PORTUGALIAE MATHEMATICA

Vol. 61 Fasc. 3 - 2004
Nova Série

BOUTROUX'S METHOD VS. RE-SCALING
 Lower estimates for the orders of growth of the second and fourth Painlevé transcendents

Norbert Steinmetz

Abstract

We give a new proof of Shimomura's sharp lower estimates for the orders of growth of the Painlevé transcendents II and IV: $\varrho_{I I} \geq 3 / 2$ and $\varrho_{I V} \geq 2$.

1 - Introduction

We are concerned with the transcendental solutions of Painlevé's second and fourth equation,

$$
\begin{equation*}
w^{\prime \prime}=\alpha+z w+2 w^{3} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 w w^{\prime \prime}=w^{\prime 2}+3 w^{4}+8 z w^{3}+4\left(z^{2}-\alpha\right) w^{2}+2 \beta \tag{1.2}
\end{equation*}
$$

the second and fourth transcendents. In [Sh1] and [St1] it was shown that any second and fourth Painlevé transcendent w has order of growth $\varrho(w) \leq 3$ and $\varrho(w) \leq 4$, respectively. More precisely, if $\left(p_{n}\right)$ denotes the sequence of non-zero poles of w, it was shown in [$\mathrm{St1}]$ that, in the respective cases,

$$
\sum_{\left|p_{n}\right| \leq r}\left|p_{n}\right|^{-1}=O\left(r^{2}\right) \quad \text { and } \quad \sum_{\left|p_{n}\right| \leq r}\left|p_{n}\right|^{-2}=O\left(r^{2}\right)
$$

hold. In the other direction, Shimomura [Sh3] recently derived the sharp lower estimates $\varrho(w) \geq 3 / 2$, resp. $\varrho(w) \geq 2$. Equality is attained for particular solutions, called Airy- and Hermite-Weber-solutions, respectively. For more details

[^0]concerning these functions we refer to [GLS]. For $2 \alpha \in \mathbb{Z}$ proofs of $\varrho(w) \geq 3 / 2$ in case (II) can be found in [Sh2] and [St2].

Combining the re-scaling method with some modified Shimomura approach [Sh3] we will be able to give a different proof of Shimomura's lower estimates, which may be stated as follows:

Theorem. Let w be a transcendental solution of one of the differential equations (1.1) or else (1.2), with sequence $\left(p_{n}\right)$ of non-zero poles. Then, for some $\kappa=\kappa(w)>0$ and $r>r_{0}$

$$
\sum_{\left|p_{n}\right| \leq r}\left|p_{n}\right|^{-3 / 2} \geq \kappa \log r \quad \text { and } \quad \sum_{\left|p_{n}\right| \leq r}\left|p_{n}\right|^{-1 / 2} \geq \kappa r
$$

or else

$$
\sum_{\left|p_{n}\right| \leq r}\left|p_{n}\right|^{-2} \geq \kappa \log r \quad \text { and } \quad \sum_{\left|p_{n}\right| \leq r}\left|p_{n}\right|^{-1} \geq \kappa r
$$

holds in the respective case.

2 - Two local methods

We start by describing two methods of investigating the Painlevé transcendents locally, and restrict ourselves to equation (1.1).

a) Re-scaling

Let w be any transcendental solution of (II) and let $\left(p_{n}\right)$ be any sub-sequence of the sequence of poles of w. Then

$$
y_{n}(\mathfrak{z})=p_{n}^{-1 / 2} w\left(p_{n}+p_{n}^{-1 / 2} \mathfrak{z}\right)
$$

has the series expansion

$$
y_{n}(\mathfrak{z})=\frac{\epsilon_{n}}{\mathfrak{z}}-\frac{\epsilon_{n}}{6} \mathfrak{z}-p_{n}^{-3 / 2} \frac{\alpha+\epsilon_{n}}{4} \mathfrak{z}^{2}+h_{n} p_{n}^{-2} \mathfrak{z}^{3}+\cdots, \quad \epsilon_{n}= \pm 1,
$$

about $\mathfrak{z}=0$ and satisfies

$$
y_{n}^{\prime \prime}(\mathfrak{z})=p_{n}^{-3 / 2} \alpha+\left(p_{n}^{-3 / 2} \mathfrak{z}+1\right) y_{n}(\mathfrak{z})+2 y_{n}^{3}(\mathfrak{z}),
$$

where now ' denotes differentiation with respect to \mathfrak{z}. One of the major results of the re-scaling method developed in $[\mathrm{St} 1, \mathrm{St} 2]$ was that the sequence $\left(h_{n} p_{n}^{-2}\right)$ has a
uniform bound only depending on the solution w. Thus choosing a sub-sequence of $\left(p_{n}\right)$, again denoted $\left(p_{n}\right)$, such that $\epsilon_{n}=\epsilon$ is constant and $h_{n} p_{n}^{-2} \rightarrow h$, we obtain $y_{n}(\mathfrak{z}) \rightarrow \mathfrak{y}_{r s}(\mathfrak{z})\left({ }_{r s}\right.$ stands for re-scaled), locally uniformly in \mathbb{C}, where $\mathfrak{y}_{r s}$ is the unique solution of

$$
\mathfrak{y}_{r s}^{\prime \prime}=\mathfrak{y}_{r s}+2 \mathfrak{y}_{r s}^{3} \quad \text { with } \quad \mathfrak{y}_{r s}(\mathfrak{z})=\frac{\epsilon}{\mathfrak{z}}-\frac{\epsilon}{6} \mathfrak{z}+h_{\mathfrak{z}}^{3}+\cdots \quad \text { about } \mathfrak{z}=0 .
$$

We note that

$$
\mathfrak{y}_{r s}^{\prime 2}=\frac{7}{36}-10 \epsilon h+\mathfrak{y}_{r s}^{2}+\mathfrak{y}_{r s}^{4}=c+\mathfrak{y}_{r s}^{2}+\mathfrak{y}_{r s}^{4}
$$

with $|c|$ uniformly bounded, independent of the sequence $\left(p_{n}\right)$.
Finally, application of Hurwitz' Theorem yields the following
Remark a. Every pole \mathfrak{z}_{0} of $\mathfrak{y}_{r s}$ is the limit of poles \mathfrak{z}_{n} of y_{n}; thus $p_{n}^{\prime}=$ $p_{n}+p_{n}^{-1 / 2} \mathfrak{z}_{n}$ is a pole of w, and any such sequence p_{n}^{\prime} gives rise to a pole $\mathfrak{z}_{0}=$ $\lim _{n \rightarrow \infty}\left(p_{n}^{\prime}-p_{n}\right) p_{n}^{1 / 2}$ of $\mathfrak{y}_{r s}$. ㅁ

b) Boutroux's method

Again let w be any transcendental solution of (II). The change of variables

$$
\xi=\frac{2}{3} z^{3 / 2}=\phi(z), \quad \Theta(\xi)=z^{-1 / 2} w(z)
$$

see Boutroux's paper [B], leads to the differential equation (where now ' denotes $d / d \xi)$

$$
\Theta^{\prime \prime}(\xi)=2 \Theta^{3}(\xi)+\Theta(\xi)-\frac{\Theta^{\prime}(\xi)}{\xi}+\frac{2 \alpha}{3 \xi}+\frac{\Theta(\xi)}{9 \xi^{2}}
$$

To be more precise, let \mathbb{H} be any half-plane with $0 \in \partial \mathbb{H}$. Then any branch of $\psi(\xi)=\left(\frac{3}{2} \xi\right)^{2 / 3}$ maps \mathbb{H} conformally onto some sector S of angular width $2 \pi / 3$, and ϕ will denote the inverse map $\psi^{-1}: S \rightarrow \mathbb{H}$.

If $p_{n} \neq 0$ denotes any pole of w in the sector S, we obtain for $v_{n}(\mathfrak{z})=$ $\Theta\left(\phi\left(p_{n}\right)+\mathfrak{z}\right)$ the differential equation

$$
v_{n}^{\prime \prime}(\mathfrak{z})=2 v_{n}^{3}(\mathfrak{z})+v_{n}(\mathfrak{z})-\frac{v_{n}^{\prime}(\mathfrak{z})}{\phi\left(p_{n}\right)+\mathfrak{z}}+\frac{2 \alpha}{3\left(\phi\left(p_{n}\right)+\mathfrak{z}\right)}+\frac{v_{n}(\mathfrak{z})}{9\left(\phi\left(p_{n}\right)+\mathfrak{z}\right)^{2}} .
$$

If we choose $p_{n} \rightarrow \infty$ (the same sub-sequence as was chosen above) we obtain in the limit the differential equation

$$
\mathfrak{v}_{B}^{\prime \prime}=2 \mathfrak{v}_{B}^{3}+\mathfrak{v}_{B},
$$

where ${ }_{B}$ stands for Boutroux. It is obvious that

$$
\Theta\left(\phi\left(p_{n}\right)+\mathfrak{z}\right)=\left(\psi\left(\phi\left(p_{n}\right)+\mathfrak{z}\right)\right)^{-1 / 2} w\left(\psi\left(\phi\left(p_{n}\right)+\mathfrak{z}\right)\right) \sim p_{n}^{-1 / 2} w\left(p_{n}+p_{n}^{-1 / 2} \mathfrak{z}\right)
$$

holds as $n \rightarrow \infty$, and hence the functions $\mathfrak{y}_{r s}$ and \mathfrak{v}_{B} agree. This phenomenon was already observed in [St1] for Painlevé's first equation. The re-scaling method yields the additional information that Θ and Θ^{\prime} are uniformly bounded outside the union of disks $\left|\xi-\phi\left(p_{n}\right)\right|<\delta$ about the poles $\phi\left(p_{n}\right)$ of $\Theta ; \delta>0$ is arbitrary. We thus have

Remark b. Every pole \mathfrak{z}_{0} of \mathfrak{y}_{B} is the limit of poles \mathfrak{z}_{n} of v_{n}; thus $p_{n}^{\prime}=$ $\psi\left(\phi\left(p_{n}\right)+\mathfrak{z}_{n}\right)$ is a pole of w, and any such sequence p_{n}^{\prime} gives rise to a pole $\mathfrak{z}_{0}=\lim _{n \rightarrow \infty}\left(\phi\left(p_{n}^{\prime}\right)-\phi\left(p_{n}\right)\right)$ of \mathfrak{y}_{B}. व

3 - Proof of the Theorem

To start with the proof we need the following Lemma, which in similar form also was proved in [Sh2, Lemma 2.2.].

Lemma. Let \mathfrak{L}_{c} denote the (possibly degenerate) period lattice for the differential equation $\mathfrak{y}^{\prime 2}=\mathfrak{y}^{4}+\mathfrak{y}^{2}+c$, and let Σ be any open sector with vertex at the origin and containing $\{1, i\}$ (or $\{-1, i\}$ or $\{-1,-i\}$ or $\{1,-i\}$). Then given $K>0$ there exists $R>0$, such that $\Sigma \cap\{\omega:|\omega| \leq R\} \cap \mathfrak{L}_{c} \neq \emptyset$ for every c satisfying $|c| \leq K$.

Remark. For $c \neq 0,1 / 4$, every non-constant solution of $\mathfrak{y}^{\prime 2}=\mathfrak{y}^{4}+\mathfrak{y}^{2}+c$ is an elliptic function, closely related to Jacobi's sinus amplitudinis. If $\{\omega, \tilde{\omega}\}$ is a suitably chosen basis of the period lattice \mathfrak{L} and if \mathfrak{y} has a pole at $\mathfrak{z}=0$, then it has simple poles exactly at $m \omega+\left(n+\frac{1}{2}\right) \tilde{\omega}, m, n \in \mathbb{Z}$, see the famous book [HC, p. 215] by Hurwitz and Courant. \square

Proof of Lemma: We have to consider separately the points of degeneration, namely $c=0, c=1 / 4$ and $c=\infty$. For $c=0$ and $c=1 / 4$ the non-constant solutions \mathfrak{y} are simply periodic with primitive periods $\omega_{0}= \pm \pi / \sqrt{2}$ and $\omega_{1 / 4}=$ $\pm i \pi$, respectively. Hence, for $\delta>0$ sufficiently small, we have in the respective cases $|c|<\delta$ and $|c-1 / 4|<\delta$ that, by continuity, one of the periods $\pm \omega_{c}$ belong to $\Sigma \cap\{\omega:|\omega| \leq 4\}$, say.

In case $c \rightarrow \infty$ we set $\mathfrak{u}_{a}(z)=a \mathfrak{y}(a z)$ with $a^{4} c=1$, to obtain $\mathfrak{u}_{a}^{\prime 2}=\mathfrak{u}_{a}^{4}+$ $a^{2} \mathfrak{u}_{a}^{2}+1$, and hence, in the limit $c \rightarrow \infty$, the differential equation $\mathfrak{u}_{0}^{\prime 2}=\mathfrak{u}_{0}^{4}+1$.

Thus, for $|c|$ large, the period lattice \mathfrak{L}_{c} is approximately a square lattice with mesh size $\asymp|c|^{-1 / 4}$. We again note, however, that in our case $|c|$ is uniformly bounded.

In the compact parameter set $\{c: \delta \leq|c| \leq K,|c-1 / 4| \geq \delta\}$ each lattice \mathfrak{L}_{c} has a basis $\left\{\omega_{c}, \tilde{\omega}_{c}\right\}$ such that $\kappa R \leq\left|\omega_{c}\right| \leq\left|\tilde{\omega}_{c}\right| \leq\left|\omega_{c} \pm \tilde{\omega}_{c}\right| \leq R$ for some constants $R \geq 4, \kappa>0$, independent of c. The problem now is equivalent to the following: Let \mathfrak{L} be the lattice spanned by 1 and τ with

$$
\operatorname{Im} \tau>0, \quad-1 / 2<\operatorname{Re} \tau \leq 1 / 2 \quad \text { and } \quad 1 \leq|\tau| \leq M
$$

$M>1$ some fixed constant, and let Σ be any open sector with vertex at the origin and with angular width $>\pi / 2$. Then we have to show that

$$
\Sigma \cap\{1,1+\tau, \tau,-1+\tau,-1,-1-\tau,-\tau, 1-\tau\} \neq \emptyset .
$$

This, however, follows immediately from the fact that the angle between any two consecutive points in the sequence $(1,1+\tau, \ldots, 1-\tau, 1)$ is $<\pi / 2$.

Proof of the Theorem in case (II): To fix ideas we consider (the branches of) $\psi(\xi)=\left(\frac{3}{2} \xi\right)^{2 / 3}$ in the half-plane $\mathbb{H}:-\pi / 4<\arg \xi<3 \pi / 4$ with $\psi(\mathbb{H})=S=$ $\{z:-\pi / 6<\arg z<\pi / 2\}$ (the other possibilities being $\psi(\mathbb{H})=e^{2 \pi i / 3} S$ and $\left.\psi(\mathbb{H})=e^{4 \pi i / 3} S\right)$. We also set, for $z_{0} \in \psi(\mathbb{H}), D\left(z_{0}\right)=\psi\left(\phi\left(z_{0}\right)+\mathbb{H}\right)$. Then, if $r>0$ is sufficiently large, it follows from the Lemma and Remarks a. and b. about the distribution of poles, that to any pole p of w in $D\left(r e^{\pi i / 6}\right)$ there exists a pole $\phi\left(p^{\prime}\right)$ of Θ in $\phi(p)+\mathbb{H}$ with $\left|\phi\left(p^{\prime}\right)-\phi(p)\right| \leq 2 R$, say. Hence $p^{\prime} \in D(p) \subset D\left(r e^{\pi i / 6}\right)$ is a pole of w satisfying $\frac{3}{2}\left|p^{\prime 3 / 2}-p^{3 / 2}\right| \geq \frac{1}{2}|p|^{1 / 2}\left|p^{\prime}-p\right|$, for r and thus $|p|$ sufficiently large, and this gives $\left|p^{\prime}-p\right| \leq 4 R|p|^{-1 / 2}$.

Since $D\left(p^{\prime}\right) \subset D(p) \subset D\left(r e^{\pi i / 6}\right)$, this process may be repeated to obtain a sequence $\tilde{p}_{1}=p, \tilde{p}_{2}=\tilde{p}_{1}^{\prime}, \tilde{p}_{3}=\tilde{p}_{2}^{\prime}, \ldots$ of different poles ${ }^{1}$ of w such that $\left|\tilde{p}_{n+1}\right| \leq\left|\tilde{p}_{n}\right|+O\left(\left|\tilde{p}_{n}\right|^{-1 / 2}\right)=\left|\tilde{p}_{n}\right|\left(1+O\left(\left|\tilde{p}_{n}\right|^{-3 / 2}\right)\right.$ as $n \rightarrow \infty$. This gives $\left|\tilde{p}_{n+1}\right|-\left|\tilde{p}_{1}\right|=O\left(\sum_{\nu=1}^{n}\left|\tilde{p}_{\nu}\right|^{-1 / 2}\right)$ and $\log \left|\tilde{p}_{n+1}\right|-\log \left|\tilde{p}_{1}\right|=O\left(\sum_{\nu=1}^{n}\left|\tilde{p}_{\nu}\right|^{-3 / 2}\right)$ for every $n \in \mathbb{N}$. The assertion of our theorem in case (II) now follows, since the same method applies to the open half-plane $i \mathbb{H}$ with associated sectors $e^{\pi i / 3} S,-S$ and $e^{5 \pi i / 3} S$; then the domain $\bigcup_{\nu=0}^{5} D\left(r e^{(2 \nu+1) \pi i / 6}\right)$ is some punctured neighbourhood of ∞.

[^1]The proof in case (IV) is almost the same, details will be omitted. We just note that, after some simple calculation, the re-scaling process $y_{n}(\mathfrak{z})=p_{n}^{-1} w\left(p_{n}+p_{n}^{-1} \mathfrak{z}\right)$ leads to the differential equation

$$
\mathfrak{y}_{r s}^{\prime 2}=\mathfrak{y}^{4}+4 \mathfrak{y}^{3}+4 \mathfrak{y}^{2}+c \mathfrak{y},
$$

with $|c|$ uniformly bounded. The degenerate cases correspond to the parameters $c=0, c=32 / 27$ and $c=\infty$; by the substitution $\mathfrak{u}(\mathfrak{z})=a \mathfrak{y}(a \mathfrak{z}), a^{3} c=1$, the latter case again reduces in the limit $c \rightarrow \infty$ to $\mathfrak{u}^{\prime 2}=\mathfrak{u}^{4}+1$. One also has to work with (the branches of) $\psi(\xi)=(2 \xi)^{1 / 2}$ in the half-planes $\mathbb{H}:-\pi / 4<\arg \xi<3 \pi / 4$, $i \mathbb{H},-\mathbb{H}$ and $-i \mathbb{H}$.

REFERENCES

[B] Boutroux, P. - Recherches sur les transcendentes de M. Painlevé et l'étude asymptotique des équations différentielles du seconde ordre, Ann. École Norm. Supér., 30 (1913), 255-375 and 31 (1914), 99-157.
[GLS] Gromak, V.I.; Laine, I. and Shimomura, S. - Painlevé Differential Equations in the Complex Plane, de Gruyter, 2002.
[HC] Hurwitz, A. and Courant, R. - Funktionentheorie, Springer, 1929.
[Sh1] Shimomura, S. - Growth of the first, the second and the fourth Painlevé transcendents, Math. Proc. Cambr. Philos. Soc., 134 (2003), 201-217.
[Sh12] Shimomura, S. - Lower estimates for the growth of Painlevé transcendents, Funkcial. Ekvac., 46 (2003), 287-295.
[Sh3] Shimomura, S. - Lower estimates for the growth of the fourth and the second Painlevé transcendents, 17 p. (to appear).
[St1] Steinmetz, N. - Value distribution of the Painlevé transcendents, Israel Journal of Math., 128 (2002), 29-52 and 82 (2000), 363-377.
[St2] Steinmetz, N. - Global properties of the Painlevé transcendents, preprint (2003), 29 p..

Norbert Steinmetz,

 Universität Dortmund, Fachbereich Mathematik, D-44221 Dortmund - GERMANY E-mail: stein@math.uni-dortmund.de www: http://www.mathematik.uni-dortmund.de/steinmetz/
[^0]: Received: June 24, 2003; Revised: October 8, 2003.
 AMS Subject Classification: 34M05, 30D35.
 Keywords: Painlevé differential equations; order of growth; re-scaling; Boutroux's method.

[^1]: The crucial point was to prove that the construction leads to an infinite sequence of poles. It was Shimomura's paper [Sh3] which inspired me to compare Boutroux's method with rescaling and so to overcome this difficulty.

