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A NEW PROOF OF THE EXISTENCE OF
HIERARCHIES OF POISSON-NIJENHUIS STRUCTURES *

J. MONTERDE

Recommended by Michéle Audin

Abstract: Given a Poisson—Nijenhuis manifold, a two-parameter family of Poisson—
Nijenhuis structures can be defined. As a consequence we obtain a new and noninductive

proof of the existence of hierarchies of Poisson—Nijenhuis structures.

1 — Introduction

One of the main characteristics of the theory of Poisson—Nijenhuis structures
is the possibility of constructing from a Poisson—Nijenhuis structure, a hierarchy
of new ones. The different proofs of the existence of such a hierarchy that can be
found in the literature all used proof by induction ([3], [9]).

The aim of this note is to obtain, from a single Poisson—Nijenhuis structure,
(P, N), a two-parameter family of Poisson—-Nijenhuis structures (P, Ny), t,s € R.
Such a family provides a noninductive way of proving the existence of the well
known hierarchy of associated Poisson—Nijenhuis structures. In fact, we can say
that the two-parameter family is a kind of integration of the hierarchy: all the
structures of the hierarchy can be obtained as successive partial derivatives eval-
uated at (0,0) of the two-parameter structures (P, Ns).

In Section 2.2, we prove a consequence of this approach related to generating
operators of Gerstenhaber brackets. Let (A,[ , ],A) be a Gerstenhaber alge-

Received: April 8, 2003; Revised: November 7, 2003.

AMS Subject Classification: Primary 58F05, 53C15; Secondary 58F07.

Keywords: Poisson—Nijenhuis structure; Gerstenhaber algebra; generating operator.
*This work has been partially supported by a Spanish MCyT grant BFM2002-00770.



356 J. MONTERDE

bra. If § is a generating operator of a Gerstenhaber bracket and N is a degree 0
Nijenhuis endomorphism of the associative algebra (A, A), then [d,iy] is a gen-
erating operator of the deformation by N of the Gerstenhaber bracket, where iy
denotes the extension, as a degree 0 derivation, of N to the whole algebra. This
is Theorem 1. In Corollary 5 we apply the results of Section 2 to the different
Gerstenhaber brackets which can be associated to a Poisson—Nijenhuis structure.

2 — Nijenhuis tensors and their integral flow

Let (E,[, ]) be a graded Lie algebra. In the applications that we shall give
here, (E,[, ]) will be the vector space of smooth vector fields over a manifold
M, X(M), together with the usual Lie bracket of vector fields, or the vector
space of differential 1-forms, Q'(M), with the Lie bracket of 1-forms associated
to a Poisson structure, or that of differential forms, Q(M), together with the
Koszul-Schouten bracket of differential forms on a Poisson manifold.

We can define the Frolicher—Nijenhuis bracket, [, |pny of two degree 0 endo-
morphisms of E, N, L, as

. [N, Llpn(X,Y) = [NX,LY] + [LX,NY] = N ([LX, Y] + [X, LY])
2 —L([NX, Y]+ [X,NY]) + (NL + LN)[X,Y] ,

for all X,Y € E.
The Frolicher—Nijenhuis bracket of NV with itself is called the Nijenhuis torsion
of N, and N is said to be Nijenhuis if its Nijenhuis torsion vanishes.

Definition 1. Let (E,[, ],) be a graded Lie algebra. Given a degree 0
endomorphism, N, we can define the deformation of the Lie bracket, [ , ],, by
means of N as

[X7Y]N.I/ = [NX7Y]V + [X’ NY}V - N[Xv Y]V s

forall X,Y € E. o

If the Nijenhuis torsion of N vanishes, then [, |y, is a Lie bracket.

Occasionally, the deformed bracket will be simply denoted by [, |n.

Let ®; be a one-parameter group of graded automorphisms of degree 0 of the
vector space E and let NV be its infinitesimal generator, N = %|t:0<1>t.
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Then

d
%[X, Y]e, = [&:NX, Y]+ [X,2:NY] — &, N[X,Y]

and, in particular,
d
Gpl=0lX.Y]e, = [X, Y]y .

So, we can think of the deformed bracket as the first derivative evaluated at t = 0
of the one-parameter family of deformed brackets [ , |g,.

2.1. The integral flow of a (1, 1)-tensor field

As examples and because we will need them in the applications that we shall
give later, let us recall how to construct the one-parameter groups of graded
endomorphisms from their infinitesimal generators in some cases.

Let M be a manifold and let N be a (1,1) tensor on M, i.e.;, N is a bundle
map N : TM — TM. We shall denote its transpose by N* : T*M — T*M.

Let us consider the (1,1)-tensor field defined by the formal series exp(tNV).
It has been previously used, for example in [3], page 41, as a way of justifying
why the deformed bracket is called a deformed bracket. Such an expression,
exp(tN) = Y72, % t'N', is in principle just a formal expression. But for each
point m € M, N,, is an endomorphism of T,,, M, and then, as is well known, the
series exp(tNy,) is always convergent. Therefore, ®; = exp(tN) is a well-defined
automorphism of the vector bundle T'M for all ¢t € R.

Associated to the tensor field N we can define a zero-degree derivation of the
algebra of differential forms on M, Q(M). This derivation is denoted by iy, and
it is defined as the extension as a derivation of the map, f — iy f := 0 for any
smooth function f and for any differential 1-form «a, a — iya := N*a.

The transpose of ®; is ®f = exp(tN*), and it can be extended as an automor-
phism of Q(M) which we shall also denote by ®;, in an abuse of notation. Note
that this automorphism is the identity on Q°(M) = C°°(M). The derivative with
respect to ¢ of the automorphism ®; gives rise to the derivation iyn. Note that
the following conditions are satisfied

Oy = ®foin = ino®],
o5 =1Id, @5, =P cd;.

It is in this sense that we can think of ®; as the integral flow of the zero-
degree derivation iy. Analogous relations are valid for ®;. Now we have all the
ingredients to study what happens when N is a Nijenhuis tensor.
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It is well known that if N is Nijenhuis, then all the powers of N are also
Nijenhuis. Moreover, the Frélicher-Nijenhuis brackets [N*, N]pn vanish for all
k,l € N. This is the so-called hierarchy of Nijenhuis operators.

Since N¥ is the k'"-derivative at t = 0 of the one-parameter group ®y, it is
natural to ask whether ®; is also Nijenhuis. Below, we shall give a noninductive
proof of the existence of the hierarchy of Nijenhuis operators. We shall obtain
a direct proof of the following statement: N is Nijenhuis if and only if &, is
Nijenhuis.

Proposition 1. Let (E,[, ]) be a graded Lie algebra. Let ®; be a one-
parameter group of graded automorphisms of degree 0 of the vector space E,
and let N its infinitesimal generator. Then N is Nijenhuis if and only if ®; is
Nijenhuis. In other words,

(22) [q)tXa (I)tY] = (I)t[X7 Y]q)t )

for all t € R if and only if the torsion of N vanishes.

Proof: First note that the second derivative of the Nijenhuis torsion of ®;
evaluated at t = 0 is exactly the Nijenhuis torsion of N, up to a constant factor.
Indeed,

d? d
@’tzo[@ta@t]FN = 2E|t:0[q)t7No (I’t]FN

= 2([N, N]py + [Id, N%)ix) = 2[N, N]pw -

Therefore, if we suppose first that ®; is Nijenhuis, then N also is Nijenhuis.
Reciprocally, let us now suppose that N is Nijenhuis. The converse needs
a kind of double integration process. We shall show as a first step that the
Frolicher—Nijenhuis bracket of N with ®; vanishes.
The first derivative of [N, ®]pn is [N, N o ®;|pn. An easy computation using
Eq. (2.1) shows that, for any X,Y € E,

[N,No®pn(X,Y) =
= No [N, q)t]FN(X,Y) + [N, N]FN(q)tXa Y) + [N,N]FN(X, ‘ptY) .
Moreover, [N, ®g]py = [N, Id]py = 0. Therefore, if N is Nijenhuis, we find that
[N, @]y is a solution of the first-order differential equation, ¥}, = N o W, with

the initial condition Wy = 0. But the trivial solution, ¥; = 0, is a solution of
the same differential equation with the same initial condition, so, by uniqueness
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of solutions of first-order differential equations with identical initial conditions,
[N, cI)t]FN = 0.

Now, let us show that ®; is Nijenhuis. We shall prove in fact that, for any
t,s € R, [®, Ps|pny = 0. The first derivative of [®y, D]pny with respect to ¢ is
2[N o &y, 4] py. Once again, a simple computation using Eq. (2.1) shows that

[No®, ®)pn(X,Y) = No [P, Ps]pn(X,Y)
+ [N, ®]pn (2 X, Y) + [N, @] pn (X, 24Y)
=@, 0[N, Q|pn(X,Y) — [Q4ys, N|pn (X, Y)
where we have applied ®; o &, = ®;,,. Therefore, since [N, ®;]py = 0 for all
t € R, we find that [®;, ®,]pn is a solution of ¥, = N o ¥,. Moreover it satisfies

the initial condition, [®g, ®s|py = [[d, Ps]py = 0. Using the same arguments as
before, we obtain [®;, 5]y = 0. In particular, [®y, ]py = 0. u

Remark 1. Note that we have shown that N is Nijenhuis if and only if
O_4[P X, 0,Y] =[X,Y]o, .

In other words, the conjugation of the old Lie bracket by &, is precisely its
deformation by ®;. o

Corollary 1 (The hierarchy of Nijenhuis tensors). If N is Nijenhuis, then
[N*, N|pn =0 for any k,¢ € N.

Proof: Let us recall that in the proof of Proposition 1 we proved that if N
is Nijenhuis then [®;, ®s]py = 0 for any ¢, s € R. Now taking successive partial
derivatives with respect to ¢ and s and evaluating them at ¢t = 0 and s = 0, we
deduce that [N*, N¥]py = 0. »

2.2. Relationship with Gerstenhaber brackets

We will show an application to the computation of a generating operator of a
Gerstenhaber bracket.

If A is a Zo-graded commutative, associative algebra, then an odd Poisson
bracket or a Zs-Gerstenhaber bracket on A is, by definition, a bilinear map, [, |,
from AXA to A, satisfying, for any f,g,h € A,

o [f,g] = —(=1)HI=DUgI=D[g, f], (skew-symmetry)
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o [f,[g,pI]=I1Lf. 4], h}]—i—(—l)(‘f'_l)('g'_l)[[g, [f,h]], (graded Jacobi identity)
o [f,gh] = [f.g]h+ (—1)UFI=Dldlg[f h], (Leibniz rule)
o [[f,dll=1fl+lgl—=1  (mod.2).

An algebra A together with a bracket satisfying the above conditions is called
an odd Poisson algebra or a Zs-Gerstenhaber algebra.
A linear map of odd degree, A : A — A, such that, for all a,b € A,

(2.3) [f.91 = (O (A(F9) = (Af)g — ()1 F(Ag))

is called a generator or a generating operator of this bracket.

Lemma 1. Assume that (A,[, ],A) is a Gerstenhaber algebra. Let § be a
generator of the bracket. Let ® be an automorphism of the associative algebra
(A, N).

Then, a generating operator of the conjugation of the bracket by the auto-
morphism ® is the conjugation of the generating operator, ® 1o § o ®.

Let us suppose now that ®; is a one-parameter group of automorphisms of
the associative algebra (A, A). It is easy to check that now, the infinitesimal
generator, N = 4|,_;®,, is a derivation of (4, A).

Theorem 1. Let (A,[, ],A) be a Gerstenhaber algebra. Let § be a gen-
erator of the Gerstenhaber bracket [ , ]|. Let ®; be a one-parameter group of
automorphisms of the associative algebra (A, ), and let N be its infinitesimal
generator. If N is Nijenhuis, then the deformed Gerstenhaber bracket, [ , |, is
generated by [0, N].

Proof: By Remark 1 we know that the deformed bracket [, ]s,, agrees with
the conjugation by ®; of the bracket [, ]. Now, by lemma 1, ®_, 00 0 ®; is a
generating operator of [ , ]s,. By taking derivatives with respect to t at t = 0
we find that [0, N] is a generating operator of [, [n.m

Let us apply this result to a particular case: the deformation by a Nijenhuis
tensor of the Schouten—Nijenhuis bracket of multivector fields.

Let M be a manifold and let us consider the Gerstenhaber algebra
(T(ATM),[ , ]sn,A), where [ , ]sn denotes the Schouten—Nijenhuis bracket.
Let 0 be a generating operator of this bracket (see [5]).
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Let N be a Nijenhuis tensor with respect to the usual Lie bracket of vector
fields. We know that the deformed bracket, [, |y, is also a Lie bracket on X(M).
It is then possible to define a Gerstenhaber bracket on the algebra of multivector
fields, extending the deformed bracket, [, |n, as a biderivation on the algebra of
multivector fields. We shall denote the resulting Gerstenhaber bracket by [, |¥y.

Corollary 2. If§ is a generator of the Schouten—Nijenhuis bracket, then the
Gerstenhaber bracket, [ , 1Yy, is generated by [8,in].

Proof: Let ®; be the one-parameter group of automorphism of T'M hav-
ing N as infinitesimal generator. Let us, by an abuse of language, also denote
by ®; the extension of ®; : TM — T'M as an automorphism of the whole al-
gebra of multivector fields. The one-parameter group of automorphisms of the
algebra of multivector fields ®; has the derivation iy as infinitesimal generator
(see subsection 2.1).

By Theorem 1, the deformation by ¢y of the Schouten—Nijenhuis bracket is a
Gerstenhaber bracket with [0,iy] as a generating operator. Finally, it is easy to
check that the deformation by iy of the Schouten—Nijenhuis bracket agrees with
the Gerstenhaber bracket, [, ]g - Indeed, one can check that they agree when
acting on a pair of smooth functions and/or vector fields. n

3 — Poisson—Nijenhuis structures

Let us first recall the definition of Poisson—Nijenhuis structures. Among all
the equivalent definitions we prefer the one from [3].

Definition 2. Given a Poisson bivector, P, on a differentiable manifold, M,
we can define a Lie algebra bracket on Q(M) by

Haﬂﬁ]]l/(P) = E#Paﬂ - E#Pﬂa - dP(Oz,ﬂ) )

[[a7f]]l/(P) = P(a7 df) )

[fs9lupy = 0,
for all o, 8 € QI(M) and f,g € C>°(M), where #pa denotes the vector field
defined by (#pa)(f) = P(a,df) for any f € C°°(M), and extending the Lie

algebra bracket to the whole (M) by the Leibniz rule. This bracket is known
as the Koszul-Schouten bracket associated to the Poisson bivector P. o
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The adjoint operator N* can be seen as a C°°(M)-linear map N* : QY(M) —
QY(M) as usual.

Definition 3. A Nijenhuis tensor N and a Poisson tensor P on a manifold
M are called compatible, that is, the pair (P, N) is called a Poisson—Nijenhuis
structure, if
i) No#p=4#poN"
and if
“) [[aaﬁ]]y(NP) = [[a7ﬁ]]N*.V(P) ;
for all ar, 8 € Q(M). o

Note that the compositions N o #p and #p o N* define two not necessarily
skewsymmetric (2, 0)-tensor fields, denoted by NP and PN*, such that No#p =
#np and #p o N* = #pn~+. The tensor fields are then

(NP)(O[,ﬂ) = P(Q,N*ﬁ), (PN*)(aaB) = P(N*a’ﬂ) :

Thus, the first condition in the definition of a Poisson—Nijenhuis manifold can
be written as NP = PN*. This condition guarantees that

No#p = #np = #pn- = #poN™.

In addition we can deduce that NP = PN* is skewsymmetric.
The second condition can be expressed in another way. Let us define the
concomitant C'(P, N) by

C(P’ N)(O[’B) = [[aaﬁ]]u(NP) - [[Oévﬁ]]N*.y(P) )

for all a, 3 € QY(M). Because N o #p = #p o N*, C(P,N) is a tensor field of
type (3,0). Thus the second condition is just the vanishing of C'(P, N).
The concomitant C'(P, N) can be also written as

C(P,N)(o, 8) = Lpa(N*B) — N*Lpaf — Lps(N*a) + N*Lpga

= (LpaN*)B — (LpsN*)a + dNP(a, ) — N*dP(a, B) .

Let us recall the definition of compatibility of Poisson structures.

Definition 4. Poisson structures Py and P; on the same manifold M are
compatible if the sum Py + Py, is also a Poisson structure. o
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Remark 2. Let us recall that this is equivalent to

#PO[[a7IB]]V(P1) + #Pl [[av/BﬂV(Po) = [#Poav#ltﬁﬂ] + [#Plaa#Poﬁ]
for all a, B € QY(M). o

Let us recall the following

Proposition 2 (see [3]). If (P, N) is a Poisson-Nijenhuis structure, then the
(2,0)-tensor, NP, defined by NP(«,3) = P(a, N*3), is a Poisson bivector that
is compatible with P.

4 — The hierarchy of Poisson—Nijenhuis structures

In this section we shall obtain a noninductive proof of the existence of the
hierarchy of Poisson—Nijenhuis structures constructed from an initial one.

Proposition 3. Let N be a (1, 1)-tensor field on M, and let &, = exp(tN).
The pair (P, N) is a Poisson—Nijenhuis structure if and only if (P, ®;) is a Poisson—
Nijenhuis structure.

Proof: We remark that we know that N is Nijenhuis if and only if @, is also
Nijenhuis. So we need only prove that the compatibility conditions are satisfied.

Let us suppose first that (P, ®;) is a Poisson—Nijenhuis structure. Then, by
taking the first derivative at ¢t = 0 of the compatibility conditions between P and
®;, we obtain those for P and N.

Reciprocally, let us suppose that (P,N) is a Poisson—Nijenhuis structure.
We shall consider the tensor field ®_; P®; defined by

d_ PO (o, ) := P(®* 00, D) .

The first derivative of ®_; P®} is &_,(PN*— NP)®; = 0. Therefore, ®_,P®;
is constant. But since its value at t = 0 is P, ®_,P®; = P, or, equivalently,
O, P = Po;.

Let us now study the second compatibility condition between P and ®,.

The first derivative of C'(P, ®;)(«, ) is C'(P, ®; 0 N)(a, 3), and a simple com-
putation using Eq. (3.1) shows that it is equal to

(4.1)  @,(C(P,N)(c,B)) + C(P,®¢)(ct, N*3) + (LpnpgP; ) — (LpsgP;)N¥ .
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The first term vanishes because we suppose that (P, N) is a Poisson—Nijenhuis
structure. We shall see that the two last terms also vanish. Let us denote them
by

Hi(a, B) == (Lpng®P;)a — (LpgPf)N .

The first derivative of H; with respect to t is
(LpngP;N*)a — (LpgP; N*)N*a =
= Hi(N*a, )+ ®;(LpxsN*)a — (LpsN*)N*a) .

Now, let us recall that the following identity (See formula 7.13 [6])
Lnx(N*)=Lx(N*)N*

is a condition equivalent to the vanishing of the Nijenhuis torsion of N. It is now
clear that the two last terms vanish.

Then, we find that H; satisfies the equation H[(«,3) = Hy(N*«,3) with
initial condition Ho(c, B) = (Lpngld)a — (Lpgld)o = 0. Therefore, Hy = 0 for
all t € R.

Let us return to C(P,®;). By Eq. (4.1), C(P, ®;) satisfies C(P, ®;)'(«, 3) =
C(P,®:)(or, N*3), and the initial condition, C(P, ®y) = C(P,Id) = 0. Therefore,
C(P,®;)=0foralltcR. n

Corollary 3. If (P, N) is a Poisson—Nijenhuis structure, then, for any t, s €RR,
(1) (®sP,®;) is a Poisson-Nijenhuis structure, and
(2) ®,P and &P are compatible Poisson bivectors.

Proof: The first statement is just a consequence of the following relation,
which can be obtained from equation (3.1),

C(P,2)'(a, ) = C(P,N)(®}ex, 8) + C(P,N)(at, @ B) — C(:P, N) (v, B) .

Then, if (P,N) is a Poisson-Nijenhuis structure, both C(P,N) and C(P, ®;)
vanish, and C(®;P, N) = 0. This means that (®;P, N) is a Poisson—Nijenhuis
structure (note that by Propositions 2 and 3, ®,P is a Poisson bivector).
By applying Proposition 3 to (®.P,N) we find that (®,P, ®) is a Poisson—
Nijenhuis structure for all ¢,s € R.

The second statement is a consequence of the first. m
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Remark 3. In [10] it is observed that if (P, V) is a Poisson—Nijenhuis struc-
ture, then not only the elements of the hierarchy are again Poisson—Nijenhuis
structures, but so is any structure of the kind ((352ya;N*) o P, Y 52,b;N7),
where the series involved are convergent power series with constant coeflicients.
So, the first statement of the corollary is a particular case of this observation.
The novelty here is that we have obtained it before proving the existence of the
hierarchy, whereas in [10], it is a consequence of the existence of such a hierar-
chy. In fact, Corollary 3 is a condensed way of writing the hierarchy, as the next
corollary will show. o

Remark 4. What we have found is a kind of surface in the set of all Poisson—
Nijenhuis structures. If we write z(¢,s) = (&P, ®5) then

2(0,0) = (P, Id), 4(0,0) = (NP,Id), x40,0)=(P,N),
24(0,0) = (N?P,Id), 4(0,0) = (NP,N), z4(0,0)=(P,N?) .o

Corollary 4 (The hierarchy of Poisson—Nijenhuis structures). If (P, N) is a
Poisson—Nijenhuis structure, then, for any k,£ € N,

(1) (N*P,N") is a Poisson-Nijenhuis structure, and
(2) N*P and NP are compatible Poisson bivectors.

Proof: As before, we need only take partial derivatives with respect to t
and s of the compatibility conditions between ®;P and ®; and evaluate them at
t=0and s =0.n

Corollary 5. If (P, N) is a Poisson—Nijenhuis structure, then

[[aaﬁﬂu(ql'tP) = [[aaﬁ]]‘:bf-u(P) = q)it[[q):aaq):ﬁﬂu(P) .

Proof: It is a consequence of the fact that (P, ®;) is a Poisson—Nijenhuis
structure and of the fact that, for any Poisson—Nijenhuis structure, (P, N), N*
is Nijenhuis with respect to the bracket [, ],(p) (see [3] lemma 4.2), and then of
Formula 2.2. »

This last result has an interpretation in terms of generating operators.
Let us recall that a generating operator of the Koszul-Schouten bracket, [, | v(P)>
is Lp = [ip,d], where d denotes the exterior derivative (see [5]). Now, as a con-
sequence of Lemma 1, we can state the following
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Corollary 6. If (P, N) is a Poisson—Nijenhuis structure then,

Lo,p = P ,0Lpod} .

Proof: Two generating operators of the same Gerstenhaber bracket differ by
a derivation of degree —1. In this case, it is easy to check that Lo, p —P* ;0 Lpo®}
is the null derivation. m

Remark 5. We have worked here with the definition of Poisson—Nijenhuis
manifolds given in [3], but the same results can be obtained for similar, but not
fully equivalent, definitions, for example, the one given in [9]. The key point is to
observe that the statement in Proposition 1 is also valid in the following form: Let
F C FE be a vector subspace, then [N, N]py vanishes on F'if and only if [®;, 4|
vanishes on F', ®; being a one-parameter group of graded automorphisms and N
is its infinitesimal generator. o

Remark 6. Recently, the notion of Jacobi-Nijenhuis structure has also been
studied, see for example [7], [8] or [2]. It is not difficult to see that a proof of the
existence of hierarchies of Jacobi-Nijenhuis manifolds can also be obtained using
similar arguments to those advanced in this note. o

5 — An example

The initial Poisson bivector, taken from [1] for n = 5, is

0 0 —ai al 0

0 0 0 —as a9
P=|a 0 0 0 0],

—ai a 0 0 0

0 —ax O 0 0

where {a1, as, by, b2, b3} are the coordinates for R®.
Let us consider the tensor fields given by

¥ 0 00 0
0 L(az,b3) 0 0 0

N=1]o0 0 f 0 0 ,
0 0 0 f f-IL(asby)
0 0 0 0 L(az,bg)
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where f is a constant and L a function depending on the variables ao,bs.

An easy computation shows that (P, N) is a Poisson—Nijenhuis structure.
The integral flow of IV is

elt 0 0 0 0
0 eL(ag,bg)t 0 0 0
q)t = 0 0 eft 0 0
0 0 0 eft eft — oLlazbs)t
0 0 0 0 oLlaz,bs)t

And the 1-parameter family, ®;P of compatible Poisson bivectors is

0 0 —ayels ape’® 0

0 0 0 _a2eL(a2,b3)s a2€L(a2,b3)s
ajels 0 0 0 0
—arel®  agellazbs)s 0 0 0

0 —agellazbs)s 0 0 0

By our results, each pair (®4P, ®;) is a Poisson—Nijenhuis structure for all ¢, s € R.
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