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STABILIZATION OF A WAVE-WAVE SYSTEM

N. Aissa and D. Hamroun

Abstract: In this paper, we use the multiplier method to study the energy decay

of a coupling of a wave equation posed on a square Ω of R2 with a wave equation posed

on one of its sides Γ0. We prove that if the dissipation is located both on Ω and Γ0,

then the energy decays exponentially.

1 – Introduction

Let Ω be the open square of R2

Ω = ]0, 1[× ]0, 1[ .

Micu and Zuazua in [8] and [9] studied a wave-wave coupling and they shown

that when the dissipation is weak (say located on a part of the boundary of Ω),

the system is not exponentially stable, while W. Littman and B. Liu in [7] had

obtained only a strong stability for another model of a wave-wave coupling.

As there was no dissipation in Ω in the previous papers, we have thought to

add a dynamical controller of advection form which induces this dissipation in

order to obtain the exponential stability.

Stabilization of couplings has been studied by several authors, we cite [1], [2],

[6] and [3] and the references therein. Following [1] and [2], we use the multiplier

method.
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We consider the hybrid system of equations arising in the control of noise






















































utt = ∆u− d.∇ut in R+ × Ω ,

u = 0 in R+× Γ1 ,
∂u

∂n
= −(−∂xx)1/2 vt in R+× Γ0 ,

vtt = vxx + (−∂xx)1/2(ut|Γ0 ) in R+× Γ0 ,

v(t, 0) = v(t, 1) = 0 in R+ , u(0) = u0, ut(0) = u1 in Ω ,

v(0) = v0, vt(0) = v1 in Γ0 ,

(1)

where

Γ0 = ]0, 1[× {0} , Γ1 = ∂Ω\Γ0 .

Let us first precise the definition of the operator (−∂xx)
1

2 . We consider an

orthogonal basis (vn)n of H1
0 (0, 1), orthonormal in L2(0, 1) consisting of renor-

malized eigenfunctions of the operator (−∂xx) in H1
0 (0, 1). We recall that the

eigenvalues (λn)n and the corresponding eigenvectors (vn)n of this operator are

given by

λn = n2π2 , vn =
√
2 sin(nπx) n ∈ N? .

Since (−∂xx) is self-adjoint and positive inH1
0 (0, 1), (−∂xx)

1

2 is defined inH1
0 (0, 1)

by

(−∂xx)
1

2w =
∑

n≥1

λ
1

2
n (w, vn)L2(0,1) vn , ∀w ∈ H1

0 (0, 1)

then we extend it to L2(0, 1) by duality
〈

(−∂xx)
1

2w, v
〉

H−1(0,1),H1

0
(0,1)

=
(

w, (−∂xx)
1

2 v
)

L2(0,1)
(2)

for all w ∈ L2(0, 1) and v ∈ H1
0 (0, 1). Therefore, we have

∣

∣

∣(−∂xx)
1

2w
∣

∣

∣

L2(0,1)
= |∂xw|L2(0,1) , ∀w ∈ H1

0 (0, 1) .(3)

In this paper, we make the following hypothesis

(H)







d = (d1, d2) ∈ C1(R2,R) and ∃C0 > 0 such that

− div d ≥ C0 , ∀ (x, y) ∈ Ω , d2(x, 0) ≤ −C0, ∀x ∈ [0, 1] .

If (u, v) is a solution of (1), we define its energy

E(t) =
1

2

(

∫

Ω
|∇u|2 dx dy +

∫

Ω
|ut|2 dx dy +

∫ 1

0
|vx|2 dx +

∫ 1

0
|vt|2 dx

)
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and a formal computation shows that for a smooth solution (u, v)

E′(t) = −
∫

Ω
(d.∇ut)ut dx dy

=
1

2

∫

Ω
(∇. d)u2t dxdy +

1

2

∫ 1

0
u2t (x, 0) d2(x, 0) dx

so according to the hypothesis (H), the energy is decreasing and we see that this

dissipation is given both by Ω and Γ0.

The considerations above suggest that the natural wellposedeness space for

(1) is

X = H1
Γ1(Ω)× L

2(Ω)×H1
0 (Γ0)× L2(Γ0)

where

H1
Γ1(Ω) =

{

u ∈ H1(Ω) ; u|Γ1= 0
}

.

From now on, we denote by (·, ·) the inner product of L2(Ω) or L2(0, 1) and
| · | the associated norm; the inner product 〈·, ·〉X of X, is given by

〈

(u, p, v, q), (U, P, V, Q)
〉

X
= (∇u,∇U) + (p, P ) + (vx, Vx) + (q,Q)

and the corresponding norm will be denoted ‖·‖X .

Let A the linear operator defined on the hilbertian space X by

D(A) =

{

(u, p, v, q) ∈ H1
Γ1(Ω)×H

1
Γ1(Ω)×H

1
0 (Γ0)×H1

0 (Γ0)
/

∆u ∈ L2(Ω) ,(4)

∂u

∂n
= −(−∂xx)1/2q on Γ0, (−∂xx)1/2(p |Γ0) + vxx ∈ L2(Γ0)

}

,

A =











0 I 0 0
∆ −d.∇ 0 0
0 0 0 I

0 (−∂xx)1/2 ◦ γ0 ∂xx 0











,

γ0 being the trace operator on Γ0. Then we can write the system (1) in the form

{

Y ′(t) = A Y (t) , t ∈ R+
Y (0) = Y0 .

(5)

We will prove in section 2 the existence and the uniqueness of a solution of

(1); then in section 3 we will study the asymptotic behavior of the solution.
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2 – Existence and uniqueness

Proposition 1. Assume the hypothesis (H) hold, then for every Yo ∈ D(A),
the system (5) admits a unique solution

Y ∈ C
(

[0,+∞[ ; D(A)
)

∩ C1
(

]0,+∞[ ; X
)

.

Proof: We will use the theorem of Hille–Yoshida. Let Y = (u, p, v, q) ∈ D(A).
We have, thanks to Green’s formula (4) and (H),

〈AY, Y 〉X = (∇p,∇u) + (∆u− d.∇p, p) + (qx, vx) +
(

(−∂xx)
1

2 (p|Γ0) + vxx, q
)

= −(d.∇p, p) +
〈

∂u

∂n
|Γ0 , p

〉

H−1/2(Γ0),H1/2(Γ0)
+ (qx, vx)

−
〈

∂u

∂n
|Γ0 , p

〉

H−1(Γ0),H1

0
(Γ0)

+
〈

vxx, q
〉

H−1(Γ0),H1

0
(Γ0)

.

Consequently,

〈AY, Y 〉X = −(d.∇p, p)(6)

=
1

2

∫

Ω
(∇.d)p2 dx dy +

1

2

∫ 1

0
p2(x, 0) d2(x, 0) dx ≤ 0 .

Now let us prove that A is maximal; take Z = (U,P, V,Q) ∈ X, we will look

for Y = (u, p, v, q) ∈ D(A) such that (I −A)Y = Z. This system is equivalent to














u−∆u+ d.∇u = P + U + d.∇U ,
v − (−∂xx)

1

2 (u|Γ0)− vxx = Q+ V − (−∂xx)
1

2 (U |Γ0) ,
p = u− U , q = v − V .

(7)

Let (ϕ,ψ) ∈ H = H1
Γ1
(Ω)×H1

0 (Γ0), then from (7), we get

(u−∆u+ d.∇u, ϕ) +
〈

v − (−∂xx)
1

2 (u|Γ0)− vxx, ψ
〉

H−1(Γ0),H1

0
(Γ0)

=

= (P + U + d.∇U, ϕ) +
〈

Q+ V − (−∂xx)
1

2 (U |Γ0), ψ
〉

H−1(Γ0),H1

0
(Γ0)

so, thanks to (4) and (2), we get

(u+ d.∇u, ϕ) + (∇u,∇U) + (v, ψ) + (vx, ψx) −
− (u|Γ0 , (−∂xx)

1

2ψ) + ((−∂xx)
1

2 v, ϕ|Γ0) =

= (P + U + d.∇U,ϕ) + (Q+ V, ψ) + ((−∂xx)
1

2V, ϕ|Γ0)− (U |Γ0 , (−∂xx)
1

2ψ) .
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This last equality is of the form

B
(

(u, v), (ϕ,ψ)
)

= L(ϕ,ψ) .(8)

it is clear that B is a continuous bilinear form onH×H and that L is a continuous

linear form on H endowed with the norm

‖(u, v)‖2H = |∇u|2 + |vx|2 .

Moreover for every (u, v) ∈ H,

B
(

(u, v), (u, v)
)

= |u|2 + |∇u|2 − 1

2

∫

Ω
(∇.d)u2 dx dv − 1

2

∫ 1

0
u2(x, 0) d2(x, 0) dx

+ |v|2 + |vx|2

≥ ‖(u, v)‖2H

thanks to (H), thus B is coercitive. Therefore, using Lax–Milgram theorem, the

problem (8) has a unique solution (u, v) in H. Consequently, the system (7) has

a solution

(u, p, v, q) ∈ H1
Γ1(Ω)×H

1
Γ1(Ω)×H

1
0 (Γ0)×H1

0 (Γ0) .

Furthermore

∆u = u+ d.∇u− P − U − d.∇U ∈ L2(Ω)

and

(−∂xx)
1

2 (p|Γ0) + vxx = (−∂xx)
1

2 (u|Γ0)− (−∂xx)
1

2 (U |Γ0) + vxx = v −Q− V

thus

(−∂xx)
1

2 (p|Γ0) + vxx ∈ L2(Γ0) .

Now using (8), the Green formula and (7), we get

∂u

∂n
= −(−∂xx)

1

2 q on Γ0

so Y ∈ D(A). Therefore, we conclude that the operator (A,D(A)) is m-accretif

so (−A) generates a semi-group (SA(t))t≥0 of contractions in X.
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3 – Exponential stability

Theorem 2. Under the hypothesis (H), the system (5) is exponentially

stable.

We recall that a system of the form (5) is said to be exponentially stable if

the semigroup of contractions (SA(t))t≥0 satisfies the property

‖SA(t)‖ ≤M exp(−ωt) , ∀ t ≥ 0(9)

for some constants ω > 0 and M ≥ 1.

For the proof of the theorem, we need the following result

Proposition 3. Assume that g ∈ C([0,+∞[;H1
0 (0, 1))∩C1(]0,+∞[;L2(0, 1)),

then there exists a unique solution f ∈ C([0,+∞[;H1(Ω)) ∩ C1(]0,+∞[;L2(Ω))

solving the boundary value problem



















−∆f = 0 in R+? × Ω ,

f = (−∂xx)−
1

2 g in R+? × Γ0 ,

f = 0 in R+? × Γ1 .

(10)

Moreover, ft is continuous on R+× Ω and there exists C > 0, C ′ > 0 such that

‖f(t, ·)‖H1(Ω) ≤ C|g(t, ·)| ∀ t > 0 ,(11)

|ft|Γ0(t, ·)| ≤ C ′|gt(t, ·)| ∀ t > 0 .(12)

Proof: The uniqueness is immediate since a harmonic function null on the

boundary is identically null. For the existence, first we take

g(t, x) = αk(t) sin(kπx)

for some integer k ∈ N? and a function αk ∈ C 1(R+). Then a direct computation

shows that

f(t, x, y) = αk(t)
sin(kπx)

kπ

sinh(kπ(1− y))
sinh(kπ)

.

Since (vk =
√
2 sin(kπx))k≥1 is a complete orthonormal system of H1

0 (0, 1), for

general g in C([0,+∞[;H1
0 (0, 1)) ∩ C1(]0,+∞[;L2(0, 1)), we write

g(t, x) =
∑

k≥1

(g(t, ·), vk) vk
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so putting

fk(t, x, y) = (g(t, ·), vk)
sin(kπx)

kπ

sinh(kπ(1− y))
sinh(kπ)

we get that f =
∑

k≥1

fk is a solution of (10). Indeed the series
∑

k≥1

fk converges

uniformly in [0, T ]× Ω , ∀T > 0 since

∣

∣

∣

∣

n
∑

k=m

fk(t, x, v)

∣

∣

∣

∣

≤
( n
∑

k=m

∣

∣

∣(g(t, ·), vk)
∣

∣

∣

2
)
1

2

( n
∑

k=m

1

k2π2

)
1

2

≤ |g(t, ·)|
( n
∑

k=m

1

k2π2

)
1

2

for all (t, x, y) ∈ [0, T ]×Ω, then

sup
[0,T ]×Ω

∣

∣

∣

∣

n
∑

k=m

fk(t, x, v)

∣

∣

∣

∣

≤ sup
t∈[0,T ]

|g(t, ·)|
( n
∑

k=m

1

k2π2

)
1

2

< ∞ .

Similarly, using again the Cauchy–Shwartz inequality, we can easily show the

uniform convergence of the series
∑

k≥1

∂fk

∂x
and

∑

k≥1

∂fk

∂y
in [0, T ]×Ω, ∀T > 0.

Furthermore

∫

Ω

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

2

dx dy =
∑

k≥1

∫

Ω
(g(t, ·), vk)2 cos2(kπx)

sinh2(kπ(1− y))
sinh2(kπ)

dx dy

≤ C|g(t, ·)|2 .

The same can be done with

∫

Ω

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

2

dx dy and we obtain (11). For the proof

of (12), we consider the series
∑

k≥1

(gt(t, ·), vk)
sin(kπx)

kπ

sinh(kπ(1− y))
sinh(kπ)

and we

show as above that it is uniformly convergent in [0, T ]×Ω, for all T > 0, so we

conclude that gt is continuous on R+× Ω and

gt(t, x, y) =
∑

k≥1

(gt(t, ·), vk)
sin(kπx)

kπ

sinh(kπ(1− y))
sinh(kπ)

.
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Therefore

gt(t, x, 0) =
∑

k≥1

(gt(t, ·), vk)
sin(kπx)

kπ

and

|gt|Γ0 |2 =
1

2

∑

k≥1

∣

∣

∣(gt(t, ·), vk)
∣

∣

∣

2 1

k2π2

so we obtain (12) thanks to Cauchy–Shwartz inequality.

Proof of the Theorem: Let Y0 = (u0, u1, v0, v1) ∈ D(A) and Y (t) =

(u, ut, v, vt) the solution of (4) provided by Proposition 1. Using the Proposi-

tion 3, we introduce the function q solution of the problem



















−∆q = 0 in R+? × Ω ,

q = (−∂xx)−
1

2 vt in R+? × Γ0 ,

q = 0 in R+? × Γ1 .

(13)

Let ε, a and b be positive constants. We consider the function

%ε,a,b(t) =
1

2
‖Y (t)‖2X + ε

(

(ut, u) + a(vt, v) + b(ut, q)− (u|Γ0 , (−∂xx)
1

2 v)
)

.(14)

Then the proof of the theorem will result from the following proposition.

Proposition 4. There exists ε0, a, b > 0 such that

M(ε) ‖Y (t)‖2X ≤ %ε,a,b(t) ≤ N(ε) ‖Y (t)‖2X , ∀ t ≥ 0, ∀ ε > 0 ,(15)

%ε,a,b(t) ≤ %ε,a,b(0) exp(−C(ε) t) , ∀ t ≥ 0, ∀ ε < ε0 ,(16)

where M(ε), N(ε) and C(ε) are positive constants independent of Y .

Proof: One can easily obtain (15) by using (3) and Proposition 3. Now for

(16), first since

1

2

d

dt
‖Y (t)‖2X =

〈

AY (t), Y (t)
〉

X
=

1

2

∫

Ω
(div d)u2t dx dy +

1

2

∫ 1

0
u2t (t, x, 0) d2(x, 0) dx

so according to (H), we obtain

1

2

d

dt
‖Y (t)‖2X ≤ −C0

(

|ut|2 + |ut|Γ0 |2
)

.(17)
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In the other hand, we have

d

dt
(ut, u) = |ut|2 + (∆u− d.∇ut, u)

= |ut|2 − |∇u|2 − ((−∂xx)
1

2 vt, u|Γ0) + (d.∇u, ut)(18)

+ ((div d)ut, u) +

∫ 1

0
ut u(t, x, 0) d2(x, 0) dx ,

d

dt
(vt, v) = |vt|2 +

(

vxx + (−∂xx)
1

2 (ut|Γ0), v
)

(19)
= |vt|2 − |vx|2 + (ut|Γ0 , (−∂xx)

1

2 v) ,

d

dt
(ut, q) = (∆u− d.∇ut, q) + (ut, qt)

= −(∇u,∇q)−
(

(−∂xx)
1

2 vt, (−∂xx)−
1

2 vt

)

+ (d.∇q, ut)(20)

+ (ut div d, q) +

∫ 1

0
ut q(t, x, 0) d2(x, 0) dx + (ut, qt) .

Now, we consider the function h solving the problem
{−∆h = ut in R+∗ × Ω ,

h = 0 in R+∗ × Γ .

Since (−∆) is an isomorphism from H2(Ω) ∩H1
0 (Ω) into L2(Ω),

h ∈ C([0,+∞[;H2(Ω)) and
∣

∣

∣

∣

∂h

∂n
|Γ0
∣

∣

∣

∣

≤ C1 ‖h‖H2(Ω) ≤ C ′1|∆h|

so
∣

∣

∣

∣

∂h

∂n
|Γ0
∣

∣

∣

∣

≤ C ′1|ut|(21)

with some positive constants C1 and C
′
1. Then since q satisfies (13), we get thanks

to Proposition 3

(ut, qt) = −(∆h, qt) =

(

∂qt

∂n
|Γ0 , h

)

−
(

∂h

∂n
|Γ0 , qt|Γ0

)

=

(

∂h

∂n
|Γ0 , (−∂xx)−

1

2 vtt

)

thus

(ut, qt) = −
(

∂h

∂n
|Γ0 , (−∂xx)

1

2 v + ut|Γ0
)

.(22)

Consequently (20) becomes

d

dt
(ut, q) = −(∇u,∇q)− |vt|2 + (d.∇q, ut) + ((div d)ut, q)

+

∫ 1

0
ut q(t, x, 0) d2(x, 0) dx −

(

∂h

∂n
|Γ0 , (−∂xx)

1

2 v

)

−
(

∂h

∂n
|Γ0 , ut|Γ0

)

(23)
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whereas the last term of (14) gives

d

dt

(

u|Γ0 , (−∂xx)
1

2 v
)

=
(

ut|Γ0 , (−∂xx)
1

2 v
)

+
(

u|Γ0 , (−∂xx)
1

2 vt

)

.(24)

Note that the last term of (24) simplifies with the third term of the right hand

side of (18).

In the following, C will denote different positive constants which can be taken

as large as we want, α, β, γ, δ and θ will denote positive constants which will be

chosen later. We have

|(d.∇u, ut)| ≤ C
[

α|∇u|2 + 1
α |ut|2

]

,(25)

|((div d)ut, u)| ≤ C
[

α|∇u|2 + 1
α |ut|2

]

,(26)
∣

∣

∣

∣

∫ 1

0
ut u(t, x, 0) d2(x, 0) dx

∣

∣

∣

∣

≤ C
[

α|∇u|2 + 1
α |ut|Γ0 |2

]

,(27)

∣

∣

∣(ut|Γ0 , (−∂xx)
1

2 v)
∣

∣

∣ ≤ C
[

θ|ut|Γ0 |2 + 1
θ |vx|2

]

,(28)

|(∇u,∇q)| ≤ C
[

β|∇u|2 + 1
β |vt|2

]

,(29)

|(d.∇q, ut)| ≤ C
[

γ|ut|2 + 1
γ |vt|2

]

,(30)

|(ut div d, q)| ≤ C
[

γ|ut|2 + 1
γ |vt|2

]

,(31)
∣

∣

∣

∣

∫ 1

0
ut q(t, x, 0) d2(x, 0) dx

∣

∣

∣

∣

≤ C
[

γ|ut|Γ0 |2 + 1
γ |vt|2

]

,(32)

∣

∣

∣

∣

(

∂h

∂n
|Γ0 , (−∂xx)

1

2 v

)∣

∣

∣

∣

≤ C
[

δ|vx|2 + 1
δ |ut|2

]

,(33)

∣

∣

∣

∣

(

∂h

∂n
|Γ0 , ut|Γ0

)∣

∣

∣

∣

≤ C
[

|ut|Γ0 |2 + |ut|2
]

.(34)

Note that the estimates (25), (26) and (30) derive from the hypothesis (H),

(28) from (3), while (29), (30), (31) and (32) result from (13) and (11). Finally

(33) and (34) follow from (21) and (3). All these inequalities as well as (17) give

d

dt
%ε,a,b(t) ≤ ε

[

−1 + C(3α+ bβ)
]

|∇u|2 + ε

[

a− b+ C b

(

1

β
+

3

γ

)]

|vt|2

+ ε

[

−a+ C

(

a+ 1

θ
+ b δ

)]

|vx|2
(35)

+

(

−C0 + ε

[

1 + C

(

2

α
+ 2 b γ + b

(

1

δ
+ 1

))]

)

|ut|2

+

(

−C0 + ε

[

1 + εC

(

θ(1 + a) +
1

α
+ b(1 + γ)

)]

)

|ut|Γ0 |2 .
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Therefore according to (15), to get (16), it is enough to prove that for some

constant D(ε) > 0
d

dt
%ε,a,b(t) ≤ −D(ε) ‖Y (t)‖2X .(36)

But this last inequality hold true if we have

− 1 + C(3α+ bβ) < 0 , a− b+ C b

(

1

β
+

3

γ

)

< 0 ,(37)

− a+ C

(

a+ 1

θ
+ b δ

)

< 0 ,(38)

− C0 + ε

[

1 + C

(

2

α
+ 2 bβ + b

(

1

δ
+ 1

))]

< 0 ,(39)

− C0 + ε

[

1 + εC

(

θ(1 + a) +
1

α
+ b(1 + γ)

)]

≤ 0 .(40)

Since the inequalities (37) are equivalent to

1

C
− bβ > 3α ,

b− a
C

− b

β
>

3b

γ
(41)

we will choose the positive constants a, b, α, β, γ satisfying

1

C
− bβ > 0 and

b− a
C

− b

β
> 0

thus we must have

bC

b− a < β <
1

bC
with b− a > 0 .

Consequently, it is necessary to have

bC

b− a <
1

bC

that is

C2b2 − b+ a < 0 .

We see that this last inequality is fulfilled when we take a and b such that

0 < a <
1

4C2
,

1−
√
1− 4aC2

2C2
< b <

1 +
√
1− 4aC2

2C2
(42)

then according to what precede, we take β satisfying

bC

b− a < β <
1

bC
.(43)
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Therefore the inequalities (41) are satisfied if

α <
1
C − bβ

3
, γ >

3b
b−a
C − b

β

(44)

and in order to obtain (38), we choose δ and θ such that

0 < δ <
a

bC
, θ >

a+ 1
a
C − bδ

.(45)

Finally, choosing ε small enough, we get (39) and (40), which ends the proof

of (36).

Hence combining (36) and (15), we deduce that

d

dt
% ε, a, b(t) ≤ −D(ε)

N(ε)
% ε, a ,b(t)

which leads to (16) with C(ε) =
D(ε)

N(ε)
. Using again (15), we obtain

‖Y (t)‖2X ≤
1

M(ε)
% ε, a, b(0) exp

(

−D(ε)
N(ε)

t

)

, ∀ t ≥ 0

and (9), which ends the proof of the theorem.
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