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Abstract: Given a Poisson–Nijenhuis manifold, a two-parameter family of Poisson–

Nijenhuis structures can be defined. As a consequence we obtain a new and noninductive

proof of the existence of hierarchies of Poisson–Nijenhuis structures.

1 – Introduction

One of the main characteristics of the theory of Poisson–Nijenhuis structures

is the possibility of constructing from a Poisson–Nijenhuis structure, a hierarchy

of new ones. The different proofs of the existence of such a hierarchy that can be

found in the literature all used proof by induction ([3], [9]).

The aim of this note is to obtain, from a single Poisson–Nijenhuis structure,

(P,N), a two-parameter family of Poisson–Nijenhuis structures (Pt, Ns), t, s∈R.

Such a family provides a noninductive way of proving the existence of the well

known hierarchy of associated Poisson–Nijenhuis structures. In fact, we can say

that the two-parameter family is a kind of integration of the hierarchy: all the

structures of the hierarchy can be obtained as successive partial derivatives eval-

uated at (0, 0) of the two-parameter structures (Pt, Ns).

In Section 2.2, we prove a consequence of this approach related to generating

operators of Gerstenhaber brackets. Let (A, [[ , ]],∧) be a Gerstenhaber alge-
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bra. If δ is a generating operator of a Gerstenhaber bracket and N is a degree 0

Nijenhuis endomorphism of the associative algebra (A,∧), then [δ, iN ] is a gen-

erating operator of the deformation by N of the Gerstenhaber bracket, where iN

denotes the extension, as a degree 0 derivation, of N to the whole algebra. This

is Theorem 1. In Corollary 5 we apply the results of Section 2 to the different

Gerstenhaber brackets which can be associated to a Poisson–Nijenhuis structure.

2 – Nijenhuis tensors and their integral flow

Let (E, [ , ]) be a graded Lie algebra. In the applications that we shall give

here, (E, [ , ]) will be the vector space of smooth vector fields over a manifold

M , X(M), together with the usual Lie bracket of vector fields, or the vector

space of differential 1-forms, Ω1(M), with the Lie bracket of 1-forms associated

to a Poisson structure, or that of differential forms, Ω(M), together with the

Koszul–Schouten bracket of differential forms on a Poisson manifold.

We can define the Frölicher–Nijenhuis bracket, [ , ]FN of two degree 0 endo-

morphisms of E, N,L, as

[N,L]FN (X,Y ) := [NX,LY ] + [LX,NY ]−N
(

[LX, Y ] + [X,LY ]
)

−L
(

[NX,Y ] + [X,NY ]
)

+ (NL+ LN)[X,Y ] ,
(2.1)

for all X,Y ∈ E.

The Frölicher–Nijenhuis bracket of N with itself is called the Nijenhuis torsion

of N , and N is said to be Nijenhuis if its Nijenhuis torsion vanishes.

Definition 1. Let (E, [ , ]ν) be a graded Lie algebra. Given a degree 0

endomorphism, N , we can define the deformation of the Lie bracket, [ , ]ν , by

means of N as

[X,Y ]N.ν = [NX,Y ]ν + [X,NY ]ν −N [X,Y ]ν ,

for all X,Y ∈ E.

If the Nijenhuis torsion of N vanishes, then [ , ]N.ν is a Lie bracket.

Occasionally, the deformed bracket will be simply denoted by [ , ]N .

Let Φt be a one-parameter group of graded automorphisms of degree 0 of the

vector space E and let N be its infinitesimal generator, N = d
dt
|t=0Φt.
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Then
d

dt
[X,Y ]Φt = [ΦtNX,Y ] + [X,ΦtNY ]− ΦtN [X,Y ]

and, in particular,
d

dt
|t=0[X,Y ]Φt = [X,Y ]N .

So, we can think of the deformed bracket as the first derivative evaluated at t = 0

of the one-parameter family of deformed brackets [ , ]Φt .

2.1. The integral flow of a (1, 1)-tensor field

As examples and because we will need them in the applications that we shall

give later, let us recall how to construct the one-parameter groups of graded

endomorphisms from their infinitesimal generators in some cases.

Let M be a manifold and let N be a (1, 1) tensor on M , i.e., N is a bundle

map N : TM → TM . We shall denote its transpose by N ∗ : T ∗M → T ∗M .

Let us consider the (1, 1)-tensor field defined by the formal series exp(tN).

It has been previously used, for example in [3], page 41, as a way of justifying

why the deformed bracket is called a deformed bracket. Such an expression,

exp(tN) =
∑∞

i=0
1
i! t

iN i, is in principle just a formal expression. But for each

point m ∈M , Nm is an endomorphism of TmM , and then, as is well known, the

series exp(tNm) is always convergent. Therefore, Φt = exp(tN) is a well-defined

automorphism of the vector bundle TM for all t ∈ R.

Associated to the tensor field N we can define a zero-degree derivation of the

algebra of differential forms on M , Ω(M). This derivation is denoted by iN , and

it is defined as the extension as a derivation of the map, f 7→ iNf := 0 for any

smooth function f and for any differential 1-form α, α 7→ iNα := N∗α.

The transpose of Φt is Φ
∗
t = exp(tN∗), and it can be extended as an automor-

phism of Ω(M) which we shall also denote by Φt, in an abuse of notation. Note

that this automorphism is the identity on Ω0(M) = C∞(M). The derivative with

respect to t of the automorphism Φ∗
t gives rise to the derivation iN . Note that

the following conditions are satisfied

Φ∗
t
′ = Φ∗

t ◦ iN = iN ◦ Φ
∗
t ,

Φ∗
0 = Id , Φ∗

t+s = Φ∗
t ◦ Φ

∗
s .

It is in this sense that we can think of Φ∗
t as the integral flow of the zero-

degree derivation iN . Analogous relations are valid for Φt. Now we have all the

ingredients to study what happens when N is a Nijenhuis tensor.
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It is well known that if N is Nijenhuis, then all the powers of N are also

Nijenhuis. Moreover, the Frölicher–Nijenhuis brackets [N k, N `]FN vanish for all

k, l ∈ N. This is the so-called hierarchy of Nijenhuis operators.

Since Nk is the kth-derivative at t = 0 of the one-parameter group Φt, it is

natural to ask whether Φt is also Nijenhuis. Below, we shall give a noninductive

proof of the existence of the hierarchy of Nijenhuis operators. We shall obtain

a direct proof of the following statement: N is Nijenhuis if and only if Φt is

Nijenhuis.

Proposition 1. Let (E, [ , ]) be a graded Lie algebra. Let Φt be a one-

parameter group of graded automorphisms of degree 0 of the vector space E,

and let N its infinitesimal generator. Then N is Nijenhuis if and only if Φt is

Nijenhuis. In other words,

[ΦtX,ΦtY ] = Φt[X,Y ]Φt ,(2.2)

for all t ∈ R if and only if the torsion of N vanishes.

Proof: First note that the second derivative of the Nijenhuis torsion of Φt

evaluated at t = 0 is exactly the Nijenhuis torsion of N , up to a constant factor.

Indeed,

d2

dt2
|t=0[Φt,Φt]FN = 2

d

dt
|t=0[Φt, N ◦ Φt]FN

= 2
(

[N,N ]FN + [Id,N2]FN

)

= 2 [N,N ]FN .

Therefore, if we suppose first that Φt is Nijenhuis, then N also is Nijenhuis.

Reciprocally, let us now suppose that N is Nijenhuis. The converse needs

a kind of double integration process. We shall show as a first step that the

Frölicher–Nijenhuis bracket of N with Φt vanishes.

The first derivative of [N,Φt]FN is [N,N ◦Φt]FN . An easy computation using

Eq. (2.1) shows that, for any X,Y ∈ E,

[N,N ◦ Φt]FN (X,Y ) =

= N ◦ [N,Φt]FN (X,Y ) + [N,N ]FN (ΦtX,Y ) + [N,N ]FN (X,ΦtY ) .

Moreover, [N,Φ0]FN = [N, Id]FN = 0. Therefore, if N is Nijenhuis, we find that

[N,Φt]FN is a solution of the first-order differential equation, Ψ′
t = N ◦Ψt, with

the initial condition Ψ0 = 0. But the trivial solution, Ψt = 0, is a solution of

the same differential equation with the same initial condition, so, by uniqueness
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of solutions of first-order differential equations with identical initial conditions,

[N,Φt]FN = 0.

Now, let us show that Φt is Nijenhuis. We shall prove in fact that, for any

t, s ∈ R, [Φt,Φs]FN = 0. The first derivative of [Φt,Φs]FN with respect to t is

2[N ◦ Φt,Φs]FN . Once again, a simple computation using Eq. (2.1) shows that

[N ◦ Φt,Φs]FN (X,Y ) = N ◦ [Φt,Φs]FN (X,Y )

+ [N,Φs]FN (ΦtX,Y ) + [N,Φs]FN (X,ΦtY )

−Φs ◦ [N,Φt]FN (X,Y )− [Φt+s, N ]FN (X,Y ) ,

where we have applied Φt ◦ Φs = Φt+s. Therefore, since [N,Φt]FN = 0 for all

t ∈ R, we find that [Φt,Φs]FN is a solution of Ψ′
t = N ◦Ψt. Moreover it satisfies

the initial condition, [Φ0,Φs]FN = [Id,Φs]FN = 0. Using the same arguments as

before, we obtain [Φt,Φs]FN = 0. In particular, [Φt,Φt]FN = 0.

Remark 1. Note that we have shown that N is Nijenhuis if and only if

Φ−t[ΦtX,ΦtY ] = [X,Y ]Φt .

In other words, the conjugation of the old Lie bracket by Φt is precisely its

deformation by Φt.

Corollary 1 (The hierarchy of Nijenhuis tensors). If N is Nijenhuis, then

[Nk, N `]FN = 0 for any k, ` ∈ N.

Proof: Let us recall that in the proof of Proposition 1 we proved that if N

is Nijenhuis then [Φt,Φs]FN = 0 for any t, s ∈ R. Now taking successive partial

derivatives with respect to t and s and evaluating them at t = 0 and s = 0, we

deduce that [Nk, N `]FN = 0.

2.2. Relationship with Gerstenhaber brackets

We will show an application to the computation of a generating operator of a

Gerstenhaber bracket.

If A is a Z2-graded commutative, associative algebra, then an odd Poisson

bracket or a Z2-Gerstenhaber bracket on A is, by definition, a bilinear map, [[ , ]],

from A×A to A, satisfying, for any f, g, h ∈ A,

• [[f, g]] = −(−1)(|f |−1)(|g|−1)[[g, f ]], (skew-symmetry)
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• [[f, [[g, h]]]]=[[[[f, g]], h]]+(−1)(|f |−1)(|g|−1)[[g, [[f, h]]]], (graded Jacobi identity)

• [[f, gh]] = [[f, g]]h+ (−1)(|f |−1)|g|g[[f, h]], (Leibniz rule)

• |[[f, g]]| = |f |+ |g| − 1 (mod. 2).

An algebra A together with a bracket satisfying the above conditions is called

an odd Poisson algebra or a Z2-Gerstenhaber algebra.
A linear map of odd degree, ∆ : A→ A, such that, for all a, b ∈ A,

[[f, g]] = (−1)|f |
(

∆(fg)− (∆f)g − (−1)|f |f(∆g)
)

,(2.3)

is called a generator or a generating operator of this bracket.

Lemma 1. Assume that (A, [[ , ]],∧) is a Gerstenhaber algebra. Let δ be a

generator of the bracket. Let Φ be an automorphism of the associative algebra

(A,∧).

Then, a generating operator of the conjugation of the bracket by the auto-

morphism Φ is the conjugation of the generating operator, Φ−1 ◦ δ ◦ Φ.

Let us suppose now that Φt is a one-parameter group of automorphisms of

the associative algebra (A,∧). It is easy to check that now, the infinitesimal

generator, N = d
dt
|t=0Φt, is a derivation of (A,∧).

Theorem 1. Let (A, [[ , ]],∧) be a Gerstenhaber algebra. Let δ be a gen-

erator of the Gerstenhaber bracket [[ , ]]. Let Φt be a one-parameter group of

automorphisms of the associative algebra (A,∧), and let N be its infinitesimal

generator. If N is Nijenhuis, then the deformed Gerstenhaber bracket, [[ , ]]N , is

generated by [δ,N ].

Proof: By Remark 1 we know that the deformed bracket [[ , ]]Φt , agrees with

the conjugation by Φt of the bracket [[ , ]]. Now, by lemma 1, Φ−t ◦ δ ◦ Φt is a

generating operator of [[ , ]]Φt . By taking derivatives with respect to t at t = 0

we find that [δ,N ] is a generating operator of [[ , ]]N .

Let us apply this result to a particular case: the deformation by a Nijenhuis

tensor of the Schouten–Nijenhuis bracket of multivector fields.

Let M be a manifold and let us consider the Gerstenhaber algebra

(Γ(ΛTM), [ , ]SN ,∧), where [ , ]SN denotes the Schouten–Nijenhuis bracket.

Let δ be a generating operator of this bracket (see [5]).
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Let N be a Nijenhuis tensor with respect to the usual Lie bracket of vector

fields. We know that the deformed bracket, [ , ]N , is also a Lie bracket on X(M).

It is then possible to define a Gerstenhaber bracket on the algebra of multivector

fields, extending the deformed bracket, [ , ]N , as a biderivation on the algebra of

multivector fields. We shall denote the resulting Gerstenhaber bracket by [ , ]NSN .

Corollary 2. If δ is a generator of the Schouten–Nijenhuis bracket, then the

Gerstenhaber bracket, [ , ]NSN , is generated by [δ, iN ].

Proof: Let Φt be the one-parameter group of automorphism of TM hav-

ing N as infinitesimal generator. Let us, by an abuse of language, also denote

by Φt the extension of Φt : TM → TM as an automorphism of the whole al-

gebra of multivector fields. The one-parameter group of automorphisms of the

algebra of multivector fields Φt has the derivation iN as infinitesimal generator

(see subsection 2.1).

By Theorem 1, the deformation by iN of the Schouten–Nijenhuis bracket is a

Gerstenhaber bracket with [δ, iN ] as a generating operator. Finally, it is easy to

check that the deformation by iN of the Schouten–Nijenhuis bracket agrees with

the Gerstenhaber bracket, [ , ]NSN . Indeed, one can check that they agree when

acting on a pair of smooth functions and/or vector fields.

3 – Poisson–Nijenhuis structures

Let us first recall the definition of Poisson–Nijenhuis structures. Among all

the equivalent definitions we prefer the one from [3].

Definition 2. Given a Poisson bivector, P , on a differentiable manifold, M ,

we can define a Lie algebra bracket on Ω(M) by

[[α, β]]ν(P ) = L#Pαβ − L#P βα− dP (α, β) ,

[[α, f ]]ν(P ) = P (α, df) ,

[[f, g]]ν(P ) = 0 ,

for all α, β ∈ Ω1(M) and f, g ∈ C∞(M), where #Pα denotes the vector field

defined by (#Pα)(f) = P (α, df) for any f ∈ C∞(M), and extending the Lie

algebra bracket to the whole Ω(M) by the Leibniz rule. This bracket is known

as the Koszul–Schouten bracket associated to the Poisson bivector P .
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The adjoint operator N ∗ can be seen as a C∞(M)-linear map N∗ : Ω1(M)→

Ω1(M) as usual.

Definition 3. A Nijenhuis tensor N and a Poisson tensor P on a manifold

M are called compatible, that is, the pair (P,N) is called a Poisson–Nijenhuis

structure, if

i) N ◦#P = #P ◦N
∗

and if

ii) [[α, β]]ν(NP ) = [[α, β]]N∗.ν(P ) ,

for all α, β ∈ Ω(M).

Note that the compositions N ◦#P and #P ◦ N
∗ define two not necessarily

skewsymmetric (2, 0)-tensor fields, denoted by NP and PN ∗, such that N ◦#P =

#NP and #P ◦N
∗ = #PN∗ . The tensor fields are then

(NP )(α, β) = P (α,N ∗β) , (PN∗)(α, β) = P (N∗α, β) .

Thus, the first condition in the definition of a Poisson–Nijenhuis manifold can

be written as NP = PN ∗. This condition guarantees that

N ◦#P = #NP = #PN∗ = #P ◦N
∗ .

In addition we can deduce that NP = PN ∗ is skewsymmetric.

The second condition can be expressed in another way. Let us define the

concomitant C(P,N) by

C(P,N)(α, β) = [[α, β]]ν(NP ) − [[α, β]]N∗.ν(P ) ,

for all α, β ∈ Ω1(M). Because N ◦#P = #P ◦ N∗, C(P,N) is a tensor field of

type (3, 0). Thus the second condition is just the vanishing of C(P,N).

The concomitant C(P,N) can be also written as

C(P,N)(α, β) = LPα(N
∗β)−N∗LPαβ − LPβ(N

∗α) +N∗LPβα

+ dNP (α, β)−N∗dP (α, β)

= (LPαN
∗)β − (LPβN

∗)α+ dNP (α, β)−N ∗dP (α, β) .

(3.1)

Let us recall the definition of compatibility of Poisson structures.

Definition 4. Poisson structures P0 and P1 on the same manifold M are

compatible if the sum P0 + P1, is also a Poisson structure.
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Remark 2. Let us recall that this is equivalent to

#P0
[[α, β]]ν(P1) + #P1

[[α, β]]ν(P0) = [#P0
α,#P1

β] + [#P1
α,#P0

β]

for all α, β ∈ Ω1(M).

Let us recall the following

Proposition 2 (see [3]). If (P,N) is a Poisson–Nijenhuis structure, then the

(2, 0)-tensor, NP , defined by NP (α, β) = P (α,N ∗β), is a Poisson bivector that

is compatible with P .

4 – The hierarchy of Poisson–Nijenhuis structures

In this section we shall obtain a noninductive proof of the existence of the

hierarchy of Poisson–Nijenhuis structures constructed from an initial one.

Proposition 3. Let N be a (1, 1)-tensor field on M , and let Φt = exp(tN).

The pair (P,N) is a Poisson–Nijenhuis structure if and only if (P,Φt) is a Poisson–

Nijenhuis structure.

Proof: We remark that we know that N is Nijenhuis if and only if Φt is also

Nijenhuis. So we need only prove that the compatibility conditions are satisfied.

Let us suppose first that (P,Φt) is a Poisson–Nijenhuis structure. Then, by

taking the first derivative at t = 0 of the compatibility conditions between P and

Φt, we obtain those for P and N .

Reciprocally, let us suppose that (P,N) is a Poisson–Nijenhuis structure.

We shall consider the tensor field Φ−tPΦ∗
t defined by

Φ−tPΦ∗
t (α, β) := P (Φ∗

−tα,Φ
∗
tβ) .

The first derivative of Φ−tPΦ∗
t is Φ−t(PN∗−NP )Φ∗

t = 0. Therefore, Φ−tPΦ∗
t

is constant. But since its value at t = 0 is P , Φ−tPΦ∗
t = P , or, equivalently,

ΦtP = PΦ∗
t .

Let us now study the second compatibility condition between P and Φt.

The first derivative of C(P,Φt)(α, β) is C(P,Φt ◦N)(α, β), and a simple com-

putation using Eq. (3.1) shows that it is equal to

Φt(C(P,N)(α, β)) + C(P,Φt)(α,N
∗β) + (LPNβΦ

∗
t )α− (LPβΦ

∗
t )N

∗α .(4.1)
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The first term vanishes because we suppose that (P,N) is a Poisson–Nijenhuis

structure. We shall see that the two last terms also vanish. Let us denote them

by

Ht(α, β) := (LPNβΦ
∗
t )α− (LPβΦ

∗
t )N

∗α .

The first derivative of Ht with respect to t is

(LPNβΦ
∗
tN

∗)α− (LPβΦ
∗
tN

∗)N∗α =

= Ht

(

N∗α, β) + Φ∗
t ((LPNβN

∗)α− (LPβN
∗)N∗α

)

.

Now, let us recall that the following identity (See formula 7.13 [6])

LNX(N∗) = LX(N∗)N∗

is a condition equivalent to the vanishing of the Nijenhuis torsion of N . It is now

clear that the two last terms vanish.

Then, we find that Ht satisfies the equation H ′
t(α, β) = Ht(N

∗α, β) with

initial condition H0(α, β) = (LPNβId)α − (LPβId)α = 0. Therefore, Ht = 0 for

all t ∈ R.

Let us return to C(P,Φt). By Eq. (4.1), C(P,Φt) satisfies C(P,Φt)
′(α, β) =

C(P,Φt)(α,N
∗β), and the initial condition, C(P,Φ0) = C(P, Id) = 0. Therefore,

C(P,Φt) = 0 for all t ∈ R.

Corollary 3. If (P,N) is a Poisson–Nijenhuis structure, then, for any t, s∈R,

(1) (ΦsP,Φt) is a Poisson–Nijenhuis structure, and

(2) ΦsP and ΦtP are compatible Poisson bivectors.

Proof: The first statement is just a consequence of the following relation,

which can be obtained from equation (3.1),

C(P,Φt)
′(α, β) = C(P,N)(Φ∗

tα, β) + C(P,N)(α,Φ∗
tβ)− C(ΦtP,N)(α, β) .

Then, if (P,N) is a Poisson–Nijenhuis structure, both C(P,N) and C(P,Φt)

vanish, and C(ΦtP,N) = 0. This means that (ΦtP,N) is a Poisson–Nijenhuis

structure (note that by Propositions 2 and 3, ΦtP is a Poisson bivector).

By applying Proposition 3 to (ΦtP,N) we find that (ΦtP,Φs) is a Poisson–

Nijenhuis structure for all t, s ∈ R.

The second statement is a consequence of the first.
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Remark 3. In [10] it is observed that if (P,N) is a Poisson–Nijenhuis struc-

ture, then not only the elements of the hierarchy are again Poisson–Nijenhuis

structures, but so is any structure of the kind ((
∑∞

i=0 aiN
i) ◦ P,

∑∞
j=0 bjN

j),

where the series involved are convergent power series with constant coefficients.

So, the first statement of the corollary is a particular case of this observation.

The novelty here is that we have obtained it before proving the existence of the

hierarchy, whereas in [10], it is a consequence of the existence of such a hierar-

chy. In fact, Corollary 3 is a condensed way of writing the hierarchy, as the next

corollary will show.

Remark 4. What we have found is a kind of surface in the set of all Poisson–

Nijenhuis structures. If we write x(t, s) = (ΦtP,Φs) then

x(0, 0) = (P, Id), xt(0, 0) = (NP, Id), xs(0, 0) = (P,N) ,

xtt(0, 0) = (N2P, Id), xts(0, 0) = (NP,N), xss(0, 0) = (P,N2) .

Corollary 4 (The hierarchy of Poisson–Nijenhuis structures). If (P,N) is a

Poisson–Nijenhuis structure, then, for any k, ` ∈ N,

(1) (NkP,N `) is a Poisson–Nijenhuis structure, and

(2) NkP and N `P are compatible Poisson bivectors.

Proof: As before, we need only take partial derivatives with respect to t

and s of the compatibility conditions between ΦsP and Φt and evaluate them at

t = 0 and s = 0.

Corollary 5. If (P,N) is a Poisson–Nijenhuis structure, then

[[α, β]]ν(ΦtP ) = [[α, β]]Φ∗t ·ν(P ) = Φ∗
−t[[Φ

∗
tα,Φ

∗
tβ]]ν(P ) .

Proof: It is a consequence of the fact that (P,Φt) is a Poisson–Nijenhuis

structure and of the fact that, for any Poisson–Nijenhuis structure, (P,N), N ∗

is Nijenhuis with respect to the bracket [[ , ]]ν(P ) (see [3] lemma 4.2), and then of

Formula 2.2.

This last result has an interpretation in terms of generating operators.

Let us recall that a generating operator of the Koszul–Schouten bracket, [[ , ]]ν(P ),

is LP = [iP , d], where d denotes the exterior derivative (see [5]). Now, as a con-

sequence of Lemma 1, we can state the following
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Corollary 6. If (P,N) is a Poisson–Nijenhuis structure then,

LΦtP = Φ∗
−t ◦ LP ◦ Φ

∗
t .

Proof: Two generating operators of the same Gerstenhaber bracket differ by

a derivation of degree −1. In this case, it is easy to check that LΦtP−Φ∗
−t◦LP ◦Φ

∗
t

is the null derivation.

Remark 5. We have worked here with the definition of Poisson–Nijenhuis

manifolds given in [3], but the same results can be obtained for similar, but not

fully equivalent, definitions, for example, the one given in [9]. The key point is to

observe that the statement in Proposition 1 is also valid in the following form: Let

F ⊂ E be a vector subspace, then [N,N ]FN vanishes on F if and only if [Φt,Φt]FN

vanishes on F , Φt being a one-parameter group of graded automorphisms and N

is its infinitesimal generator.

Remark 6. Recently, the notion of Jacobi-Nijenhuis structure has also been

studied, see for example [7], [8] or [2]. It is not difficult to see that a proof of the

existence of hierarchies of Jacobi-Nijenhuis manifolds can also be obtained using

similar arguments to those advanced in this note.

5 – An example

The initial Poisson bivector, taken from [1] for n = 5, is

P =















0 0 −a1 a1 0
0 0 0 −a2 a2
a1 0 0 0 0
−a1 a2 0 0 0
0 −a2 0 0 0















,

where {a1, a2, b1, b2, b3} are the coordinates for R5.
Let us consider the tensor fields given by

N =















f 0 0 0 0
0 L(a2, b3) 0 0 0
0 0 f 0 0
0 0 0 f f − L(a2, b3)
0 0 0 0 L(a2, b3)















,
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where f is a constant and L a function depending on the variables a2, b3.

An easy computation shows that (P,N) is a Poisson–Nijenhuis structure.

The integral flow of N is

Φt =















eft 0 0 0 0
0 eL(a2,b3)t 0 0 0
0 0 eft 0 0
0 0 0 eft eft − eL(a2,b3)t

0 0 0 0 eL(a2,b3)t















.

And the 1-parameter family, ΦsP of compatible Poisson bivectors is















0 0 −a1e
fs a1e

fs 0
0 0 0 −a2e

L(a2,b3)s a2e
L(a2,b3)s

a1e
fs 0 0 0 0

−a1e
fs a2e

L(a2,b3)s 0 0 0
0 −a2e

L(a2,b3)s 0 0 0















.

By our results, each pair (ΦsP,Φt) is a Poisson–Nijenhuis structure for all t, s ∈ R.
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E-mail: monterde@uv.es


