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ON THE EXISTENCE OF MONOTONE SOLUTIONS FOR
SECOND-ORDER NON-CONVEX DIFFERENTIAL INCLUSIONS

IN INFINITE DIMENSIONAL SPACES

A.G. Ibrahim and K.S. Alkulaibi

Abstract: This paper is concerned with the existence of monotone solutions in an

infinite dimensional Hilbert space for a second order differential inclusion and without

the assumption of the convexity.

1 – Introduction

The existence of solutions for either first or second order differential inclustions

or functional differential inclusions has been studied extensively in recent papers.

For instance we refer to [1, 4, 6, 7, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22].

In order to explain our aim let H be an infinite dimensional Hilbert space,

Q = K×Ω be a subset of H×H, F be a set-valued function defined on Q and its

values are not necessary convex subsets of H. Consider the following differential

inclusion:

(∗)
x′′(t) ∈ F (x(t), x′(t)), a.e. on [0, T ] ,

(x(t), x′(t)) = (x◦, y◦) ∈ Q = K× Ω .

By a solution of (∗) we mean an absolutely continuous function x : [0, T ] → K

with absolutely continuous derivative such that (∗) is satisfied. A solution

x : [0, T ]→ K of (∗) is called monotone if there is a set-valued function P de-

fined from K to the family of nonempty subsets of K such that (i) x ∈ P (x) for

all x ∈ K, (ii) if y ∈ P (x) then P (y) ⊆ P (x) and (iii) if t ≤ s, t, s ∈ [0, T ]
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then x(s) ∈ P (x(t)). In the particular case H= R (the set of real numbers) and

P (x) = [x,∞) ∩ K the monotoncity of the solution becomes, according to this

definition, as follows if t ≤ s then x(t) ≤ x(s).

The purpose of this paper is to obtain conditions on the data that guarantee

the existence of monotone solution for (∗).

We refer to in a recent paper V. Lupulescu [20] proved the existence of a

solution wich is not necessary monotone and in the case when dimension H is

finite. Also, in the above mentioned papers the monotoncity of the obtained

solutions were not researched.

The paper will organize as follows: in section 2 we will recall briefly some

basic definitions and preliminary facts which will be used throught the sequel.

In section 3 we will establish the main result.

2 – Notations and preliminaries

In this section we give the notations and known facts that we will use throught

the paper.

• H is an infinite dimensional seperable real Hilbert space.

• If x ∈ H and δ > 0, B(x, δ) = {y ∈ H : ‖y − x‖ < δ} is the ball centered

at x with radius δ and B(x, δ) its closure.

• If A is a subset of H and x ∈ H, d(x,A) = inf{‖y − x‖ : y ∈ A} is the

distance from x to A.

• If A is a subset of H then |A| = sup{‖a‖ : a ∈ A} is the excess of A over

{0} and coA is the convex hull of A.

• A function u : [0, T ]→ H is called Lebesgue–Bochner integrable if

t → ‖u(t)‖ is Lebesgue integrable and u is strongly measurable, i.e. the

a.e. limit of a sequence of step functions. The Banach space of equiva-

lence class of such u will be denoted by L1([0, T ], H). It’s known that if

w ∈ L1([0, T ], H) then (
∫ t
0 w(s) ds)

′
= w(t), a.e.

• L2([0, T ], H) is the Banach space of all strongly measurable functions

u : [0, T ]→ H such that
∫ T
0 ‖u(t)‖

2 dt <∞.

• A function u : [0, T ] → H is absolutely continuous if there is a function

v ∈ L1([0, T ], H) such that u(t) = u(0) +
∫ t
0 v(s) ds, for all t ∈ [0, T ].
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• If X and Y are two topological spaces, a set-valued function G : X→ Y

is called upper semicontinuous (lower semicontinuous) at x◦ ∈ X if for any

open set U of Y containing G(x◦) (G(x◦) ∩ U 6= ∅), the set {x ∈ X :

G(x) ⊆ U} ({x ∈ X : G(x)∩U 6= ∅}) is a neighbourhood of x◦. G is upper

semicontinuous (lower semicontinuous) if it’s upper semicontinuous (lower

semicontinuous) at each point in X.

• If E is a topological vector space, f : E → R and x◦ ∈ E, then x′ ∈ E′,

the topological dual of E, is said to be a subgradient of f at x◦ if for every

x ∈ E,

f(x)− f(x◦) ≥ 〈x′, x− x◦〉 .

The set of all subgradients of f at x◦ is called subdifferential and is denoted

by ∂f(x◦). It’s known that if E is a Hausdorff locally convex space, then

∂f(x◦) is closed and convex. (See for instance [13]).

• If K is a subset of H and x ∈ K, then the Bouligand’s contingent cone of

K at x is defined by:

TK(x) =

{

y ∈ H : lim inf
h→0+

d(x+ hy,K)

h
= 0

}

.

It’s known that if x is an interior point in K, then TK(x) = H and if K is

closed and convex then TK(x) = {λ(z − x) : λ ≥ 0, z ∈ K}. (See [3]).

• If K is a subset of H, x ∈ K and y ∈ H then the second order contingent

cone of K at (x, y) is defined by (see [9]):

T
(2)
K (x, y) =

{

z ∈ H : lim inf
h→0+

d(x+ hy + h2

2 z, K)
h2

2

= 0

}

.

We remark that if T
(2)
K (x, y) 6= ∅ then y ∈ TK(x).

• If B is a bounded set of a normed space E, then the Kuratowski’s measure of

noncompactness of B, α(B), is defined by α(B) = inf{d > 0: B =
⋃m

i=1 Bi

for some m and Bi with diameter less than or equal to d}. In the following

lemma we recall some useful properties for the measure of noncompactness

α. For instance see Prop. 9.1 [15].

Lemma 2.1. Let X be an infinite dimensional real Banach space and D1,

D2 be two bounded subsets of X.

(i) α(D1) = 0 ⇐⇒ D1 is relatively compact .
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(ii) α(λD1) = |λ|α(D1); λ ∈ R .

(iii) D1 ⊆ D2 =⇒ α(D1) ≤ α(D2) .

(iv) α(D1 +D2) ≤ α(D1) + α(D2) .

(v) If x◦ ∈ X and r is a positive real number then α(B(x◦, r)) = 2 r .

For other properties of α we refer to ([5] and [15]), and for more details about

set-valued function we refer to ([2], [3], [13], [15], [19]).

3 – Main result

In this section we give the main result. First we start by the following Lemma

which plays an important role in the sequel. The proof will be based on the same

technique that was used in Lemma 3.1 in [20].

Lemma 3.1. Let K, Ω be two nonempty subsets of H, P be a lower semi-

continuous set-valued function from K to the non-empty subsets of K and F be

a set-valued function defined on Q = K× Ω with non-empty subsets of H.

Assume that:

(i) For all x ∈ K, x ∈ P (x) ;

(ii) For all (x, y) ∈ Q, F (x, y) ∩ T
(2)
P (x)(x, y) 6= ∅ .

If Q◦ is a compact subset of Q and k is a positive integer, then there is

ηk > 0 such that for all (x◦, y◦) ∈ Q◦ there exist h◦,k ∈ [ηk,
1
k
], u◦,k, v◦,k ∈ H and

(xj◦ , yj◦) ∈ Q◦ such that:

1. z◦ = x◦ + h◦,k y◦ +
1
2 h

2
◦,k u◦,k ∈ P (x◦) ;

2. v◦,k ∈ F (xj◦ , yj◦) ;

3. d((x◦, y◦), (xj◦ , yj◦)) <
1
k
;

4. ‖u◦,k − v◦,k‖ <
1
k
.

Proof: Let (x, y) be a fixed element in Q = K× Ω. By (ii) there is v =

v(x, y) ∈ F (x, y) such that:

lim inf
h→0+

d
(

x+ hy + h2

2 v, P (x)
)

h2

2

= 0 .
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Hence there is hk = hk(x, y) ∈ (0, 1
k
] such that

d

(

x+ hk y +
h2
k

2
v, P (x)

)

<
h2
k

4 k
.(1)

Since P is lower semicontinuous, Cor. 1.2.1 [3] yields that the function (a, b) →

d(b, P (a)) is upper semicontinuous. Consequently, the function (a, b) →

d(a + hkb +
1
2 h

2
kv, P (a)) is upper semicontinuous from H×H to R. Thus the

subset

N(x, y) =

{

(a, b) : d

(

a+ hk b+
1

2
h2
k v, P (a)

)

<
h2
k

4 k

}

is open. By (1), (x, y) ∈ N(x, y). Then there exists r = r(x, y) ∈ (0, 1
k
] such that

B((x, y), r) ⊂ N(x, y).

Now {B((x, y), r) : (x, y) ∈ Q◦} is an open cover for Q◦. Since Q◦ is compact,

there exists a finite set {(xi, yi) ∈ Q◦ : 1 ≤ i ≤ m} such that:

Q◦ ⊆
m
⋃

i=1

B((xi, yi), ri) .

Put ηk= min{hk(xi, yi) : 1≤ i≤m}. Since (x◦, y◦)∈Q◦ there is j◦ ∈{1, 2, ...,m}

such that:

(x◦, y◦) ∈ B((xj◦ , yj◦), rj◦) ⊆ N(xj◦ , yj◦) , (xj◦ , yj◦) ∈ Q◦ .

Denote by h◦,k= hk(xj◦ , yj◦), v◦,k= v(xj◦ , yj◦) ∈ F (xj◦ , yj◦). From the definition

of the distance we can find z◦ ∈ P (x◦) such that:

1
h2
◦,k

2

d

(

x◦ + h◦,k y◦ +
h2
◦,k

2
v◦,k, z◦

)

≤
d
(

x◦ + h◦,k y◦ +
h2
◦,k

2 v◦,k, P (x◦)
)

h2
◦,k

2

+
1

2 k

<
h2
◦,k/4k

h2
◦,k/2

+
1

2 k

=
1

2 k
+

1

2 k

=
1

k
,

hence:
∥

∥

∥

∥

∥

z◦ − x◦ − h◦,k y◦
h2
◦,k

2

− v◦,k

∥

∥

∥

∥

∥

<
1

k
.
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Let

u◦,k =
z◦ − x◦ − h◦,k y◦

h2
◦,k

2

.

Then

‖u◦,k − v◦,k‖ <
1

k
,

x◦ + h◦,k y◦ +
h2
◦,k

2
u◦,k = z◦ ∈ P (x◦) ,

v◦,k ∈ F (xj◦ , yj◦) ,

and

d
(

(x◦, y◦), (xj◦ , yj◦)
)

<
1

k
.

Theorem 3.2. Let K be a subset of H, Ω be an open subset of H such that

Q = K×Ω be a locally compact subset of H×H, F be an upper semicontinuous

set-valued function from Q to the family of non-empty compact subsets of H,

and P be a lower semicontinuous set-valued function from K to the family of

non-empty subsets of K with closed graph.

Assume the following conditions:

(H1) (i) For all x ∈ K, x ∈ P (x) ,

(ii) For all x ∈ K and all y ∈ P (x) we have P (y) ⊆ P (x) .

(H2) For all (x, y) ∈ Q, F (x, y) ∩ T
(2)
P (x)(x, y) 6= ∅ .

(H3) There exist a proper convex and lower semicontinuous function

V : H→ R such that:

F (x, y) ⊆ ∂V (y) , ∀(x, y) ∈ Q ,

where ∂V (y) is the subdifferential of V .

Then for all (x◦, y◦) ∈ Q there exists T > 0 and an absolutely continuous

function x : [0, T ]→ H with absolutely continuous derivative such that:

x′′(t) ∈ F (x(t), x′(t)) a.e. on [0, T ] ,

x(s) ∈ P (x(t)) for all t ∈ [0, T ] and all s ∈ [t, T ] ,

x(0) = x◦ , x′(0) = y◦ .
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Proof: Let (x◦, y◦) ∈ Q. Since Q is locally compact, each component K and

Ω is locally compact. Because x◦ ∈ K we can find δ1>0 such that B(x◦, δ1)∩K

is compact in H. Also, since y◦ ∈ Ω and Ω is open we can find δ2 > 0 such that

B(y◦, δ2) ⊆ Ω is compact inH. Let δ = min(δ1, δ2) and put Q◦ = (B(x◦, δ)∩K)×

(B(y◦, δ)). So, Q◦ is a compact subset of Q. Since F is upper semicontinuous,

F (Q◦) is compact subset of H. Then we can find M > 0 such that:

sup
{

‖v‖ : v ∈ F (Q◦)
}

≤ M .

Put

T = min







δ

2(M + 1)
,

√

δ

M + 1
,

δ

2(‖y◦‖+ 1)







.(1)

Let k be a fixed positive integer. We are going to show that there are a positive

real number ηk and a positive integerm(k) such that for each r∈{0, 1, ...,m(k)−1}

there exist hr,k ∈ [ηk,
1
k
], (xr,k, yr,k) ∈ Q◦, ur,k, vr,k ∈ H and (xjr , yjr) ∈ Q◦ with

the following properties:

(i)
∑m(k)−1

r=0 hr,k ≤ T <
∑m(k)

r=0 hr,k .

(ii) x◦,k = x◦, y◦,k = y◦ .

(iii) For all r = 0, 1, 2, ...,m(k)−2 we have

xr+1,k = xr,k + hr,k yr,k +
1

2
(hr,k)

2 ur,k ∈ P (xr,k)
and

yr+1,k = yr,k + hr,k ur,k .(2)

(iv) For all r = 0, 1, 2, ...,m(k)−1 we have

vr,k ∈ F (xjr , yjr) , d
(

(xr,k, yr,k), (xjr , yjr)
)

<
1

k
and

‖ur,k − vr,k‖ <
1

k
.

By Lemma 3.1 there exist ηk>0, h◦,x∈ [ηk,
1
k
], u◦,k, v◦,k∈H and (xj◦ , yj◦)∈Q◦,

such that:

x◦ + h◦,k y◦ +
1

2
(h◦,k)

2 u◦,k ∈ P (x◦) ⊂ K ,

v◦,k ∈ F (xj◦ , yj◦) ,(3)

d
(

(x◦, y◦), (xj◦ , yj◦)
)

<
1

k
, ‖u◦,k − v◦,k‖ <

1

k
.
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Define

x1,k = x◦ + h◦,k y◦ +
1

2
(h◦,k)

2 u◦,k
and

y1,k = y◦ + h◦,k u◦,k .

Then x1,k ∈ P (x◦) and if h◦,k < T we have

‖x1,k − x◦‖ ≤ h◦,k ‖y◦‖+
1

2
(h◦,k)

2 ‖u◦,k‖

< h◦,k ‖y◦‖+
1

2
(h◦,k)

2
(

‖v◦,k‖+
1

k

)

< T ‖y◦‖+
1

2
T 2 (M + 1)

<
δ

2
+

δ

2
= δ ,

and

‖y1,k − y◦‖ ≤ h◦,k ‖u◦,k‖

< h◦,k
(

M +
1

k

)

< T (M + 1) < δ .

Therefore (x1,k, y1,k) ∈ Q◦. Again by Lemma 3.1 there exist h1,k ∈ [ηk,
1
k
],

u1,k, v1,k ∈ H and (xj1 , yj1) ∈ Q◦ such that

x1,k + h1,k y1,k +
1

2
(h1,k)

2 u1,k ∈ P (x1,k) ⊆ K ,

v1,k ∈ F (xj1 , yj1) ,(4)

d
(

(x1,k, y1,k), (xj1 , yj1)
)

<
1

k
, ‖u1,k − v1,k‖ <

1

k
.

If h◦,k + h1,k ≥ T we set m(k) = 1, otherwise we define

x2,k = x1,k + h1,k y1,k +
1

2
h2

1,k u1,k

and
y2,k = y1,k + h1,k u1,k .

By (3) and (4) we obtain x2,k ∈ P (x1,k) and

‖x2,k − x◦‖ =

∥

∥

∥

∥

x◦ + h◦,k y◦ +
1

2
h2
◦,k u◦,k + h1,k(y◦ + h◦,k u◦,k) +

1

2
h2

1,k u1,k − x◦

∥

∥

∥

∥

≤ (h◦,k + h1,k) ‖y◦‖+
1

2
h2
◦,k ‖u◦,k‖+ h1,k h◦,k ‖u◦,k‖+

1

2
h2

1,k ‖u1,k‖ <
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< (h◦,k + h1,k) ‖y◦‖+
1

2
h2
◦,k(M + 1) + h1,k h◦,k(M + 1) +

1

2
h2

1,k(M + 1)

= (h◦,k + h1,k) ‖y◦‖+
1

2
(M + 1) (h◦,k + h1,k)

2

< T ‖y◦‖+
1

2
(M + 1)T 2 <

δ

2
+

δ

2
= δ .

Also,

‖y2,k − y◦‖ ≤ h◦,k‖u◦,k‖+ h1,k‖u1,k‖

< h◦,k(M + 1) + h1,k(M + 1)

= (h◦,k + h1,k) (M + 1) < T (M + 1) < δ .

Thus (x2,k, y2,k) ∈ Q◦. Invoking to Lemma 3.1, there exist h2,k ∈ [ηk,
1
k
],

u2,k, v2,k ∈ H and (xj2 , yj2) ∈ Q◦ such that

z2,k = x2,k + h2,k y2,k +
1

2
h2

2,k u2,k ∈ P (x2,k) ,

v2,k ∈ F (xj2 , yj2) ,(5)

d
(

(x2,k, y2,k), (xj2 , yj2)
)

<
1

k
, ‖u2,k − v2,k‖ <

1

k
.

We reiterate this process. Since h◦,k, h1,k, h2,k, ... are in [ηk,
1
k
] we are sure that

there exists a positive integer m(k) such that for each r ∈ {0, 1, ...,m(k)−1}

there exist hr,k ∈ [ηk,
1
k
], (xr,k, yr,k) ∈ Q◦, ur,k, vr,k ∈ H and (xjr , yjr) ∈ Q◦ with

properties in (2).

Now let us set t◦k = 0 and trk = h◦,k + h1,k + · · ·+ hr−1,k; r ∈ {1, 2, ...,m(k)}.

We remark that for all r ∈ {1, 2, ...,m(k)} we have

trk − tr−1
k <

1

k
and t

m(k)−1
k ≤ T < t

m(k)
k .

We define a function xk : [0, T ]→H as follows. If t ∈ [tr−1
k , trk], r ∈ {1, 2, ...,m(k)}

we put

xk(t) = xr−1,k + (t− tr−1
k ) yr−1,k +

1

2
(t− tr−1

k )
2
ur−1,k .

Then we get

xk(t
r−1
k ) = xr−1,k ∈ P (xr−2,k) , r ∈ {1, 2, ...,m(k)} ,(6)

xk
′(t) = yr−1,k + (t− tr−1

k )ur−1,k , ∀ t ∈ [tr−1
k , trk], r ∈ {1, 2, ...,m(k)} ,(7)

xk
′′(t) = ur−1,k , ∀ t ∈ [tr−1

k , trk], r ∈ {1, 2, . . . ,m(k)} .(8)
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Hence by (2), for all t ∈ [0, T ] we obtain

‖xk(t)‖ ≤ ‖xr−1,k‖+
1

k
‖yr−1,k‖+

1

2

1

k2
‖ur−1,k‖

≤ ‖xr−1,k − x◦‖+ ‖x◦‖+ ‖yr−1,k − y◦‖

+ ‖y◦‖+ ‖ur−1,k − vr−1,k‖+ ‖vr−1,k‖(9)

< 2 δ + ‖x◦‖+ ‖y◦‖+
1

k
+M

≤ 2 δ + ‖x◦‖+ ‖y◦‖+ 1 +M
and

‖xk
′(t)‖ ≤ ‖yr−1,k‖+

1

k
‖ur−1,k‖

≤ ‖y◦‖+ δ +
1

k

(

‖ur−1,k − vr−1,k‖+ ‖vr−1,k‖
)

(10)

< ‖y◦‖+ δ +
1

k

(1

k
+M

)

≤ ‖y◦‖+ δ +M + 1
and

‖xk
′′(t)‖ = ‖ur−1,k‖ ≤ ‖ur−1,k − vr−1,k‖+ ‖vr−1,k‖

<
1

k
+M(11)

≤ M + 1 .

Moreover, let t be a fixed point in [0, T ]. Then there is r ∈ {1, 2, ...,m(k)} such

that t ∈ [tr−1
k , trk]. We have

‖xk(t)− xjr−1‖ ≤ ‖xr−1,k − xjr−1‖+
1

k
‖yr−1,k‖

+
1

2

1

k2

(

‖ur−1,k − vr−1,k‖+ ‖vr−1,k‖
)

<
1

k
+

1

k

(

δ + ‖y◦‖
)

+
1

2

1

k2

(1

k
+M

)

≤
1

k

(

2 + δ + ‖y◦‖+M
)

,

‖xk
′(t)− yjr−1‖ ≤ ‖yr−1,k − yjr−1‖+

1

k

(

‖ur−1,k − vr−1,k‖+ ‖vr−1,k‖
)

<
1

k
+

1

k

(1

k
+M

)

≤
1

k
(M + 2)
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and

‖xk
′′(t)− vr−1,k‖ = ‖ur−1,k − vr−1,k‖ <

1

k
.

Since vr−1,k ∈ F (xjr−1 , yjr−1), then we obtain

(

xk(t), xk
′(t), xk

′′(t)
)

∈ graph F + εk
(

B(0, 1)×B(0, 1)×B(0, 1)
)

,(12)

where εk → 0 as k → ∞. Since t is arbitrary point in [0, T ], the relation (12) is

true for all t ∈ [0, T ].

By (10) and (11) the sequences (xk) and (xk
′) are equicontinuous. In order to

apply Ascoli–Arzela theorem we are going to show that for every t ∈ [0, T ] the two

sets Z1(t) = {xk(t) : k ≥ 1} and Z2(t) = {xk
′(t) : k ≥ 1} are relatively compact

in H. So, for every k ≥ 1 let θk : [0, T ]→ [0, T ] defined by θk(0) = 0, θk(t) = trk,

t ∈ ]tr−1
k , trk]. Also let Q◦,1 = {x : (x, y) ∈ Q◦ for some y}, Q◦,2 = {y : (x, y) ∈

Q◦ for some x}. Hence, each of Q◦,1 and Q◦,2 is compact in H. From the defini-

tion of (xk) and (xk
′) we have for all k ≥ 1 and all t ∈ [0, T ], xk(θk(t)) ∈ Q◦,1,

xk
′(θk(t)) ∈ Q◦,2. Thus for all t ∈ [0, T ] the two sets {xk(θk(t)) : k ≥ 1} and

{xk
′(θk(t)) : k ≥ 1} are relatively compact in H. Now, for all t ∈ [0, T ]

α(Z1(t)) = α
{

xk(t) : k ≥ 1
}

= α
{

xk(t)− xk(θk(t)) + xk(θk(t)) : k ≥ 1
}

.

From (iii) and (iv) of Lemma 2.1 we get

α(Z1(t)) ≤ α
{

xk(t)− xk(θk(t)) : k ≥ 1
}

+ α
{

xk(θk(t)) : k ≥ 1
}

.

Since the set {xk(θk(t)) : k ≥ 1} is relatively compact, α{xk(θk(t)) : k ≥ 1} = 0

(Lemma 2.1 (i)). Then

α(Z1(t)) ≤ α
{

xk(t)− xk(θk(t)) : k ≥ 1
}

= α

{
∫ θk(t)

t
xk

′(s) ds : k ≥ 1

}

.

By relation (10) we obtain

α(Z1(t)) ≤ α

(

B

(

0,
1

k

(

‖y◦‖+ δ +M + 1
)

)

)

=
2

k

(

‖y◦‖+ δ +M + 1
)

. (By Lemma 2.1 (v))
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Since 1
k
→ 0 as k→∞, α(Z1(t)) = 0. Hence Z1(t) is relatively compact. Simi-

larly the set Z2(t) is relatively compact. By a corollary of Ascoli–Arzela theorem

(see Th. 0.3.4 [3]) the sequence (xk), k ≥ 1 has a subsequence (again denoted

by (xk)) and absolutely continuous function x : [0, T ]→ H with absolutely

continuous derivative x′ such that (xk) converges uniformly to x on [0, T ],

(xk
′) converges uniformly to x′ on [0,T ] and (xk

′′) converges weakly in L2([0,T ], H)

to x′′. Invoking to the convergence theorem (see Th. 1.4.1 [3]) we get that

x′′(t) ∈ coF (x(t), x′(t)) a.e. on [0, T ] .(13)

Note that here the values of F are not necessary convex. Now we use condition

(H3) to show that

x′′(t) ∈ F (x(t), x′(t)) a.e. on [0, T ] .

Since V is proper convex lower semicontinuous then by Lemma 3.3 in [11],

we have
d

dt
V (x′(t)) = ‖x′′(t)‖

2
a.e. on [0, T ] .

Then

V (x′(T ))− V (x′(0)) =

∫ T

0
‖x′′(t)‖

2
dt .(14)

From (2) for every integer k ≥ 1 and every r ∈ {1, 2, ...,m(k)} there exist

αr−1,k, βr−1,k, γr−1,k ∈ B(0, 1
k
) such that

ur−1,k − γr−1,k = vr−1,k ∈ F
(

xr−1,k − αr−1,k , yr−1,k − βr−1,k

)

⊆ ∂V (yr−1,k − βr−1,k) .
(15)

From the definition of the subdifferential ∂V , the last relation gets us

V (yr,k − βr,k)− V (yr−1,k − βr−1,k) ≥

≥
〈

ur−1,k − γr−1,k , yr,k − βr,k − (yr−1,k − βr−1,k)
〉

=
〈

ur−1,k − γr−1,k , yr,k − yr−1,k + βr−1,k − βr,k
〉

=
〈

ur−1,k − γr−1,k , xk
′(trk)− xk

′(tr−1
k ) + βr−1,k − βr,k

〉

=

〈

ur−1,k − γr−1,k ,

∫ tr
k

tr−1
k

xk
′′(t) dt

〉

+
〈

ur−1,k − γr−1,k , βr−1,k − βr,k
〉

=
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=
〈

ur−1,k , ur−1,k(t
r
k − tr−1

k )
〉

−

〈

γr−1,k ,

∫ tr
k

tr−1
k

x′′(t) dt

〉

+
〈

ur−1,k − γr−1,k , βr−1,k − βr,k
〉

= (trk − tr−1
k ) ‖ur−1,k‖

2 −

〈

γr−1,k ,

∫ tr
k

tr−1
k

x′′(t) dt

〉

+
〈

ur−1,k − γr−1,k , βr−1,k − βr,k
〉

.

Since
〈

ur−1,k , ur−1,k(t
r
k − tr−1

k )
〉

= (trk − tr−1
k ) 〈ur−1,k , ur−1,k〉

= (trk − tr−1
k ) ‖ur−1,k‖

2 ,

thus, for all positive integer number k and all r ∈ {1, 2, ...,m(k)−1} we have

V
(

x′(trk)− βr,k
)

− V
(

x′(tr−1
k )− βr−1,k

)

≥

≥
∫ tr

k

tr−1
k

‖x′′(t)‖
2
dt −

〈

γr−1,k ,

∫ tr
k

tr−1
k

x′′(t) dt

〉

(16)

+
〈

ur−1,k − γr−1,k , βr−1,k − βr,k
〉

.

Also, from (2)–(i) we have t
m(k)−1
k ≤ T < t

m(k)
k , then from (15) when r = m(k)

one has,

V
(

xk
′(T )

)

− V
(

ym(k)−1,k − βm(k)−1,k

)

≥

≥
〈

um(k)−1,k − γm(k)−1,k , xk
′(T )− ym(k)−1,k + βm(k)−1,k

〉

=
〈

um(k)−1,k − γm(k)−1,k , xk
′(T )− xk

′(t
m(k)−1
k ) + βm(k)−1,k

〉

=

〈

um(k)−1,k ,

∫ T

t
m(k)−1
k

xk
′′(t) dt

〉

−

〈

γm(k)−1,k ,

∫ T

t
m(k)−1
k

xk
′′(t) dt

〉

+
〈

um(k)−1,k − γm(k)−1,k , βm(k)−1,k

〉

.

Then

V
(

xk
′(T )

)

− V
(

xk
′(t

m(k)−1
k )− βm(k)−1,k

)

≥

≥
∫ T

t
m(k)−1
k

‖x′′(t)‖
2
dt −

〈

γm(k)−1,k ,

∫ T

t
m(k)−1
k

xk
′′(t) dt

〉

(17)

+
〈

um(k)−1,k − γm(k)−1,k , βm(k)−1,k

〉

.
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By adding the m(k)−1 inequalities from (16) and inequality from (17) we get

V
(

xk
′(T )

)

− V
(

y◦ − β◦,k
)

=

= V
(

xk
′(T )

)

− V
(

x′(t
m(k)−1
k )− βm(k)−1,k

)

+ V
(

xk
′(t

m(k)−1
k )− βm(k)−1,k

)

− V
(

xk
′(t

m(k)−2
k )− βm(k)−2,k

)

+ · · · +(18)

+ V
(

xk
′(tk

1)− β1,k

)

− V (y◦ − β◦,k)

≥
∫ T

0
‖xk

′′(t)‖
2
dt + ρ(k) ,

where

ρ(k) = −
m(k)−1
∑

r=1

〈

γr−1,k ,

∫ tr
k

tr−1
k

xk
′′(t) dt

〉

+

m(k)−1
∑

r=1

〈

ur−1,k − γr−1,k , βr−1,k − βr,k
〉

−

〈

γm(k)−1 ,

∫ T

t
m(k)−1
k

xk
′′(t) dt

〉

+
〈

um(k)−1,k − γm(k)−1,k , βm(k)−1,k

〉

.

We have

|ρ(k)| ≤
m(k)−1
∑

r=1

‖γr−1,k‖
∫ tr

k

tr−1
k

‖xk
′′(t)‖ dt

+

m(k)−1
∑

r=1

‖ur−1,k − γr−1,k‖ ‖βr−1,k − βr,k‖

+ ‖γm(k)−1‖
∫ T

t
m(k)−1
k

‖xk
′′(t)‖ dt

+ ‖um(k)−1,k − γm(k)−1,k‖ ‖βm(k)−1,k‖

≤
m(k)−1
∑

r=1

1

k
‖ur−1,k‖ (t

r
k − tr−1

k ) +

m(k)−1
∑

r=1

‖vr−1,k‖
2

k

+
1

k
‖um(k)−1,k‖ (T − t

m(k)−1
k ) + ‖vr−1,k‖

1

k

≤
m(k)−1
∑

r=1

M + 1

k2
+

m(k)−1
∑

r=1

2M

k
+

M + 1

k2
+

M

k
,
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and this yields lim
k→∞

ρ(k) = 0. By (18) we obtain

lim
k→∞

V (xk
′(T ))− V (y◦) ≥ lim

k→∞
sup

∫ T

0
‖xk

′′(t)‖
2
dt .

Therefore, by (14) we have

∫ T

0
‖x′(t)‖

2
dt = V (x′(T ))− V (x′(0)) ≥ lim

k→∞
sup

∫ T

0
‖xk

′′(t)‖
2
dt .(19)

Since (xk
′′) converges weakly to x′′ in L2([0, T ], H) then relation (19) implies

that (xk
′′) converges strongly to x′′ in L2([0, T ], H). Consequently, there is a

subsequence of xk
′′, denoted again by (xk

′′) converges to x′′ almost everywhere

on [0, T ]. From (12) we obtain,

lim
k→∞

d

(

(

xk(t), xk
′(t), xk

′′(t)
)

, graphF

)

= 0 .(20)

By the assumptions on F and by Prop. 1.1.2 [3] the graph of F is closed. Then

relation (20) yields that

x′′(t) ∈ F (x(t), x′(t)) a.e. on [0, T ] .

It remains to prove that x(t) ∈ P (x(t)), for all t ∈ [0, T ] and if s > t then

x(s) ∈ P (x(t)).

In order to do this for all k ≥ 1 let δk : [0, T ] → [0, T ] be a function defined

by:

δk(0) = 0 , δk(t) = tr−1
k

for all t ∈ (tr−1
k , trk] and all r ∈ {1, 2, ...,m(k)}. Since

trk − tr−1
k <

1

k
we get lim

k→∞
xk(θk(t)) = lim

k→∞
xk(δk(t)) = x(t)

for all t ∈ [0, T ]. Let t ∈ [0, T ] be fixed. For every positive integer k there is

r ∈ {1, 2, ...,m(k)} such that t ∈ (tr−1
k , trk]. We have

xk(θk(t)) = xk(t
r
k) ∈ P (xk(t

r−1
k )) . = P (xk(δk(t)))

Since the graph of P is closed, we conclude that

x(t) ∈ P (x(t)) .

Now let t, s ∈ [0, T ] be such that s > t. Then for k large enough we can find

r, q ∈ {1, 2, ...,m(k)− 1} such that r > q, s ∈ [tr−1
k , trk] and t ∈ [tq−1

k , tqk].
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Assume that r = q + j. Clearly 1 ≤ j < m(k). We have

xk(t
r−1
k ) ∈ P (xk(t

r−2
k )) .

Since P is transitive,

P (xk(t
r−1
k )) ⊂ P (xk(t

r−2
k )) .

Similarly,

P (xk(t
r−2
k )) ⊂ P (xk(t

r−3
k )) .

We continue for j steps, hence we get

P (xk(t
r−1
k )) ⊂ P (xk(t

q
k)) .

But

xk(t
r
k) ∈ P (xk(t

r−1
k )) .

We obtain

xk(t
r
k) ∈ P (xk(t

q
k)) .

This means that

xk(θk(s)) ∈ P (xk(θk(t))) .

Since lim
k→∞

θk(t) = t, lim
k→∞

θk(s) = s and the graph of P is closed, we get

x(s) ∈ P (x(t)) .

If we consider the particular case when P (x)=K for all x ∈ K we obtain the

following Viability Theorem.

Theorem 3.3. Let K be a closed subset of H, Ω be an open subset of H

such that Q = K× Ω be a locally compact subset of H×H, F be an upper

semicontinuous set-valued function from Q to the family of nonempty compact

subsets of H.

Assume that condition (H3) of Theorem 3.2 and the following condition are

satisfied:

(H4) For all (x, y) ∈ Q, F (x, y) ∩ T
(2)
K (x, y) 6= ∅ .

Then for all (x◦, y◦) ∈ Q there exists T > 0 and an absolutely continuous

function x : [0, T ]→ H with absolutely continuous derivative such that:

x′′(t) ∈ F (x(t), x′(t)) a.e. on [0, T ] ,

(x(t), x′(t)) ∈ Q , ∀ t ∈ [0, T ] ,

x(0) = 0 , x′(0) = y◦ .
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Remark. If we suppose that the dimension of H is finite, in Theorem 3.3,

we obtain Theorem 2.1 of [20].
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