
PORTUGALIAE MATHEMATICA

Vol. 61 Fasc. 2 – 2004

Nova Série

VALUE DISTRIBUTION OF A WRONSKIAN

Indrajit Lahiri and Abhijit Banerjee

Abstract: We discuss the value distribution of a Wronskian generated by a mero-

morphic function having maximum deficiency sum and as an application we solve Drasin’s

problem for meromorphic functions of unrestricted order.

1 – Introduction and Definitions

In value distribution theory, one studies the frequency with which a meromor-

phic function takes on different values in the complex plane. A common technical

difficulty in value distribution theory is the presence of the ‘exceptional set’ in the

second fundamental theorem of Nevanlinna [7, p. 31]. This exceptional set can be

eliminated for functions of finite order i.e., for functions that do not grow faster

than a certain rate. Unfortunately, this exceptional set cannot be eliminated in

general and this is often the reason that certain results are only proved for func-

tions of finite order. Toda [14] developed an integration trick that more or less

removes the obstacle of the exceptional set in studying meromorphic functions of

infinite order. This integration trick of Toda is the principal motivation of this

paper and we use the same to extend a result of Singh–Kulkarni [13] and a result

of Yang–Wang [18] of the value distribution theory to meromorphic functions

of unrestricted order. Since the natural extension of a derivative is a differen-

tial polynomial, in the paper we also extend the result of Singh–Kulkarni [13]

to a special type of linear differential polynomials viz., the Wronskians. Before

discussing the main problem undertaken in the paper let us explain some basic

definitions of the value distribution theory (cf. [7]).
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Let f be a meromorphic function defined in the open complex plane C.
For a ∈ C ∪ {∞} we denote by n(t, a; f) (n(t, a; f)) the number of a-points

(distinct a-points) of f in |z| ≤ t, where an ∞-point is a pole of f . We put

N(r, a; f) =

r
∫

0

n(t, a; f)− n(0, a; f)

t
dt + n(0, a; f) log r

and

N(r, a; f) =

r
∫

0

n(t, a; f)− n(0, a; f)

t
dt + n(0, a; f) log r .

The functionN(r, a; f) (N(r, a; f)) are called the counting function of a-points

(distinct a-points) of f . In many occasions N(r,∞; f) and N(r,∞; f) are denoted

respectively by N(r, f) and N(r, f).

We also put

m(r, f) =
1

2π

2π
∫

0

log+ |f(reiθ)| dθ ,

where log+ x = log x if x ≥ 1 and log+ x = 0 if 0 ≤ x < 1.

For a ∈ C we denote m(r, 1
f−a) by m(r, a; f) and we mean by m(r,∞; f) the

function m(r, f), which is called the proximity function of f .

The function T (r, f) = m(r, f) +N(r, f) is called the characteristic function

of f . If a ∈ C ∪ {∞}, the quantity

δ(a; f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
= lim inf

r→∞

m(r, a; f)

T (r, f)

is called Nevanlinna deficiency of the value a.

From the second fundamental theorem it follows that the set of values of

a ∈ C ∪ {∞} for which δ(a; f) > 0 is countable and
∑

a6=∞
δ(a; f) + δ(∞; f) ≤ 2

(cf. [7, p.43]). If, in particular,
∑

a6=∞
δ(a; f) + δ(∞; f) = 2, we say that f has the

maximum deficiency sum.

The numbers ρ = lim sup
r→∞

log T (r,f)
log r and λ = lim inf

r→∞

log T (r,f)
log r are called respec-

tively the order and the lower order of the function f .

We denote by S(r, f) any function of r such that S(r, f) = o{T (r, f)} as

r →∞ through all values of r if f is of finite order and except for a set of values

of r of finite linear measure if f is of infinite order.

Definition 1. A meromorphic function a = a(z) is called small with respect

to f if T (r, a) = S(r, f).
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Definition 2. Let a1, a2, ..., ak be linearly independent meromorphic func-

tions and small with respect to f . We denote by L(f) = W (a1, a2, ..., ak, f) the

Wronskian determinant of a1, a2, ..., ak, f i.e.,

L(f) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 · · · ak f
a′1 a′2 · · · a′k f ′

...
...

...
...

...

a
(k)
1 a

(k)
2 · · · a

(k)
k f (k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Definition 3 ([1]). We denote by σ(f) the collection of all meromorphic

functions a = a(z) satisfying T (cr, a) = o{T (r, f)} as r → ∞ for some c > 1,

where c may depend on a(z).

Definition 4 ([8] (see also [14])). We put for a ∈ C ∪ {∞}

To(r, f) =

r
∫

1

T (t, f)

t
dt , No(r, a; f) =

r
∫

1

N(t, a; f)

t
dt ,

mo(r, a; f) =

r
∫

1

m(t, a; f)

t
dt , So(r, f) =

r
∫

1

S(t, f)

t
dt , etc.

Also we put for a transcendental meromorphic function f (cf. [14])

δo(a; f) = 1− lim sup
r→∞

No(r, a; f)

To(r, f)
= lim inf

r→∞

mo(r, a; f)

To(r, f)

for a ∈ C ∪ {∞}.

Shah–Singh [11, 12], Singh–Kulkarni [13], Wang–Dai [15], Yang [16] and Yi [18]

studied the comparative growth of a meromorphic function having maximum

deficiency sum and its derivatives. Lahiri–Sharma [9] studied the comparative

growth and value distribution of a linear differential polynomial generated by a

meromorphic function having maximum deficiency sum.

In order to study the value distribution of the derivative of a meromorphic

function having maximum deficiency sum Singh–Kulkarni [13] proved the follow-

ing result.
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Theorem A. Suppose that f is a transcendental meromorphic function of

finite order and f has the maximum deficiency sum. Then

1− δ(∞; f)

2− δ(∞; f)
≤ K(f ′) ≤

2(1− δ(∞; f))

2− δ(∞; f)
,

where K(f ′) = lim sup
r→∞

N(r,0;f ′)+N(r,∞;f ′)
T (r,f ′) .

Improving TheoremA recently Fang [4] proved the following result.

Theorem B. Suppose that f is a transcendental meromorphic function of

finite order and f has the maximum deficiency sum. Then for any positive integer

k,

K(f (k)) =
2 k(1− δ(∞; f))

1 + k − k δ(∞; f)
,

where K(f (k)) = lim
r→∞

N(r,0;f (k))+N(r,∞;f (k))

T (r,f (k))
.

If f= exp(z)(1− exp(z)) then
∑

a6=∞
δ(a; f) + δ(∞; f) = 3/2, δ(∞; f) = 1

but K(f ′) = 1/2. So it appears that the condition
∑

a6=∞
δ(a; f) + δ(∞; f) = 2

is necessary for Theorems A and B. Although it remains an open question for

which minimum value of the total deficiency of f , Theorem B is valid.

If f = exp(exp(z)) then f is of infinite order with the maximum deficiency

sum. Also we see that δ(∞; f) = 1 and K(f ′) = 0. So one may expect that the

order restriction of f for the validity of Theorem B is unnecessary. In fact, in the

paper we show that the finiteness restriction on the order of f in Theorem B is

redundant. Further using a result of Frank and Weissenborn [5] on the estimation

of the zeros of a Wronskian we extend Theorem B to a Wronskian. Finally as

an application of the main theorem we solve Drasin’s problem (see Section 4) for

meromorphic functions of unrestricted order.

2 – Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([5]). Let f be a transcendental meromorphic function and let

a1, a2, ..., ak be meromorphic functions which are linearly independent and small

with respect to f . Then for every ε(> 0)

kN(r, f) ≤ N(r, 0;L(f)) + (1 + ε)N(r, f) + S(r, f) .
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Lemma 2 ([3]). Let f be a meromorphic function with more than one defi-

cient value. Then the lower order of f is a positive number or infinity.

Lemma 3 ([1]). Let f be a meromorphic function and {ai}
k
i=1 be k linearly

independent functions of the class σ(f). Then L(f) = W (a1, a2, ..., ak, f) and f

have the same order and lower order.

Henceforth we shall denote by L(f) the Wronskian W (a1, a2, ..., ak, f) where

a1, a2, ..., ak are linearly independent elements of σ(f) and a1= 1.

Lemma 4 ([18]). Let f be a meromorphic function. If f has the maximum

deficiency sum then
∑

b6=∞
δ(b; f) =

∑

b6=∞
δo(b; f) and δ(∞; f) = δo(∞; f).

Lemma 5 ([6]). Suppose that g is an increasing real valued function of x ≥ 0

and that

lim
x→∞

g(x)

xα
=∞

for every α > 0. Then

lim
x→∞

G(x)g′(x)

{g(x)}2
= 1

where G(x) =
x
∫

0
g(t) dt.

Lemma 6 ([10]). Suppose that F and G be two real valued functions of

x ≥ 0 and satisfy the following conditions for all sufficiently large x:

(i) F and G have continuous derivatives,

(ii) F is an increasing convex functions,

(iii)
1

G
is a convex function,

(iv) lim
x→∞

F (x)
G(x) = A(> 0).

Then lim
x→∞

F ′(x)
G′(x) = A.

Lemma 7. Let f be a meromorphic function having positive or infinite lower

order. If lim
r→∞

To(r,L(f))
To(r,f) = A(> 0) then lim

r→∞

T (r,L(f))
T (r,f) = A.
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Lemma 8. Let f be a meromorphic function having positive or infinite lower

order. If for a ∈ C ∪ {∞} lim
r→∞

No(r,a;L(f))
To(r,L(f)) = A(> 0) then lim

r→∞

N(r,a;L(f))
T (r,L(f)) = A.

Using Lemma 3, Lemma 5 and Lemma 6 we can prove Lemma 7 and Lemma 8

in the line of Lemma 6 [18].

Lemma 9. Let f be a meromorphic function having positive or infinite lower

order. Let a and b be two distinct complex numbers, finite or infinite. If

lim
r→∞

No(r, a;L(f)) +No(r, b;L(f))

To(r, L(f))
= A(> 0)

then

lim
r→∞

N(r, a;L(f)) +N(r, b;L(f))

T (r, L(f))
= A .

Proof: Let n(r, a, b; f) denote the number of a-points and b-points of f

in |z| ≤ r, counted with proper multiplicities. Also let N(r, a, b; f) be defined in

terms of n(r, a, b; f) in the usual manner. Then clearly N(r, a, b; f) = N(r, a; f)+

N(r, b; f).

Now we follow some techniques of [18]. Let F (x) = No(e
x, a, b;L(f)) and

G(x) = To(e
x, L(f)). By the given condition we get

lim
x→∞

F (x)

G(x)
= A > 0 .

Also we note that

F (x) =

x
∫

0

N(et, a, b;L(f)) dt and G(x) =

x
∫

0

T (et, L(f)) dt .

We can easily verify that F (x), G(x) have continuous derivatives and F (x) is an

increasing convex function of x.

Since f has a non-zero lower order and so by Lemma 3 L(f) also has a non-

zero lower order, there exists a µ(> 0) such that

T (r, L(f)) > rµ

for all large values of r.

Let g(x) = T (ex, L(f)). Then for all large values of x we get g(x) > eµx

and so lim
x→∞

g(x)
xα
=∞ for every α(> 0). So by Lemma 5 we get lim

x→∞

G(x)g′(x)
{g(x)}2

= 1.

Since
d2

dx2

(

1

G(x)

)

=
2 (g(x))2 −G(x) g′(x)

{G(x)}3
,
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it follows that d2

dx2

(

1
G(x)

)

> 0 for all large values of x and so 1
G(x) is a convex

function of x for all large values of x. Therefore by Lemma 6 we obtain

lim
x→∞

F ′(x)

G′(x)
= A ,

i.e., lim
x→∞

N(ex, a, b;L(f))

T (ex, L(f))
= A ,

i.e., lim
r→∞

N(r, a, b;L(f))

T (r, L(f))
= A .

This proves the lemma.

Lemma 10 ([8]). Let f be a meromorphic function. Then

lim
r→∞

So(r, f)

To(r, f)
= 0

through all values of r.

Lemma 11. Let f be a transcendental meromorphic function having the

maximum deficiency sum. Then

lim
r→∞

T (r, L(f))

T (r, f)
= lim

r→∞

To(r, L(f))

To(r, f)
= 1 + k − k δ(∞; f) .

Proof: Let b1, b2, ..., bp be distinct finite complex numbers. Then on integra-

tion we get from Littlewood’s inequality

p
∑

ν=1

mo(r, bν ; f) ≤ mo(r, 0; f
′) + So(r, f)

≤ To(r, f) +No(r, f) + So(r, f) .

By Lemma 10 this implies

p
∑

ν=1

δo(bν ; f) ≤ 1 + lim inf
r→∞

No(r, f)

To(r, f)
(1)

≤ 1 + lim sup
r→∞

No(r, f)

To(r, f)

= 2− δo(∞; f) .
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Since p is arbitrary and f has maximum deficiency sum, by Lemma 4 we get

from (1)

lim
r→∞

No(r, f)

To(r, f)
= lim

r→∞

No(r, f)

To(r, f)
= 1− δ(∞; f) .(2)

Again for finite complex numbers b1, b2, ..., bp we get (cf. [9])

p
∑

ν=1

m(r, bν ; f) ≤ m(r, 0;L(f)) + S(r, f)

= T (r, L(f))−N(r, 0;L(f)) + S(r, f) .

By Lemma 1 we obtain

p
∑

ν=1

m(r, bν ; f) ≤ T (r, L(f)) + (1 + ε)N(r, f)− kN(r, f) + S(r, f) ,

which on integration gives

p
∑

ν=1

mo(r, bν ; f) ≤ To(r, L(f)) + (1 + ε)No(r, f)− kN o(r, f) + So(r, f) .

Hence by Lemma 10 we get in view of (2)

p
∑

ν=1

δo(bν ; f) ≤ lim inf
r→∞

To(r, L(f))

To(r, f)
+ (1 + ε) (1− δ(∞; f))− k(1− δ(∞; f)) .

Since p and ε(> 0) are arbitrary, we obtain by Lemma 4 and the given condi-

tion

lim inf
r→∞

To(r, L(f))

To(r, f)
≥ 1 + k − k δ(∞; f) .(3)

On the other hand (cf. [9])

T (r, L(f)) ≤ T (r, f) + kN(r, f) + S(r, f)

which on integration gives

To(r, L(f)) ≤ To(r, f) + kN o(r, f) + So(r, f) .

So by (2) and Lemma 10 we obtain

lim sup
r→∞

To(r, L(f))

To(r, f)
≤ 1 + k − k δ(∞; f) .(4)
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Since f has the maximum deficiency sum and 1+k−k δ(∞; f) > 0, it follows

from (3) and (4) by Lemma 2 and Lemma 7 that

lim
r→∞

T (r, L(f))

T (r, f)
= lim

r→∞

To(r, L(f))

To(r, f)
= 1 + k − k δ(∞; f) .

This proves the lemma.

3 – The Main Result

In this section we present the main theorem of the paper.

Theorem 1. Let f be a transcendental meromorphic function having the

maximum deficiency sum. Let a1 = 1, a2, a3, ..., ak be linearly independent mero-

morphic functions of the class σ(f) and L(f) =W (a1, a2, ..., ak, f). Then

lim
r→∞

N(r, 0;L(f)) +N(r,∞;L(f))

T (r, L(f))
=
2 k(1− δ(∞; f))

1 + k − k δ(∞; f)
.

Proof: For finite complex numbers b1, b2, ..., bp we get (cf. [9])

p
∑

ν=1

m(r, bν ; f) ≤ m(r, 0;L(f)) + S(r, f)

which on integration gives

p
∑

ν=1

mo(r, bν ; f) ≤ mo(r, 0;L(f)) + So(r, f)

and so by Lemma 10 we get

lim inf
r→∞

mo(r, 0;L(f))

To(r, f)
≥

p
∑

ν=1

δo(bν ; f) .

Since p is arbitrary, we get by the given condition and Lemma 4

lim inf
r→∞

mo(r, 0;L(f))

To(r, f)
≥ 2− δ(∞; f) .(5)
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Again since T (r, L(f)) ≤ T (r, f)+k N(r, f)+S(r, f), by the first fundamental

theorem and Lemma 1 we get

m(r, 0;L(f)) = T (r, L(f))−N(r, 0;L(f)) + S(r, L(f))

≤ T (r, f) + kN(r, f)−N(r, 0;L(f)) + S(r, f)

≤ T (r, f) + (1 + ε)N(r, f) + S(r, f) ,

which gives on integration

mo(r, 0;L(f)) ≤ To(r, f) + (1 + ε)No(r, f) + So(r, f) .

Hence by Lemma 4 and Lemma 10 we get because ε(> 0) is arbitrary

lim sup
r→∞

mo(r, 0;L(f))

To(r, f)
≤ 2− δ(∞; f) .(6)

From (5) and (6) we obtain

lim
r→∞

mo(r, 0;L(f))

To(r, f)
= 2− δ(∞; f) .(7)

Now by Lemma 11 and (7) we get in view of the modified first fundamental

theorem (cf. [14])

lim
r→∞

No(r, 0;L(f))

To(r, L(f))
= 1− lim

r→∞

mo(r, 0;L(f))

To(r, f)
lim
r→∞

To(r, f)

To(r, L(f))
(8)

= 1−
2− δ(∞; f)

1 + k − k δ(∞; f)

=
(k − 1) (1− δ(∞; f))

1 + k − k δ(∞; f)
.

Since No(r,∞;L(f)) = No(r, f) + kN o(r, f) + So(r, f), it follows by (2) and

Lemma 10, Lemma 11 that

lim
r→∞

No(r,∞;L(f))

To(r, L(f))
= lim

r→∞

No(r, f) + kN o(r, f) + So(r, f)

To(r, f)
lim
r→∞

To(r, f)

To(r, L(f))

=
(k + 1) (1− δ(∞; f))

1 + k − k δ(∞; f)
.(9)
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Now we consider two cases.

Case I Let δ(∞; f) < 1.

From (8) and (9) we get

lim
r→∞

No(r, 0;L(f)) +No(r,∞;L(f))

To(r, L(f))
=
2 k(1− δ(∞; f))

1 + k − k δ(∞; f)

and so by Lemma 9 we obtain

lim
r→∞

N(r, 0;L(f)) +N(r,∞;L(f))

T (r, L(f))
=
2 k(1− δ(∞; f))

1 + k − k δ(∞; f)
.

Case II Let δ(∞; f) = 1.

From (8) and (9) we get

lim
r→∞

No(r, 0;L(f))

To(r, L(f))
= lim

r→∞

No(r,∞;L(f))

To(r, L(f))
= 0 .(10)

For a 6= 0,∞ we get on integration from the second fundamental theorem

To(r, L(f)) ≤ No(r, a;L(f)) +No(r, 0;L(f)) +No(r,∞;L(f)) + So(r, L(f)) .

So by (10) and Lemma 10 we get

lim
r→∞

No(r, a;L(f))

To(r, L(f))
= 1 .(11)

Hence by Lemma 8 we get from (11)

lim
r→∞

N(r, a;L(f))

T (r, L(f))
= 1 .(12)

Now from (10) and (11) we obtain

lim
r→∞

No(r, 0;L(f)) +No(r, a;L(f))

To(r, L(f))
= 1

and

lim
r→∞

No(r,∞;L(f)) +No(r, a;L(f))

To(r, L(f))
= 1 .

Therefore by Lemma 9 we get

lim
r→∞

N(r, 0;L(f)) +N(r, a;L(f))

T (r, L(f))
= lim

r→∞

N(r,∞;L(f)) +N(r, a;L(f))

T (r, L(f))

= 1 .(13)
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From (12) and (13) we obtain

lim
r→∞

N(r, 0;L(f))

T (r, L(f))
= lim

r→∞

N(r,∞;L(f))

T (r, L(f))
= 0 .

Therefore

lim
r→∞

N(r, 0;L(f)) +N(r,∞;L(f))

T (r, L(f))
= 0 .

This proves the theorem.

4 – Application

In this section we discuss an application of the main result.

In 1976 D. Drasin [2] posed the following problem:

If the order of f is finite and
∑

b6=∞

δ(b; f) = 2

then must we have
∑

b6=∞

δ(b; f ′) = δ(0; f ′) = 1 ?

Generalizing this problem to the kth derivative Yang and Wang [17] solved it

affirmatively and proved the following theorem.

Theorem C. Let f be a transcendental meromorphic function of finite order.

If
∑

b6=∞
δ(b; f) = 2 then for any positive integer k

∑

b6=∞

δ(b; f (k)) = δ(0; f (k)) =
2

k + 1
.

As an application of Theorem 1 we show that Theorem C remains valid even

if the finiteness restriction on the order of f is withdrawn. Thus we solve Drasin’s

problem for functions of unrestricted order.

Theorem 2. Let f be a transcendental meromorphic function having the

maximum deficiency sum. If δ(∞; f) = 0 then for any positive integer k

∑

b6=∞

δ(b; f (k)) = δ(0; f (k)) =
2

k + 1
.
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Proof: From (9) we get by Lemma 8 for L(f) = f (k) that

lim
r→∞

N(r, f (k))

T (r, f (k))
= 1 .(14)

So by Theorem 1 we get for L(f) = f (k)

lim
r→∞

N(r, 0; f (k))

T (r, f (k))
=

k − 1

k + 1

and hence

δ(0; f (k)) =
2

k + 1
.(15)

By Littlewood’s inequality we get for distinct finite complex numbers b1, b2, ..., bq

q
∑

ν=1

m(r, bν ; f) ≤ m(r, 0; f (k+1)) + S(r, f (k))

≤ T (r, f (k+1))−N(r, 0; f (k+1)) + S(r, f (k))

≤ T (r, f (k)) +N(r, f)−N(r, 0; f (k+1)) + S(r, f (k)) .

So by Lemma 1 and Lemma 11 we get for L(f) = f (k+1) and L(f) = f (k)

respectively

q
∑

ν=1

m(r, bν ; f
(k)) +m(r, f (k)) ≤

≤ 2T (r, f (k)) +N(r, f)− (k+1)N(r, f) + (1+ε)N(r, f)−N(r, f (k)) + S(r, f (k))

≤ 2T (r, f (k))− 2kN(r, f) + εT (r, f (k)) + S(r, f (k)) ,

which gives on integration

p
∑

ν=1

mo(r, bν ; f
(k)) +mo(r, f

(k)) ≤

≤ 2To(r, f
(k))− 2 k N o(r, f) + ε To(r, f

(k)) + So(r, f
(k)) .

Now by Lemma 10 and Lemma 11 for L(f) = f (k) and by (2) we get because

δ(∞; f) = 0
q
∑

ν=1

δo(bν ; f
(k)) + δo(∞; f

(k)) ≤ 2−
2 k

1 + k
+ ε .
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Since δ(a; f) ≤ δo(a; f) for any a ∈ C ∪ {∞} (cf. [14]), it follows that
q
∑

ν=1

δ(bν ; f
(k)) + δ(∞; f (k)) ≤ 2−

2 k

1 + k
+ ε .

Again since q and ε(> 0) are arbitrary, by (14) we get from above

∑

b6=∞

δ(b; f (k)) ≤
2

1 + k
.(16)

The theorem follows from (15) and (16). This proves the theorem.
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