PORTUGALIAE MATHEMATICA Vol. 61 Fasc. 3 – 2004 Nova Série

BOUTROUX'S METHOD VS. RE-SCALING Lower estimates for the orders of growth of the second and fourth Painlevé transcendents

NORBERT STEINMETZ

Abstract: We give a new proof of Shimomura's sharp lower estimates for the orders of growth of the Painlevé transcendents II and IV: $\rho_{II} \ge 3/2$ and $\rho_{IV} \ge 2$.

1 - Introduction

We are concerned with the transcendental solutions of *Painlevé's second* and fourth equation,

(1.1)
$$w'' = \alpha + zw + 2w^3$$

and

(1.2)
$$2ww'' = w'^2 + 3w^4 + 8zw^3 + 4(z^2 - \alpha)w^2 + 2\beta ,$$

the second and fourth transcendents. In [Sh1] and [St1] it was shown that any second and fourth Painlevé transcendent w has order of growth $\rho(w) \leq 3$ and $\rho(w) \leq 4$, respectively. More precisely, if (p_n) denotes the sequence of non-zero poles of w, it was shown in [St1] that, in the respective cases,

$$\sum_{|p_n| \le r} |p_n|^{-1} = O(r^2) \quad \text{and} \quad \sum_{|p_n| \le r} |p_n|^{-2} = O(r^2)$$

hold. In the other direction, Shimomura [Sh3] recently derived the sharp lower estimates $\rho(w) \geq 3/2$, resp. $\rho(w) \geq 2$. Equality is attained for particular solutions, called *Airy*- and *Hermite–Weber–*solutions, respectively. For more details

Received: June 24, 2003; Revised: October 8, 2003.

AMS Subject Classification: 34M05, 30D35.

Keywords: Painlevé differential equations; order of growth; re-scaling; Boutroux's method.

NORBERT STEINMETZ

concerning these functions we refer to [GLS]. For $2\alpha \in \mathbb{Z}$ proofs of $\varrho(w) \geq 3/2$ in case (II) can be found in [Sh2] and [St2].

Combining the *re-scaling method* with some modified Shimomura approach [Sh3] we will be able to give a different proof of Shimomura's lower estimates, which may be stated as follows:

Theorem. Let w be a transcendental solution of one of the differential equations (1.1) or else (1.2), with sequence (p_n) of non-zero poles. Then, for some $\kappa = \kappa(w) > 0$ and $r > r_0$

$$\sum_{|p_n| \le r} |p_n|^{-3/2} \ge \kappa \log r \quad \text{ and } \quad \sum_{|p_n| \le r} |p_n|^{-1/2} \ge \kappa r$$

or else

$$\sum_{p_n|\leq r} |p_n|^{-2} \geq \kappa \log r \quad \text{ and } \quad \sum_{|p_n|\leq r} |p_n|^{-1} \geq \kappa r$$

holds in the respective case.

2 - Two local methods

We start by describing two methods of investigating the Painlevé transcendents locally, and restrict ourselves to equation (1.1).

a) Re-scaling

Let w be any transcendental solution of (II) and let (p_n) be any sub-sequence of the sequence of poles of w. Then

$$y_n(\mathfrak{z}) = p_n^{-1/2} w \left(p_n + p_n^{-1/2} \mathfrak{z} \right)$$

has the series expansion

$$y_n(\mathfrak{z}) = \frac{\epsilon_n}{\mathfrak{z}} - \frac{\epsilon_n}{6}\mathfrak{z} - p_n^{-3/2}\frac{\alpha + \epsilon_n}{4}\mathfrak{z}^2 + h_n p_n^{-2}\mathfrak{z}^3 + \cdots, \quad \epsilon_n = \pm 1,$$

about $\mathfrak{z} = 0$ and satisfies

$$y_n''(\mathfrak{z}) = p_n^{-3/2} \alpha + (p_n^{-3/2}\mathfrak{z} + 1) y_n(\mathfrak{z}) + 2 y_n^3(\mathfrak{z}) ,$$

where now ' denotes differentiation with respect to \mathfrak{z} . One of the major results of the re-scaling method developed in [St1, St2] was that the sequence $(h_n p_n^{-2})$ has a

370

uniform bound only depending on the solution w. Thus choosing a sub-sequence of (p_n) , again denoted (p_n) , such that $\epsilon_n = \epsilon$ is constant and $h_n p_n^{-2} \to h$, we obtain $y_n(\mathfrak{z}) \to \mathfrak{y}_{rs}(\mathfrak{z})$ (r_s stands for re-scaled), locally uniformly in \mathbb{C} , where \mathfrak{y}_{rs} is the unique solution of

$$\mathfrak{y}_{rs}'' = \mathfrak{y}_{rs} + 2\mathfrak{y}_{rs}^3$$
 with $\mathfrak{y}_{rs}(\mathfrak{z}) = \frac{\epsilon}{\mathfrak{z}} - \frac{\epsilon}{6}\mathfrak{z} + h\mathfrak{z}^3 + \cdots$ about $\mathfrak{z} = 0$.

We note that

$$\mathfrak{y}_{rs}^{\prime 2} \,=\, \tfrac{7}{36} - 10 \,\epsilon h + \mathfrak{y}_{rs}^2 + \mathfrak{y}_{rs}^4 \,=\, c + \mathfrak{y}_{rs}^2 + \mathfrak{y}_{rs}^4 \,\,,$$

with |c| uniformly bounded, independent of the sequence (p_n) .

Finally, application of Hurwitz' Theorem yields the following

Remark a. Every pole \mathfrak{z}_0 of \mathfrak{y}_{rs} is the limit of poles \mathfrak{z}_n of y_n ; thus $p'_n = p_n + p_n^{-1/2} \mathfrak{z}_n$ is a pole of w, and any such sequence p'_n gives rise to a pole $\mathfrak{z}_0 = \lim_{n \to \infty} (p'_n - p_n) p_n^{1/2}$ of \mathfrak{y}_{rs} .

b) Boutroux's method

Again let w be any transcendental solution of (II). The change of variables

$$\xi = \frac{2}{3} \, z^{3/2} = \phi(z) \,, \qquad \Theta(\xi) = z^{-1/2} \, w(z) \,\,,$$

see Boutroux's paper [B], leads to the differential equation (where now ' denotes $d/d\xi$)

$$\Theta''(\xi) = 2\Theta^3(\xi) + \Theta(\xi) - \frac{\Theta'(\xi)}{\xi} + \frac{2\alpha}{3\xi} + \frac{\Theta(\xi)}{9\xi^2} .$$

To be more precise, let \mathbb{H} be any half-plane with $0 \in \partial \mathbb{H}$. Then any branch of $\psi(\xi) = (\frac{3}{2}\xi)^{2/3}$ maps \mathbb{H} conformally onto some sector S of angular width $2\pi/3$, and ϕ will denote the inverse map $\psi^{-1} \colon S \to \mathbb{H}$.

If $p_n \neq 0$ denotes any pole of w in the sector S, we obtain for $v_n(\mathfrak{z}) = \Theta(\phi(p_n) + \mathfrak{z})$ the differential equation

$$v_n''(\mathfrak{z}) = 2 v_n^3(\mathfrak{z}) + v_n(\mathfrak{z}) - \frac{v_n'(\mathfrak{z})}{\phi(p_n) + \mathfrak{z}} + \frac{2\alpha}{3(\phi(p_n) + \mathfrak{z})} + \frac{v_n(\mathfrak{z})}{9(\phi(p_n) + \mathfrak{z})^2} .$$

If we choose $p_n \to \infty$ (the same sub-sequence as was chosen above) we obtain in the limit the differential equation

$$\mathfrak{v}_B'' = 2\mathfrak{v}_B^3 + \mathfrak{v}_B \; ,$$

NORBERT STEINMETZ

where $_B$ stands for Boutroux. It is obvious that

$$\Theta\Big(\phi(p_n) + \mathfrak{z}\Big) = \Big(\psi(\phi(p_n) + \mathfrak{z})\Big)^{-1/2} w\Big(\psi(\phi(p_n) + \mathfrak{z})\Big) \sim p_n^{-1/2} w\Big(p_n + p_n^{-1/2}\mathfrak{z}\Big)$$

holds as $n \to \infty$, and hence the functions \mathfrak{y}_{rs} and \mathfrak{v}_B agree. This phenomenon was already observed in [St1] for Painlevé's first equation. The re-scaling method yields the additional information that Θ and Θ' are uniformly bounded outside the union of disks $|\xi - \phi(p_n)| < \delta$ about the poles $\phi(p_n)$ of Θ ; $\delta > 0$ is arbitrary. We thus have

Remark b. Every pole \mathfrak{z}_0 of \mathfrak{y}_B is the limit of poles \mathfrak{z}_n of v_n ; thus $p'_n = \psi(\phi(p_n) + \mathfrak{z}_n)$ is a pole of w, and any such sequence p'_n gives rise to a pole $\mathfrak{z}_0 = \lim_{n \to \infty} (\phi(p'_n) - \phi(p_n))$ of \mathfrak{y}_B . \square

3 - Proof of the Theorem

To start with the proof we need the following Lemma, which in similar form also was proved in [Sh2, Lemma 2.2.].

Lemma. Let \mathfrak{L}_c denote the (possibly degenerate) period lattice for the differential equation $\mathfrak{y}'^2 = \mathfrak{y}^4 + \mathfrak{y}^2 + c$, and let Σ be any open sector with vertex at the origin and containing $\{1, i\}$ (or $\{-1, i\}$ or $\{-1, -i\}$ or $\{1, -i\}$). Then given K > 0 there exists R > 0, such that $\Sigma \cap \{\omega : |\omega| \leq R\} \cap \mathfrak{L}_c \neq \emptyset$ for every c satisfying $|c| \leq K$.

Remark. For $c \neq 0, 1/4$, every non-constant solution of $\mathfrak{y}'^2 = \mathfrak{y}^4 + \mathfrak{y}^2 + c$ is an elliptic function, closely related to Jacobi's sinus amplitudinis. If $\{\omega, \tilde{\omega}\}$ is a suitably chosen basis of the period lattice \mathfrak{L} and if \mathfrak{y} has a pole at $\mathfrak{z} = 0$, then it has simple poles exactly at $m\omega + (n + \frac{1}{2})\tilde{\omega}, m, n \in \mathbb{Z}$, see the famous book [HC, p. 215] by Hurwitz and Courant. \square

Proof of Lemma: We have to consider separately the points of degeneration, namely c = 0, c = 1/4 and $c = \infty$. For c = 0 and c = 1/4 the non-constant solutions \mathfrak{y} are simply periodic with primitive periods $\omega_0 = \pm \pi/\sqrt{2}$ and $\omega_{1/4} = \pm i\pi$, respectively. Hence, for $\delta > 0$ sufficiently small, we have in the respective cases $|c| < \delta$ and $|c - 1/4| < \delta$ that, by continuity, one of the periods $\pm \omega_c$ belong to $\Sigma \cap \{\omega : |\omega| \le 4\}$, say.

In case $c \to \infty$ we set $\mathfrak{u}_a(z) = a\mathfrak{g}(az)$ with $a^4c = 1$, to obtain $\mathfrak{u}'_a{}^2 = \mathfrak{u}_a^4 + a^2\mathfrak{u}_a^2 + 1$, and hence, in the limit $c \to \infty$, the differential equation $\mathfrak{u}'_0{}^2 = \mathfrak{u}_0^4 + 1$.

372

Thus, for |c| large, the period lattice \mathfrak{L}_c is approximately a square lattice with mesh size $\approx |c|^{-1/4}$. We again note, however, that in our case |c| is uniformly bounded.

In the compact parameter set $\{c: \delta \leq |c| \leq K, |c-1/4| \geq \delta\}$ each lattice \mathfrak{L}_c has a basis $\{\omega_c, \tilde{\omega}_c\}$ such that $\kappa R \leq |\omega_c| \leq |\tilde{\omega}_c| \leq |\omega_c \pm \tilde{\omega}_c| \leq R$ for some constants $R \geq 4, \kappa > 0$, independent of c. The problem now is equivalent to the following: Let \mathfrak{L} be the lattice spanned by 1 and τ with

Im
$$\tau > 0$$
, $-1/2 < \text{Re}\,\tau \le 1/2$ and $1 \le |\tau| \le M$,

M > 1 some fixed constant, and let Σ be any open sector with vertex at the origin and with angular width $> \pi/2$. Then we have to show that

$$\Sigma \cap \{1, 1+\tau, \tau, -1+\tau, -1, -1-\tau, -\tau, 1-\tau\} \neq \emptyset.$$

This, however, follows immediately from the fact that the angle between any two consecutive points in the sequence $(1, 1 + \tau, \dots, 1 - \tau, 1)$ is $< \pi/2$.

Proof of the Theorem in case (II): To fix ideas we consider (the branches of) $\psi(\xi) = (\frac{3}{2}\xi)^{2/3}$ in the half-plane $\mathbb{H}: -\pi/4 < \arg \xi < 3\pi/4$ with $\psi(\mathbb{H}) = S = \{z: -\pi/6 < \arg z < \pi/2\}$ (the other possibilities being $\psi(\mathbb{H}) = e^{2\pi i/3}S$ and $\psi(\mathbb{H}) = e^{4\pi i/3}S$). We also set, for $z_0 \in \psi(\mathbb{H}), D(z_0) = \psi(\phi(z_0) + \mathbb{H})$. Then, if r > 0 is sufficiently large, it follows from the Lemma and Remarks a. and b. about the distribution of poles, that to any pole p of w in $D(re^{\pi i/6})$ there exists a pole $\phi(p')$ of Θ in $\phi(p) + \mathbb{H}$ with $|\phi(p') - \phi(p)| \leq 2R$, say. Hence $p' \in D(p) \subset D(re^{\pi i/6})$ is a pole of w satisfying $\frac{3}{2}|p'^{3/2} - p^{3/2}| \geq \frac{1}{2}|p|^{1/2}|p' - p|$, for r and thus |p| sufficiently large, and this gives $|p' - p| \leq 4R|p|^{-1/2}$.

Since $D(p') \subset D(p) \subset D(re^{\pi i/6})$, this process may be repeated to obtain a sequence $\tilde{p}_1 = p$, $\tilde{p}_2 = \tilde{p}'_1$, $\tilde{p}_3 = \tilde{p}'_2$, ... of different poles¹ of w such that $|\tilde{p}_{n+1}| \leq |\tilde{p}_n| + O(|\tilde{p}_n|^{-1/2}) = |\tilde{p}_n|(1 + O(|\tilde{p}_n|^{-3/2}))$ as $n \to \infty$. This gives $|\tilde{p}_{n+1}| - |\tilde{p}_1| = O(\sum_{\nu=1}^n |\tilde{p}_\nu|^{-1/2})$ and $\log |\tilde{p}_{n+1}| - \log |\tilde{p}_1| = O(\sum_{\nu=1}^n |\tilde{p}_\nu|^{-3/2})$ for every $n \in \mathbb{N}$. The assertion of our theorem in case (II) now follows, since the same method applies to the open half-plane $i\mathbb{H}$ with associated sectors $e^{\pi i/3}S$, -S and $e^{5\pi i/3}S$; then the domain $\bigcup_{\nu=0}^5 D(re^{(2\nu+1)\pi i/6})$ is some punctured neighbourhood of ∞ .

The crucial point was to prove that the construction leads to an *infinite* sequence of poles. It was Shimomura's paper [Sh3] which inspired me to compare Boutroux's method with rescaling and so to overcome this difficulty.

NORBERT STEINMETZ

The **proof** in case (IV) is almost the same, details will be omitted. We just note that, after some simple calculation, the re-scaling process $y_n(\mathfrak{z}) = p_n^{-1} w(p_n + p_n^{-1}\mathfrak{z})$ leads to the differential equation

$$\mathfrak{y}_{rs}^{\prime 2} = \mathfrak{y}^4 + 4\mathfrak{y}^3 + 4\mathfrak{y}^2 + c\mathfrak{y}$$

with |c| uniformly bounded. The degenerate cases correspond to the parameters c = 0, c = 32/27 and $c = \infty$; by the substitution $\mathfrak{u}(\mathfrak{z}) = a\mathfrak{y}(a\mathfrak{z}), a^3c = 1$, the latter case again reduces in the limit $c \to \infty$ to $\mathfrak{u}'^2 = \mathfrak{u}^4 + 1$. One also has to work with (the branches of) $\psi(\xi) = (2\xi)^{1/2}$ in the half-planes $\mathbb{H}: -\pi/4 < \arg \xi < 3\pi/4, i\mathbb{H}, -\mathbb{H}$ and $-i\mathbb{H}$.

REFERENCES

- [B] BOUTROUX, P. Recherches sur les transcendentes de M. Painlevé et l'étude asymptotique des équations différentielles du seconde ordre, Ann. École Norm. Supér., 30 (1913), 255–375 and 31 (1914), 99–157.
- [GLS] GROMAK, V.I.; LAINE, I. and SHIMOMURA, S. Painlevé Differential Equations in the Complex Plane, de Gruyter, 2002.
- [HC] HURWITZ, A. and COURANT, R. Funktionentheorie, Springer, 1929.
- [Sh1] SHIMOMURA, S. Growth of the first, the second and the fourth Painlevé transcendents, Math. Proc. Cambr. Philos. Soc., 134 (2003), 201–217.
- [Sh12] SHIMOMURA, S. Lower estimates for the growth of Painlevé transcendents, Funkcial. Ekvac., 46 (2003), 287–295.
- [Sh3] SHIMOMURA, S. Lower estimates for the growth of the fourth and the second Painlevé transcendents, 17 p. (to appear).
- [St1] STEINMETZ, N. Value distribution of the Painlevé transcendents, Israel Journal of Math., 128 (2002), 29–52 and 82 (2000), 363–377.
- [St2] STEINMETZ, N. Global properties of the Painlevé transcendents, preprint (2003), 29 p..

Norbert Steinmetz, Universität Dortmund, Fachbereich Mathematik, D-44221 Dortmund - GERMANY E-mail: stein@math.uni-dortmund.de www: http://www.mathematik.uni-dortmund.de/steinmetz/

374