω is a neighborhood of Γ+ contained in Ω, and a0 is a positive constant.

By neighborhood of Γ+, we actually mean the intersection of Ω and a neighbor-

hood of Γ+. Throughout the paper, we denote by |u|r the norm of a function

u ∈ Lr(Ω), 1≤r≤∞, and by |1/α|p, the quantity
(

∫

ω
dx

α(x)p

)
1
p, p > 0.

Now consider the following damped Euler–Bernoulli equation

(1.3)



























y′′ +∆2y + ay′ = 0 in Ω×(0,∞)

y =
∂y

∂ν
= 0 on Γ×(0,∞)

y(0) = y0 in Ω

y′(0) = y1 in Ω .

Condition (1.1) or (1.2) ensures that the damping term ay′ is effective on the set ω.

Let {y0, y1} ∈ H2
0 (Ω)×L

2(Ω). System (1.3) is then well-posed in the space

H2
0 (Ω)×L

2(Ω); in fact, there exists a unique weak solution of (1.3) with

(1.4) y ∈ C
(

[0,∞);H2
0 (Ω)

)

∩ C1
(

[0,∞);L2(Ω)
)

.

This result can be proved using the Hille–Yosida Theorem [2].

Introduce the energy

(1.5) E(t) =
1

2

∫

Ω

{

|y′(x, t)|2 + |∆y(x, t)|2
}

dx , ∀t ≥ 0 .

The energy E is a nonincreasing function of the time variable t and we have for

almost every t ≥ 0,

(1.6) E′(t) = −

∫

Ω
a(x) |y′(x, t)|2 dx .
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Although the literature on the decay estimates of the energy of the wave

equation with locally distributed damping is quite impressive [3, 4, 8, 9, 13,

16–20, 22–28,...], little is known on the decay estimate of the energy of plate

equations with a locally distributed damping; to the knowledge of the author, only

a few papers [5, 9, 24, 27] address this issue for a bounded localizing coefficient.

The boundedness of this coefficient is critical in the approaches developed in those

four papers. In fact when the coefficient is bounded, its L∞-norm is trivially

absorbed by constants in the estimations. In the case at hand which involves

an unbounded localizing coefficient we have to handle the estimates with a great

care, then apply the Hardy inequality to get estimates similar to those established

in the case of a bounded coefficient.

Before stating our main results, let us recall the following regularity result

Theorem 1.0. Let {y0, y1} ∈ H4(Ω)∩H2
0 (Ω)×H

2
0 (Ω), and let a be given as

above. Then the solution y of (1.3) satisfies

(1.7) y ∈ C
(

[0,∞);H4(Ω)∩H2
0 (Ω)

)

∩ C1
(

[0,∞);H2
0 (Ω)

)

∩ C2
(

[0,∞);L2(Ω)
)

.

Moreover, if we set

(1.8) F0 =
(

‖y1‖2H2
0 (Ω)

+ |∆2y0|22

)
1
2

then there exits a positive constant c depending only on Ω and a such that

(1.9) |∆y′(t)|2 ≤ c F0, |∆2y(t)|2 ≤ c F0 , ∀t ≥ 0 .

The proof of this result relies on Hille–Yosida Theorem and Hardy inequality

[2]; for the reader convenience, it is provided in Section 3 below.

We are now in the position to state our main results:

Theorem 1.1. Let {y0, y1} ∈ H2
0 (Ω)×L

2(Ω). Let ω be a neighborhood of Γ+.

Assume that α ∈ L∞+ (Ω) satisfies (1.1) for some a0 > 0. Then there exists a

positive constant τ independent of the initial data such that

(1.10) E(t) ≤
[

exp(1− τt)
]

E(0) , ∀t ≥ 0 .

Theorem 1.2. Let {y0, y1} ∈ H4(Ω)∩H2
0 (Ω)×H

2
0 (Ω). Let ω be a neighbor-

hood of Γ+. Assume that α ∈ L∞+ (Ω) satisfies (1.2) for some p > 0. Then for

every space dimension N 6=4, the energy E satisfies

(1.11) E(t) ≤ K1
(

|(1/α)|p F
N
2p

0 + E(0)
N
4p

)

4p
N t−

4p
N , ∀t > 0 ,

where K1 is a positive constant independent of the initial data.
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When N= 4, we have the decay estimate

(1.12)

E(t) ≤
(

cr|(1/α)|p F
2(r+p)
p(r−1)

0 +cE(0)
(r+p)
p(r−1)

)

p(r−1)
r+p t−

p(r−1)
r+p , ∀t>0, ∀ 1<r<∞ ,

where cr and c are positive constants independent of the initial data.

The remainder of the paper is organized as follows. In section 2, we discuss

some technical lemmas that are later used in the proofs of Theorems 1.1 and 1.2.

Section 3 is devoted to the proofs of Theorems 1.0, 1.1 and 1.2.

2 – Some Technical Lemmas

The proofs of Theorems 1.1 and 1.2 rely on the following lemmas.

Lemma 2.1 (Gagliardo–Nirenberg). Let 1 ≤ q ≤ s ≤ ∞, 1 ≤ r ≤ s,

0 ≤ k < m <∞, where k and m are nonnegative integers, and θ ∈ [0, 1].

Let v ∈Wm,q(Ω) ∩ Lr(Ω). Suppose that

(2.1) k −
N

s
≤ θ

(

m−
N

q

)

−
N(1−θ)

r
.

Then v ∈W k,s(Ω), and there exists a positive constant C such that

(2.2) ‖v‖W k,s(Ω) ≤ C ‖v‖θWm,q(Ω) |v|
1−θ
r .

Lemma 2.2. Let E : [0,∞[ → [0,∞[ be a nonincreasing locally absolutely

continuous function such that there are constants β ≥ 0 and A > 0 with

(2.3)

∫ ∞

S
E(t)β+1 dt ≤ AE(S) , ∀S ≥ 0 .

Then we have

(2.4) E(t) ≤



















[

exp
(

1−
t

A

)

]

E(0), ∀t ≥ 0 if β = 0,

(

A
(

1+
1

β

)

)
1
β

t
− 1

β , ∀t > 0 if β > 0 .

This lemma is due to Haraux and its proof can be found in [6, 7] or [10, 11],

[12], [17]. This lemma reduces the proofs of Theorems 1.1–1.2 to the proofs of

estimates of type (2.4).
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From now on, we denote by S and T two real numbers such that 0≤S<T <∞,

and we write E instead of E(t).

Lemma 2.3. Let µ ≥ 0, and let q ∈ (W 2,∞(Ω))N , δ ∈ R and ξ ∈W 2,∞(Ω).

Let y be a weak solution of (1.3). We have the identities

∫

Ω
y′
{

2q · ∇y + δy
}

dx Eµ

]T

S

+ 4

∫

Ω×]S,T [

∂qk
∂xi

∂2y

∂xi∂xk
Eµ dx dt +

+

∫

Ω×]S,T [

(

div(q)− δ
){

|y′|2 − |∆y|2
}

Eµ dx dt

(2.5)
− 2

∫

Ω×]S,T [
∆y∇y ·∆q Eµ dx dt − µ

∫

Ω×]S,T [
Eµ−1E′y′

{

2q · ∇y + δy
}

dx dt

+

∫

Ω×]S,T [
ay′

{

2q · ∇y + δy
}

Eµ dx dt =

∫

Γ×]S,T [
Eµ(q · ν) (∆y)2 dΓ dt .

∫

Ω
y′ξ y dx Eµ

]T

S

−

∫

Ω×]S,T [
ξ
{

|y′|2 − |∆y|2
}

Eµ dx dt −

− µ

∫

Ω×]S,T [
Eµ−1E′y′y ξ dx dt + 2

∫

Ω×]S,T [
∆y∇y · ∇ξ Eµ dx dt(2.6)

+

∫

Ω×]S,T [
y∆y∆ξ Eµ dx dt +

∫

Ω×]S,T [
ay′ ξy Eµ dx dt = 0 .

The proof of Lemma 2.3 is based on standard multipliers technique, the in-

terested reader should refer to Lions [14] or Komornik [10] for the details.

Throughout the remaining part of the paper, c denotes different positive con-

stants independent of the initial data.

Lemma 2.4. Let α satisfy (1.2) for some p > 0. Let y be any strong solution

of (1.3). Then for all t ≥ 0, we have the estimates

(2.7)

∫

ω
|y′|2 dx ≤































c |(1/α)|
p

p+1
p F

N
2(p+1)

0 |E′|
p

p+1 E
4−N

4(p+1) , if 1≤N≤3 ,

cr |(1/α)|
p(r−1)
r(p+1)
p F

2(r+p)
r(p+1)

0 |E′|
p(r−1)
r(p+1) , ∀ 1<r<∞, if N=4 ,

c |(1/α)|
4p

N+4p
p F

2N
N+4p

0 |E′|
4p

N+4p , if N≥5 .

Let y be any weak solution of (1.3). Then for all t ≥ 0, we have the estimate

(2.8)

∫

Ω
a
(

|∇y|2 + |y|2
)

dx ≤ c

∫

Ω
|∆y|2 dx ≤ cE(t) , ∀t ≥ 0 .
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Remark. The proof of (2.7) will follow from a judicious application of Hölder

inequality, Gagliardo–Nirenberg interpolation inequalities, and Sobolev imbed-

ding theorem. As for (2.8), its proof is a direct consequence of Hardy inequality

once we observe that y and ∇y lie in H1
0 (Ω) and (H1

0 (Ω))
N respectively.

Proof of Lemma 2.4: We begin with the proof of (2.7). For this proof

we need different approaches for the three cases involved, so we will proceed by

cases.

Case 1: 1 ≤ N ≤ 3. Since y is a strong solution of (1.3), it is known that

yt(., t) ∈ H
2
0 (Ω), for all t ≥ 0. On the other hand, Sobolev imbedding theorems

show that H2
0 (Ω) is continuously embedded in L∞(Ω) for 1 ≤ N ≤ 3. Applying

Hölder inequality and this imbedding result, we find

(2.9)

∫

ω
|y′|2 dx =

∫

ω
(1/a)

p

p+1 a
p

p+1 |y′|2 dx

≤ |(1/a)|
p

p+1
p

(
∫

ω
a|y′|

2(p+1)
p dx

)
p

p+1

≤ c |(1/α)|
p

p+1
p |y′(., t)|

2
p+1
∞

(
∫

Ω
a|y′|2 dx

)
p

p+1

≤ c |(1/α)|
p

p+1
p |y′(., t)|

2
p+1
∞ |E′(t)|

p

p+1 .

Thanks to Lemma 2.1, we have the interpolation inequality

(2.10)

|y′(., t)|∞ ≤ c ‖y′(., t)‖
N
4

H2(Ω) |y
′(., t)|

4−N
4

2

≤ c |∆y′(., t)|
N
4
2 E

4−N
8

≤ c F
N
4
0 E

4−N
8 .

Reporting (2.10) in (2.9), we get the claimed estimate, and we are done with this

case.

Case 2: N =4. Let r > 1, and τ ∈ (0, 2). We have by a twofold application

of Hölder inequality

∫

ω
|y′|2 dx =

∫

ω
|y′|2−τ |y′|τ dx

≤

(
∫

Ω
|y′|(2−τ)r dx

)
1
r
(
∫

ω
(1/a)

p

p+1 (a)
p

p+1 |y′|
τr
r−1 dx

)
r−1
r

≤(2.11)
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≤ |(1/a)|
p(r−1)
r(p+1)
p

(
∫

Ω
|y′|

2(r+p)
p+1 dx

)
1
r
(
∫

Ω
a|y′|2 dx

)

p(r−1)
r(p+1)

, with τ=
2p(r−1)

r(p+1)

≤ cr |(1/α)|
p(r−1)
r(p+1)
p ‖y′(., t)‖

2(r+p)
r(p+1)

H2(Ω) |E
′|

p(r−1)
r(p+1)

≤ cr |(1/α)|
p(r−1)
r(p+1)
p F

2(r+p)
r(p+1)

0 |E′|
p(r−1)
r(p+1) .

It should be noted that in (2.11), we use in an essential manner the Sobolev

imbedding theorem: H2(Ω) is continuously embedded in Lq(Ω) for all 1≤q<∞,

when N=4. To complete the proof of (2.7), it remains to deal with the last case.

Case 3: N ≥ 5. First of all, we note the Sobolev imbedding theorem: H2(Ω)

is continuously embedded in Ls(Ω) for 1 ≤ s ≤ 2N
N−4 when N ≥ 5. Choosing

r = N+4p
N−4 in (2.11), we get the claimed estimate, and we are done with the proof

of (2.7). Let us turn now to the proof of (2.8).

We have

∫

Ω
a
(

|∇y|2 + |y|2
)

dx =

∫

Ω
αd(x)s

(

|∇y/d(x)s|2 + |y/d(x)s|2
)

dx

≤ c

∫

Ω

(

|∇y/d(x)|2 + |y/d(x)|2
)

dx, since 0<s≤1

(2.12)

≤ c

∫

Ω
|∆y|2 dx, by Hardy inequality

≤ cE(t) , ∀t ≥ 0 ,

which completes the proof of Lemma 2.4.

Remark. It should be noted that one may prove the last cases of (2.7),

(N=4 and N≥5), by combining the Gagliardo–Nirenberg interpolation inequal-

ities with Hölder inequality as in the first case or as in [23, 25]. However, in doing

so, one gets in the end much weaker estimates under rather severe restrictions on

the degeneracy of the localizing function a. Therefore the new approach devel-

oped here, which is based on an astute application of Hölder inequality, can be

used to strongly improve earlier results established in [18, 23, 25] in the case of

the wave equation.
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3 – Proofs of Theorems 1.0, 1.1 and 1.2.

3.1. Proof of Theorem 1.0

We may rewrite the first equation of (1.3) in the form

(3.1.1)

{

y′ − z = 0 in Ω×(0,∞) ,

z′ +∆2y + az = 0 in Ω×(0,∞) .

Setting Z =

(

y
z

)

, (3.1.1) becomes Z ′ +AZ = 0, so that (1.3) is equivalent to

(3.1.2)











Z ′ +AZ = 0 in (0,∞) ,

Z(0) =

(

y0

y1

)

,

where the unbounded operator A is given by

(3.1.3) A =

(

0 −I
∆2 aI

)

with D(A) = H4(Ω) ∩H2
0 (Ω)×H

2
0 (Ω).

Now we are going to apply the Hille–Yosida theory in the Hilbert space

H = H2
0 (Ω)×L

2(Ω) endowed with the norm

(3.1.4) ‖Z‖2H =

∫

Ω
|∆y|2 dx +

∫

Ω
|z|2 dx .

Let us show that the operator A is maximal monotone. This amounts to proving

that:

(i) (AZ,Z) ≥ 0, ∀Z =

(

y
z

)

∈ D(A),

(ii) A+ I is surjective, (I is the identity operator)

where in (i), (., .) denotes the scalar product induced by the norm defined in

(3.1.4).

Proof of (i): Since for all Z ∈ D(A), we have

AZ =

(

−z
∆2y + az

)

,
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it follows that

(3.1.5)
(AZ,Z) = −

∫

Ω
∆z∆y dx +

∫

Ω
z∆2y dx +

∫

Ω
az2 dx

=

∫

Ω
az2 dx ≥ 0 ,

which establishes (i).

Proof of (ii): We shall prove that for all

(

u
v

)

in H, there exists Z in D(A)

such that

(3.1.6) AZ + Z =

(

u
v

)

.

If we set Z =

(

y
z

)

, then (3.1.6) may be rewritten

(3.1.7)

{

−z + y = u in Ω ,

∆2y + az = v in Ω .

The first equation of (3.1.7) gives z as a function of y and u. Reporting this in

the second equation, we get

(3.1.8) ∆2y + ay = v + au .

Since v lies in L2(Ω), and u lies in H2
0 (Ω), Hardy inequality shows that the right

hand side of (3.1.8) belongs to L2(Ω). Since we are looking for y in H2
0 (Ω),

the application of the theory of elliptic problems [2, 15] gives the existence and

uniqueness of y. The existence of z follows immediately, and (ii) is proved.

The theorem of Hille–Yosida shows that (3.1.2) has a unique solution

(3.1.9) Z ∈ C
(

[0,∞);D(A)
)

∩ C1
(

[0,∞);H
)

,

hence (1.7). The proof of (1.9) follows by standard energy method.

We now turn to the proofs of Theorems 1.1 and 1.2. This proof essentially

relies on the multiplier techniques as developed in [10, 14, 27]. This method

introduces lower order terms that need to be absorbed to get the energy decay

estimates announced. In general, authors rely on a unique continuation argument

to get rid of these lower order terms [18, 19, 27, 28]. However the compactness-

uniqueness approach introduces in the estimates constants on which one has no

control. Recently a direct approach, which consists in introducing a suitable
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auxiliary stationary system and using its solution to build a multiplier in order

to absorb the lower order terms, was introduced in [22], and was subsequently

used with success in [17, 23, 24, 25,...]. The direct approach was developed as

an alternative to the compactness-uniqueness method, and it turns out that it

is much simpler to use, and it provides explicit decay estimates, which makes it

very suitable for numerical experiments.

3.2. Proof of Theorems 1.1, and 1.2.

The first steps of the proofs of these two theorems are similar. This explains

why we are proving these two theorems simultaneously.

We proceed in several steps.

Step 1. Applying (2.5) with δ = N − 2, q(x) = m(x), observing that

div(m) = N and using (1.5), we find

(3.2.1)

4

∫ T

S
Eµ+1dt = −

∫

Ω
y′
{

2m · ∇y + (N− 2)y
}

dx Eµ

]T

S

+ µ

∫

Ω×]S,T [
Eµ−1E′ y′

{

2m · ∇y + (N− 2)y
}

dx dt

−

∫

Ω×]S,T [
ay′

{

2m · ∇y + (N− 2)y
}

Eµ dx dt

+

∫

Γ×]S,T [
Eµ(m · ν) (∆y)2 dΓ dt .

Since the energy is nonincreasing, it follows that

(3.2.2)

∣

∣

∣

∣

−

∫

Ω
y′
{

2m · ∇y + (N− 2)y
}

dx Eµ

]T

S

∣

∣

∣

∣

≤
4R

λ0
E(0)µE(S) ,

and

(3.2.3)

∣

∣

∣

∣

µ

∫

Ω×]S,T [
Eµ−1E′y′

{

2m · ∇y + (N− 2)y
}

dx dt

∣

∣

∣

∣

≤
2µR

λ0
E(0)µE(S) ,

where λ20 is the first eigenvalue of the eigenvalue problem

(3.2.4)











∆2u = −λ2∆u in Ω ,

u =
∂u

∂ν
= 0 on ∂Ω .
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By Hölder inequality we have

(3.2.5)

∣

∣

∣

∣

∫

Ω×]S,T [
ay′

{

2m · ∇y + (N− 2)y
}

Eµ dx dt

∣

∣

∣

∣

≤

≤ c

∫ T

S
Eµ

(
∫

Ω
a|y′|2 dx

)
1
2
(
∫

Ω
a
(

|∇y|2 + |y|2
)

dx

)
1
2

dt

≤ c

∫ T

S
Eµ |E′|

1
2

(
∫

Ω
|∆y|2 dx

)
1
2

dt, by (2.8)

≤ c

∫ T

S
E

2µ+1
2 |E′|

1
2 dt, by (1.6) .

Now, using Young inequality and the fact that E is noincreasing, we get for every

t ≥ 0

(3.2.6) cE
2µ+1

2 |E′|
1
2 ≤ Eµ+1 + cE(0)µ |E′| .

Reporting (3.2.6) in (3.2.5) and combining (3.2.1)–(3.2.5), we get

(3.2.7)

∫ T

S
Eµ+1 dt ≤ c

(

1 + E(0)µ
)

E(S) + c

∫

Γ+×]S,T [
Eµ(∆y)2 dΓ dt .

At this stage, we observe, thanks to Lemma 2.2, that it suffices to obtain judicious

estimates of the last term of the right hand side of (3.2.7) in terms of E(S) and
∫ T
S Eµ+1dt to complete the proof of Theorems 1.1, 1.2.

Step 2. Let h ∈ (W 2,∞(Ω))N such that

(3.2.8) h = ν on Γ+ , h · ν ≥ 0 on Γ , h = 0 in Ω \ ω1

where ω1 is another neighborhood of Γ+ strictly contained in ω.

Choose δ = 0 and q = h in (2.5). Following Zuazua [27], we can show that

there exists a positive constant c0 depending only on Ω and ω such that

c̄

∫

Γ+×]S,T [
Eµ(∆y)2 dΓ dt ≤

≤ c̄

∫

Γ×]S,T [
Eµ(h · ν) (∆y)2 dΓ dt

(3.2.9)

≤ c0

∫

ω1×]S,T [

{

|y′|2 + |∆y|2
}

Eµ dx dt + 2 c̄

∫

Ω
y′h · ∇y dx Eµ

]T

S

− 2µ c̄

∫

Ω×]S,T [
Eµ−1E′y′h · ∇y dx dt + 2 c̄

∫

Ω×]S,T [
ay′h · ∇y Eµ dx dt

where c̄ is the constant in (3.2.7).
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Simple calculations using Young inequality show that

(3.2.10)

∣

∣

∣

∣

2 c̄

∫

Ω
y′h · ∇y dx Eµ

]T

S

∣

∣

∣

∣

≤ cE(0)µE(S)

and

(3.2.11)

∣

∣

∣

∣

2µ c̄

∫

Ω×]S,T [
Eµ−1E′y′h · ∇y dx dt

∣

∣

∣

∣

≤ cE(0)µE(S) .

In the last term of the right hand side of (3.2.9), we proceed as in (3.2.5) to get

(3.2.12)

∣

∣

∣

∣

2 c̄

∫

Ω×]S,T [
ay′h · ∇y Eµ dx dt

∣

∣

∣

∣

≤ c

∫ T

S
E

2µ+1
2 |E′|

1
2 dt .

Thanks to (3.2.6) we easily derive from (3.2.12) that

(3.2.13)

∣

∣

∣

∣

2 c̄

∫

Ω×]S,T [
ay′h · ∇y Eµ dx dt

∣

∣

∣

∣

≤
1

2

∫ T

S
Eµ+1dt + cE(0)µE(S) .

Combining (3.2.9) to (3.2.13) and reporting the obtained result in (3.2.7) yield

(3.2.14)

∫ T

S
Eµ+1 dt ≤ cE(0)µE(S) + c

∫

ω1×]S,T [

{

|y′|2 + |∆y|2
}

Eµ dx dt .

Thanks to Lemma 2.2, it remains to get rid of the second term in the right hand

side of (3.2.14) to complete the proof of Theorems 1.1, 1.2.

Step 3. Let η be a function satisfying

(3.2.15) η ∈W 2,∞(Ω) , 0≤η≤1 , η = 1 in ω1 , η = 0 in Ω\ω .

Applying (2.6) with ξ = η4, (we choose ξ = η4 instead of ξ = η as in [16, 17] or

[25, 26] to make our computations easy to understand) we find

∫

Ω×]S,T [
η4 |∆y|2Eµ dx dt =(3.2.16)

= −

∫

Ω
y′η4y dx Eµ

]T

S

+

∫

Ω×]S,T [
η4|y′|2Eµ dx dt + µ

∫

Ω×]S,T [
Eµ−1E′y′y η2 dx dt

− 8

∫

Ω×]S,T [
η3∆y(∇y · ∇η)Eµ dx dt − 2

∫

Ω×]S,T [
y η2∆y∆(η2)Eµ dx dt

− 8

∫

Ω×]S,T [
y η2∆y |∇η|2Eµ dx dt −

∫

Ω×]S,T [
ay′η4yEµ dx dt .
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It follows from (3.2.16) that for all ε > 0,

c̃

∫

Ω×]S,T [
η4|∆y|2Eµ dx dt ≤

≤ CεE(0)µE(S) + ε c̃

∫

Ω×]S,T [
η4|∆y|2Eµ dx dt(3.2.17)

+ ε

∫ T

S
Eµ+1dt + Cε

∫

ω×]S,T [

{

|y′|2 + η2|∇y|2 + |y|2
}

Eµ dx dt ,

where c̃ is the constant appearing in the right hand side of (3.2.14).

On the other hand Green’s formula yields

Cε

∫

ω×]S,T [
η2|∇y|2Eµ dx dt ≤(3.2.18)

≤ ε c̃

∫

Ω×]S,T [
η4|∆y|2Eµ dx dt + Cε

∫

ω×]S,T [
|y|2Eµ dx dt .

Therefore

c̃

∫

Ω×]S,T [
η4|∆y|2Eµ dx dt ≤ cE(0)µE(S) +

1

2

∫ T

S
Eµ+1dt

+ c

∫

ω×]S,T [
|y′|2Eµ dx dt + c

∫

ω×]S,T [
|y|2Eµ dx dt .(3.2.19)

Reporting (3.2.19) in (3.2.14), we find

∫ T

S
Eµ+1dt ≤ cE(0)µE(S) + c

∫

ω×]S,T [
|y′|2Eµ dx dt+ c

∫

ω×]S,T [
|y|2Eµ dx dt .

(3.2.20)

Now, we are going to use a special multiplier to absorb the third term in the right

hand side of (3.2.20).

Step 4. Introduce z(t) ∈ H2
0 (Ω) solution of

(3.2.21)











∆2z = χωy in Ω ,

z =
∂z

∂ν
= 0 on Γ ,

where χω is the characteristic function of ω.

It is easy to check that z′ = dz
dt

satisfies

(3.2.22)











∆2z′ = χωy
′ in Ω ,

z′ =
∂z′

∂ν
= 0 on Γ .
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Some elementary calculations show that

(3.2.23)

∫

Ω
|∆z|2 dx ≤ c

∫

ω
|y|2 dx ,

∫

Ω
|∆z′|2 dx ≤ c

∫

ω
|y′|2 dx

∫

Ω
∆z∆y dx =

∫

ω
|y|2 dx .

Now multiplying the first equation of (1.3) by zEµ, integrating by parts over

Ω×]S, T [ and using the second line of (3.2.23); we find
∫

ω×]S,T [
|y|2Eµ dx dt = −

∫

Ω
y′z dx Eµ

]T

S

+

∫

Ω×]S,T [
Eµ y′z′ dx dt

+ µ

∫

Ω×]S,T [
Eµ−1E′y′z dx dt −

∫

Ω×]S,T [
ay′zEµ dx dt ,(3.2.24)

from which we derive that

č

∫

ω×]S,T [
|y|2Eµ dx dt ≤ cE(0)µE(S) +

1

2

∫ T

S
Eµ+1dt+ c

∫

ω×]S,T [
|y′|2Eµ dx dt ,

(3.2.25)

where č stands for the constant in (3.2.20).

Reporting (3.2.25) in (3.2.20) we get

(3.2.26)

∫ T

S
Eµ+1dt ≤ cE(0)µE(S) + c

∫

ω×]S,T [
|y′|2Eµ dx dt .

From now on we separate the proofs of Theorems 1.1, 1.2.

Proof of Theorem 1.1 (continued): Since the localizing coefficient a

satisfies (1.1), it is easy to check that

(3.2.27)

∫

ω×]S,T [
|y′|2Eµ dx dt ≤ cE(0)µE(S) .

Reporting (3.2.27) in (3.2.26), taking the limit as T →∞, and applying Lemma

2.2, we obtain (1.10) and the proof of Theorem 1.1 is complete.

It remains to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 (continued): To this end we shall absorb the

second term in (3.2.26). Applying (2.7), we find
∫ T

S
Eµ+1dt ≤

≤ cE(0)µE(S) + c |(1/α)|
p

p+1
p F

N
2(p+1)

0

∫ T

S
|E′|

p

p+1E
µ+ 4−N

4(p+1) ,(3.2.28)

if 1≤N≤3 ,
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∫ T

S
Eµ+1dt ≤

≤ cE(0)µE(S) + cr|(1/α)|
p(r−1)
r(p+1)
p F

2(r+p)
r(p+1)

0

∫ T

S
Eµ |E′|

p(r−1)
r(p+1) ,(3.2.29)

∀ 1<r<∞, if N=4 ,

and
∫ T

S
Eµ+1dt ≤

≤ cE(0)µE(S) + c|(1/α)|
4p

N+4p
p F

2N
N+4p

0

∫ T

S
Eµ |E′|

4p
N+4p , if N ≥ 5 .(3.2.30)

Choosing µ = N/4p in (3.2.28) and (3.2.30), and using Young inequality, we find

∫ T

S
E

N
4p
+1
dt ≤

≤ cE(0)
N
4pE(S) +

1

p+1

∫ T

S
E

N
4p
+1
dt + c |(1/α)|p F

N
2p

0 E(S) ,(3.2.31)

if 1≤N≤3 ,

and
∫ T

S
E

N
4p
+1
dt ≤

≤ cE(0)
N
4pE(S) +

N

N+4p

∫ T

S
E

N
4p
+1
dt + c |(1/α)|p F

N
2p

0 E(S) ,(3.2.32)

if N≥5 .

Therefore letting T →∞, and applying Lemma 2.2, one gets (1.11). It remains

to prove (1.12). For this purpose, choosing µ = (r+p)/p(r−1) in (3.2.29), and

using Young inequality, we get

∫ T

S
E

(r+p)
p(r−1)

+1
dt ≤

≤ cE(0)
(r+p)
p(r−1)E(S) + cr|(1/α)|p F

2(r+p)
p(r−1)

0 E(S) +
r+p

r(p+1)

∫ T

S
E

(r+p)
p(r−1)

+1
dt ,(3.2.33)

∀ 1<r<∞, if N=4 ,

from which one derives (1.12) by the application of Lemma 2.2, and the proof of

Theorem 1.2 is complete.
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Thesis, U.L.P., Strasbourg 1995.

[13] Lagnese, J. – Control of wave processes with distributed control supported on a
subregion, S.I.A.M. J. Control and Opt., 21 (1983), 68–85.
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[23] Tcheugoué Tébou, L.R. – On the decay estimates for the wave equation with a
local degenerate or nondegenerate dissipation, Portugal. Math., 55 (1998), 293–306.
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