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BOUTROUX’S METHOD VS. RE-SCALING
Lower estimates for the orders of growth of
the second and fourth Painlevé transcendents

Norbert Steinmetz

Abstract: We give a new proof of Shimomura’s sharp lower estimates for the orders

of growth of the Painlevé transcendents II and IV: %II ≥ 3/2 and %IV ≥ 2.

1 – Introduction

We are concerned with the transcendental solutions of Painlevé’s second and

fourth equation,

w′′ = α+ zw + 2w3(1.1)

and

2ww′′ = w′
2
+ 3w4 + 8zw3 + 4(z2 − α)w2 + 2β ,(1.2)

the second and fourth transcendents. In [Sh1] and [St1] it was shown that any

second and fourth Painlevé transcendent w has order of growth %(w) ≤ 3 and

%(w) ≤ 4, respectively. More precisely, if (pn) denotes the sequence of non-zero

poles of w, it was shown in [St1] that, in the respective cases,

∑

|pn|≤r

|pn|−1 = O(r2) and
∑

|pn|≤r

|pn|−2 = O(r2)

hold. In the other direction, Shimomura [Sh3] recently derived the sharp lower

estimates %(w) ≥ 3/2, resp. %(w) ≥ 2. Equality is attained for particular solu-

tions, called Airy- and Hermite–Weber–solutions, respectively. For more details
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concerning these functions we refer to [GLS]. For 2α ∈ Z proofs of %(w) ≥ 3/2 in

case (II) can be found in [Sh2] and [St2].

Combining the re-scaling method with some modified Shimomura approach

[Sh3] we will be able to give a different proof of Shimomura’s lower estimates,

which may be stated as follows:

Theorem. Let w be a transcendental solution of one of the differential

equations (1.1) or else (1.2), with sequence (pn) of non-zero poles. Then, for

some κ = κ(w) > 0 and r > r0
∑

|pn|≤r

|pn|−3/2 ≥ κ log r and
∑

|pn|≤r

|pn|−1/2 ≥ κ r

or else
∑

|pn|≤r

|pn|−2 ≥ κ log r and
∑

|pn|≤r

|pn|−1 ≥ κr

holds in the respective case.

2 – Two local methods

We start by describing two methods of investigating the Painlevé transcen-

dents locally, and restrict ourselves to equation (1.1).

a) Re-scaling

Let w be any transcendental solution of (II) and let (pn) be any sub-sequence

of the sequence of poles of w. Then

yn(z) = p−1/2
n w (pn + p−1/2

n z)

has the series expansion

yn(z) =
εn
z
− εn

6
z− p−3/2

n

α+ εn
4

z2 + hn p
−2
n z3 + · · · , εn = ±1 ,

about z = 0 and satisfies

y′′n(z) = p−3/2
n α+ (p−3/2

n z + 1) yn(z) + 2 y3
n(z) ,

where now ′ denotes differentiation with respect to z. One of the major results of

the re-scaling method developed in [St1, St2] was that the sequence
(

hnp
−2
n

)

has a
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uniform bound only depending on the solution w. Thus choosing a sub-sequence

of (pn), again denoted (pn), such that εn = ε is constant and hnp
−2
n → h, we

obtain yn(z)→ yrs(z) ( rs stands for re-scaled ), locally uniformly in C, where yrs

is the unique solution of

y′′rs = yrs + 2 y3
rs with yrs(z) =

ε

z
− ε

6
z + hz3 + · · · about z = 0 .

We note that

y′2rs = 7
36 − 10 εh+ y2

rs + y4
rs = c+ y2

rs + y4
rs ,

with |c| uniformly bounded, independent of the sequence (pn).

Finally, application of Hurwitz’ Theorem yields the following

Remark a. Every pole z0 of yrs is the limit of poles zn of yn; thus p
′
n =

pn + p
−1/2
n zn is a pole of w, and any such sequence p′n gives rise to a pole z0 =

lim
n→∞

(p′n − pn)p
1/2
n of yrs.

b) Boutroux’s method

Again let w be any transcendental solution of (II). The change of variables

ξ = 2
3 z

3/2 = φ(z) , Θ(ξ) = z−1/2 w(z) ,

see Boutroux’s paper [B], leads to the differential equation (where now ′ denotes

d/dξ)

Θ′′(ξ) = 2Θ3(ξ) + Θ(ξ)− Θ′(ξ)

ξ
+

2α

3ξ
+

Θ(ξ)

9ξ2
.

To be more precise, let H be any half-plane with 0 ∈ ∂H. Then any branch of

ψ(ξ) = (3
2 ξ)

2/3 maps H conformally onto some sector S of angular width 2π/3,

and φ will denote the inverse map ψ−1 : S → H.

If pn 6=0 denotes any pole of w in the sector S, we obtain for vn(z) =

Θ(φ(pn) + z) the differential equation

v′′n(z) = 2 v3
n(z) + vn(z)−

v′n(z)

φ(pn) + z
+

2α

3(φ(pn) + z)
+

vn(z)

9(φ(pn) + z)2
.

If we choose pn →∞ (the same sub-sequence as was chosen above) we obtain in

the limit the differential equation

v′′B = 2v3
B + vB ,
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where B stands for Boutroux. It is obvious that

Θ
(

φ(pn) + z
)

=
(

ψ(φ(pn) + z)
)−1/2

w
(

ψ(φ(pn) + z)
)

∼ p−1/2
n w

(

pn + p−1/2
n z

)

holds as n → ∞, and hence the functions yrs and vB agree. This phenomenon

was already observed in [St1] for Painlevé’s first equation. The re-scaling method

yields the additional information that Θ and Θ′ are uniformly bounded outside

the union of disks |ξ − φ(pn)| < δ about the poles φ(pn) of Θ; δ > 0 is arbitrary.

We thus have

Remark b. Every pole z0 of yB is the limit of poles zn of vn; thus p′n =

ψ(φ(pn) + zn) is a pole of w, and any such sequence p′n gives rise to a pole

z0 = lim
n→∞

(φ(p′n)− φ(pn)) of yB.

3 – Proof of the Theorem

To start with the proof we need the following Lemma, which in similar form

also was proved in [Sh2, Lemma 2.2.].

Lemma. Let Lc denote the (possibly degenerate) period lattice for the

differential equation y′
2 = y4+y2+c, and let Σ be any open sector with vertex at

the origin and containing {1, i} (or {−1, i} or {−1,−i} or {1,−i}). Then given

K > 0 there exists R > 0, such that Σ ∩ {ω : |ω| ≤ R} ∩ Lc 6= ∅ for every c

satisfying |c| ≤ K.

Remark. For c 6= 0, 1/4, every non-constant solution of y′
2 = y4 + y2 + c is

an elliptic function, closely related to Jacobi’s sinus amplitudinis. If {ω, ω̃} is a

suitably chosen basis of the period lattice L and if y has a pole at z = 0, then

it has simple poles exactly at mω + (n + 1
2)ω̃, m, n ∈ Z, see the famous book

[HC, p. 215] by Hurwitz and Courant.

Proof of Lemma: We have to consider separately the points of degeneration,

namely c = 0, c = 1/4 and c = ∞. For c = 0 and c = 1/4 the non-constant

solutions y are simply periodic with primitive periods ω0 = ±π/
√
2 and ω1/4 =

±iπ, respectively. Hence, for δ > 0 sufficiently small, we have in the respective

cases |c| < δ and |c− 1/4| < δ that, by continuity, one of the periods ±ωc belong
to Σ ∩ {ω : |ω| ≤ 4}, say.

In case c → ∞ we set ua(z) = ay(az) with a4c = 1, to obtain u′a
2 = u4

a +

a2u2
a + 1, and hence, in the limit c → ∞, the differential equation u′0

2 = u4
0 + 1.
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Thus, for |c| large, the period lattice Lc is approximately a square lattice with

mesh size ³ |c|−1/4. We again note, however, that in our case |c| is uniformly

bounded.

In the compact parameter set {c : δ ≤ |c| ≤ K, |c − 1/4| ≥ δ} each lattice

Lc has a basis {ωc, ω̃c} such that κR ≤ |ωc| ≤ |ω̃c| ≤ |ωc ± ω̃c| ≤ R for some

constants R ≥ 4, κ > 0, independent of c. The problem now is equivalent to the

following: Let L be the lattice spanned by 1 and τ with

Im τ > 0 , −1/2 < Re τ ≤ 1/2 and 1 ≤ |τ | ≤M ,

M > 1 some fixed constant, and let Σ be any open sector with vertex at the

origin and with angular width > π/2. Then we have to show that

Σ ∩ {1, 1 + τ, τ,−1 + τ,−1,−1− τ,−τ, 1− τ} 6= ∅ .

This, however, follows immediately from the fact that the angle between any two

consecutive points in the sequence (1, 1 + τ, . . . , 1− τ, 1) is < π/2.

Proof of the Theorem in case (II): Tofix ideas we consider (the branches of)

ψ(ξ) = (3
2ξ)

2/3 in the half-plane H : −π/4 < arg ξ < 3π/4 with ψ(H) = S =

{z : −π/6 < arg z < π/2} (the other possibilities being ψ(H) = e2πi/3S and

ψ(H) = e4πi/3S). We also set, for z0 ∈ ψ(H), D(z0) = ψ(φ(z0)+H). Then, if r > 0

is sufficiently large, it follows from the Lemma and Remarks a. and b. about the

distribution of poles, that to any pole p of w in D(reπi/6) there exists a pole φ(p′)

of Θ in φ(p) +H with |φ(p′)− φ(p)| ≤ 2R, say. Hence p′ ∈ D(p) ⊂ D(reπi/6) is a

pole of w satisfying 3
2 |p′

3/2− p3/2| ≥ 1
2 |p|1/2|p′ − p|, for r and thus |p| sufficiently

large, and this gives |p′ − p| ≤ 4R|p|−1/2.

Since D(p′) ⊂ D(p) ⊂ D(reπi/6), this process may be repeated to obtain

a sequence p̃1 = p, p̃2 = p̃′1, p̃3 = p̃′2, . . . of different poles1 of w such that

|p̃n+1| ≤ |p̃n|+O(|p̃n|−1/2) = |p̃n|(1 +O(|p̃n|−3/2) as n→∞. This gives

|p̃n+1| − |p̃1| = O(
n
∑

ν=1
|p̃ν |−1/2) and log |p̃n+1| − log |p̃1| = O(

n
∑

ν=1
|p̃ν |−3/2) for

every n ∈ N. The assertion of our theorem in case (II) now follows, since the same

method applies to the open half-plane iH with associated sectors eπi/3S, −S and

e5πi/3S; then the domain
5
⋃

ν=0
D(re(2ν+1)πi/6) is some punctured neighbourhood

of ∞.
The crucial point was to prove that the construction leads to an infinite sequence of poles.

It was Shimomura’s paper [Sh3] which inspired me to compare Boutroux’s method with re-
scaling and so to overcome this difficulty.
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The proof in case (IV) is almost the same, details will be omitted.

We just note that, after some simple calculation, the re-scaling process

yn(z) = p−1
n w(pn + p−1

n z) leads to the differential equation

y′2rs = y4 + 4y3 + 4y2 + cy ,

with |c| uniformly bounded. The degenerate cases correspond to the parameters

c = 0, c = 32/27 and c =∞; by the substitution u(z) = ay(az), a3c = 1, the latter

case again reduces in the limit c→∞ to u′2 = u4 +1. One also has to work with

(the branches of) ψ(ξ) = (2ξ)1/2 in the half-planes H : −π/4 < arg ξ < 3π/4,

iH, −H and −iH.
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