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Abstract: The main aim of this paper is to establish the equalities

Hb(E,F ) = Hub(E,F )

Hb(E
∗
β , F

∗
β ) = Hub(E

∗
β , F

∗
β )

for the case where E and F are Fréchet spaces in the relation with the linear topological

invariants (Hub), (LB∞) and (DN).

1 – Introduction

Let E, F be locally convex spaces. By H(E,F ) we denote the space of

all F -valued holomorphic mappings on E. Instead of H(E,C) we write H(E).

Each element of H(E,F ) is called an entire mapping. By Hb(E,F ) we denote

the space of all entire mappings which are bounded on all bounded subsets of

E. The mappings in Hb(E,F ) are called of bounded type. An entire mapping

f ∈ H(E,F ) is called of uniformly bounded type if it is bounded on multiples of

some neighbourhood of 0 in E. We denote by Hub(E,F ) the space of all entire

mappings of uniformly bounded type.

A locally convex space E has the property (Hub) and is written shortly

E ∈ (Hub) if H(E) = Hub(E). The property (Hub) has been investigated by

some authors. Colombeau and Mujica have proved that H(E) = Hub(E) for

each (DFM)-space E (Ex. 3.11 in [2], p. 163) while Nachbin has shown that

Hub(E) 6⊂ H(E) for the nuclear Fréchet space E = H(C) (Ex. 3.12 in [2], p. 165).
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Meise–Vogt have also proved that a nuclear locally convex space E satisfies

H(E) =Hub(E) if and only if entire mappings on E are universally extendable

in the following sense, whenever E is a topological linear subspace of a locally

convex space F with the topology defined by a fundamental system of contin-

uous semi-norms induced by semi-inner products, then each f ∈ H(E) has a

holomorphic extension to F (Proposition 6.21 in [2], p. 421).

Next they have given some sufficient conditions for the equalityH(E)=Hub(E)

in terms of the linear topological invariants (Ω) and (Ω̃) (Theorem 3.3 and

3.9 in [8]) and in the case E is a nuclear Fréchet space they have shown that

(Ω̃)⇒ (Hub)⇒ (LB∞) (Remark 3.11 in [8]). By Vogt (Ex. 5.5 in [15]) the class

(LB∞) is strictly larger than the class (Ω̃). However we do not know whether

one of the above implications can be reversed.

In this paper we will establish the relations

(1) Hb(E,F ) = Hub(E,F )

and

(2) Hb(E
∗
β , F

∗
β ) = Hub(E

∗
β , F

∗
β )

for Fréchet-valued (resp. DF -valued) entire mappings on Fréchet spaces (resp.

DF spaces) in the relation with linear topological invariants (Hub), (LB∞) and

(DN). Note that under various assumptions (1) has been considered by some

authors [3], [4], [5], [6]. It should be noticed that if E is a Fréchet space that is

not a Banach space then the scalar valued equality Hub(E) = Hb(E) does not

imply the equality Hub(E,F ) = Hb(E,F ) for all Fréchet spaces F . It is enough

to consider the case F = E.

Beside the introduction the article contains four sections. In the second one

we recall some definitions and fix the notations. The section 3 is devoted to prove

the equality (2). The main aim of section 4 is to prove that (1) holds in a special

case where F = H(C, A), A is a Banach space. In order to obtain the result in

this case we modify some techniques of Vogt (Proposition 1.3 and 1.4 in [15])

for continuous linear maps to holomorphic mappings of bounded type. From the

results obtained in the section 4 as a special case we prove, in the section 5, the

equality (1) under the assumption that E has the property (Hub) and F has the

property (DN).
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2 – Preliminaries

2.1. We shall use standard notations from the theory of locally convex spaces

as presented in the books of R.Meise and D.Vogt [9] and Schaefer [13]. All locally

convex spaces E are assumed to be complex vector spaces and Hausdorff.

For a locally convex space E by U(E) we denote a neighbourhood basis of

0 ∈ E. For each U ∈ U(E) by EU we denote the Banach space associated to the

neighbourhood U . Let V ∈ U(E), V ⊂ U , ωV U : EV → EU denotes the canonical

map from EV to EU .

A locally convex space E is called to be Schwartz if for each U ∈ U(E) there

exists V ∈ U(E), V ⊂ U such that ωV U : EV → EU is compact.

For each locally convex space E, E∗β denotes the topological dual space E∗ of

E equipped with the strong topology β(E∗, E).

Now assume that E is a Fréchet space. We always consider that its locally

convex structure is generated by an increasing system (‖ · ‖k)k≥1 of semi-norms.

For k ≥ 1 Ek will denote the Banach space associated to the semi-norm ‖ · ‖k.

Let E be a Fréchet space and u ∈ E∗. For each k ≥ 1 we define

‖u‖∗k = sup
{
|u(x)| : ‖x‖k ≤ 1

}
.

Now we say that E has the property (LB∞) if

(LB∞) ∀{ρn} ↑ +∞ ∀p ∃q ∀n0 ∃N0 ≥ n0, C > 0

∀u ∈ E∗, ∃k n0 ≤ k ≤ N0 : ‖u‖∗1+ρk
q ≤ C ‖u‖∗k ‖u‖

∗ρk
p .

E is said to have the property (DN) if

(DN) ∃p, d > 0 ∀q ∃k,C > 0 ∀x ∈ E : ‖x‖1+d
q ≤ C ‖x‖k ‖x‖

d
p .

The properties (LB∞) and (DN) and some others are introduced and investigated

by Vogt [15], [16], [17].

From now on, to be brief, whenever E has the property (Hub) (resp. (LB∞),

(DN), ...) we write E ∈ (Hub) (resp. E ∈ (LB∞), E ∈ (DN), ...).

2.2. Holomorphic mappings. Let E, F be locally convex spaces and D

be a non empty open subset of E.

A mapping f : D → F is called Gâteaux-holomorphic if for each x ∈ D, a ∈ E

and u ∈ F ∗ the C-valued function of one complex variable

λ −→ u ◦ f(x+ λa)
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is holomorphic on some neighbourhood of 0 in C. A mapping f : D → F is called

holomorphic if f is Gâteaux-holomorphic and continuous. By H(D,F ) we denote

the space of all F -valued holomorphic mappings onD, the compact-open topology

on H(D,F ) is denoted by τ0. For details concerning holomorphic mappings on

locally convex spaces we refer to the books of Dineen [2] and Noverraz [12].

3 – DF -valued holomorphic mappings of uniformly bounded type and

the linear topological invariants (LB∞) and (DN)

In the section we investigate the connection between DF -valued holomorphic

mappings of uniformly bounded type on DF -spaces and the linear topological

invariants (LB∞) and (DN). We prove the following

3.1. Theorem. Let E be a Fréchet space. Then

a) E has the property (DN) if and only if Hub(E
∗
β , F

∗
β ) = Hb(E

∗
β , F

∗
β ) holds

for every Fréchet space F having the property (LB∞).

b) E has the property (LB∞) if and only if Hub(F
∗
β , E

∗
β) = Hb(F

∗
β , E

∗
β) holds

for every Fréchet space F having the property (DN).

Proof: a) Assume that E ∈ (DN), obviously Hub(E
∗
β , F

∗
β ) ⊂ Hb(E

∗
β , F

∗
β ).

Let f : E∗β → F ∗β be a holomorphic mapping of bounded type. Consider the linear

map f̂ : Hb(F
∗
β )→ Hb(E

∗
β) given by f̂(g) = g ◦ f for all g ∈ Hb(F

∗
β ). It is easy to

that F is a subspace of Hb(F
∗
β ). Hence f̂ : F → Hb(E

∗
β) is linear and continuous.

Since E ∈ (DN) by (Theorem 3 in [10]) Hb(E
∗
β) also has the property (DN).

Now from F ∈ (LB∞) we infer that there exists a neighbourhood V of 0 ∈ F for

which f̂(V ) is bounded in Hb(E
∗
β) (Theorem 6.2 in [15]). This yields that

sup
{
|f̂(x)(u)| : x ∈ V, u ∈ B

}
= sup

{
|f(u)(x)| : x ∈ V, u ∈ B

}
< +∞

for every bounded subset B ⊂ E∗β . Hence f : E∗β → (FV )
∗ is holomorphic and of

bounded type (Proposition 7 in [3]).

Conversely, by (Theorem 2.1 in [15]) it sufficies to show that

L(Λ1(α), E) = LB(Λ1(α), E)

for the exponential sequence α = (αn) where αn = n for n ≥ 1.

Let f : Λ1(α)→ E be a continuous linear map. Since f maps bounded subsets

of Λ1(α) to bounded subsets of E then f ∗ ∈ L
(
E∗β , (Λ1(α))

∗
β

)
where f∗ is the
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dual map of f . In view of Λ1(α) ∈ (LB∞) and by applying the hypothesis we

obtain that f∗ ∈ LB
(
E∗β, (Λ1(α))

∗
β

)
. Hence f ∈ LB(Λ1(α), E).

b) Necessity follows from a).

Conversely, by (Theorem 5.2 in [16]) it suffices to show that

L(E,Λ∞∞(α)) = LB(E,Λ∞∞(α))

where αn = n for all n ≥ 1 and

Λ∞∞(α) =
{
ξ = (ξj)j≥1 : ‖ξ‖k = sup |ξj |ρ

αj
k <+∞ for all k ≥ 1

}

and {ρk} ↑ +∞.

Let f : E → Λ∞∞(α) be a continuous linear map.

As in a) f∗ ∈ L((Λ∞∞(α))∗β , E
∗
β). It is easy to check that Λ∞∞(α) has the property

(DN) and, hence, f∗ ∈ LB((Λ∞∞(α))∗β , E
∗
β). From an argument as in a) we obtain

that f ∈ LB(E,Λ∞∞(α)) which completes the proof of 3.1Theorem.

4 – Fréchet-valued holomorphic mappings of uniformly bounded type

and the linear topological invariant (Hub)

The main aim of this section is to prove the following technical result which

is crucial for the proof of 5.1 Theorem.

4.1. Theorem. Let E be a Fréchet-Schwartz space having the property (Hub)

and A be a Banach space. Then ∀{ρn} ↑ +∞ ∃k > 0 ∀p, s > 0 ∀r > 0 ∀n

sufficiently large ∃N0 > n, C > 0 ∀f ∈ Hb(E,A) ∃ n ≤ N∗ ≤ N0:

(3) ‖f‖
1+ρN∗

k,r ≤ C ‖f‖N∗,ρN∗ · ‖f‖
ρN∗

p,ρs

where

‖f‖k,r = sup
{
‖f(x)‖ : ‖x‖k ≤ r

}

for f ∈ Hb(E,A).

In order to derive the proof of this theorem first we establish the stabil-

ity of the property (Hub) under the finite products (see 4.2 Proposition below).

4.2 Proposition is a key ingredient in the proof of 4.1 Theorem. Moreover, next we

modify some techniques of Vogt (Proposition 1.3, 1.4 in [15]) which are used for

establishing (1) for continuous linear maps to holomorphic mappings of bounded

type.
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Now we state and prove the following

4.2. Proposition. Let E and F be Fréchet-Schwartz spaces having the

property (Hub). Then E × F has also the property (Hub).

Proof: Given f ∈ H(E × F ). Consider the holomorphic mapping fE :

E → (H(F ), τ0) associated to f . Since F ∈ (Hub), by (Proposition 4.1 in [8]),

(H(F ), τ0)bor is a regular inductive limit of Hb(Fα), α ∈ N, the Banach space

of holomorphic mappings of bounded type on Fα where Fα is the Banach space

associated to the continuous semi-norm ‖ · ‖α of F . First we prove that there

exist p, α ≥ 1 such that

fE(Up) ⊂ Hb(Fα) .

Indeed, otherwise, for each p ≥ 1, α ≥ 1 there exists xαp such that xαp ∈ Up

and fE(x
α
p ) 6∈ Hb(Fα). Since {xpp}p≥1→ 0 and (H(F ), τ0)bor = lim indHb(Fα) is

regular we can find α0 such that

fE(x
p
p) ⊂ Hb(Fα0

) for all p ≥ 1 .

This is impossible because fE(x
α0

α0
) 6∈ Hb(Fα0

). Thus there exists p and α such

that fE(Up) ⊂ Hb(Fα). Similarly there exist q > p, β > α such that fF (Vβ) ⊂

Hb(Eq) where fF : F → (H(E), τ0) is the holomorphic mapping induced by f .

Consider the mapping

g : (Uq × Fβ) ∪ (Eq × Vβ) ⊂ Eq × Fβ → C

defined by fE and fF . Notice that g is separately holomorphic. By a result

of N.T.Van–Zeriahi (Théorème 1.1 in [11]) g extends to Gâteaux-holomorphic

mapping g̃ on Eq×Fβ such that f is Gâteaux-holomorphically factorized through

g̃ by ωq× ωβ : E × F → Eq × Fβ .

By shrinking Uq and Vβ we may assume that f is bounded on Uq×Vβ. Hence

by the Zorn theorem ĝ is holomorphic on Eq × Fβ .

On the other hand, since E and F are Schwartz spaces we can find k ≥ q

and γ ≥ β such that the canonical maps ωqk : Ek → Eq, ωβγ : Fγ → Fβ are

compact. Hence ĝ ∈ Hb(Ek × Fγ) and f is factorized through ĝ by ωk × ωγ .

Hence f ∈ Hub(E × F ).

Remark. In the above proposition, if we take F =C then we haveHb(E×C)=

Hub(E×C). However, Hb(E×C) = Hb(E,H(C)), Hub(E×C) = Hub(E,H(C))

and, hence, (1) holds for the case F = H(C). But it is known that H(C) has the
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property (DN). Below, in 5.1 Theorem , we shall show that (1) holds under the

assumptions E ∈ (Hub) and F ∈ (DN).

Now in order to obtain the proof of 4.1 Theorem we shall establish some

equivalent conditions for which (1) holds.

First we fix some notations. Let E (resp. F ) be a Fréchet space with the topo-

logy defined by an increasing system of semi-norms (‖ · ‖γ)γ≥1 (resp. (‖ · ‖k)k≥1).

For each k, γ, r > 0 (or ρ > 0) and f ∈ H(E,F ) we define

‖f‖k,γ,r = sup
{
‖f(x)‖k : ‖x‖γ ≤ r

}
.

Through this section we always assume that E is a Fréchet space having the

property (Hub). Now we have the following

4.3. Proposition. The following assertions are equivalent

(i) Hb(E,F ) = Hub(E,F ).

(ii) ∀{γ(n)} ↑ ∀{ρn} ↑ +∞ ∃k ∀r > 0 ∀n ∃N0, C > 0 ∀f ∈ Hb(E,F )

(4) ‖f‖n,γ(k),r ≤ C max
1≤N≤N0

‖f‖N,γ(N),ρN .

Proof: (i)⇒(ii) Given {γ(n)} ↑ and {ρn} ↑ +∞. Put

G =
{
f ∈ Hb(E,F ) : ‖f‖n,γ(n),ρn < +∞, ∀n

}
.

SinceHb(E,F ) = Hub(E,F ) thenG is a Fréchet space equipped with the topology

defined by the system of semi-norms

qm(f) = sup
{
‖f‖n,γ(n),ρn : n = 1, 2, ...,m

}

for f ∈ G. For each k ∈ N, define

Hk =
{
f ∈ Hb(E,F ) : ‖f‖n,γ(k),r < +∞ for all n, r > 0

}
.

Hk is a Fréchet space under the topology defined by the systems of semi-norms

pn,r(f) = ‖f‖n,γ(k),r .

We note that Hk ⊂ Hk+1 for all k ≥ 1. By the hypothesis Hb(E,F ) = Hub(E,F )

it follows that G⊂
⋃
k≥1

Hk. All these spaces are continuously embeded in Hb(E,F ).
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By the factorization theorem of Grothendieck (Theorem 24.33 in [9], p. 290) there

exists k such that G is continuously embeded in Hk. Hence ∀r > 0 ∀n ∃N0, C>0

such that

pn,r(f) ≤ C max
N≤N0

qN (f)

for f ∈ Hb(E,F ). This shows that (4) holds.

(ii)⇒(i) is trivial.

Now we need the following result which shows that (1) holds for the case F

is a Banach space.

4.4. Lemma. Let E be a Fréchet space having the property (Hub) and F a

Banach space. Then

Hb(E,F ) = Hub(E,F ) .

Proof: See the proof of (i)⇒(iii) of Proposition 2.5 in [4].

Let A be a Banach space and B = (bj,k)j,k≥1 a Köthe matrix. We define

Λ∞(B,A) :=

{
a = (ai)i≥1 : ai ∈ A, ‖a‖n = sup ‖ai‖bi,n < +∞ for all n ≥ 1

}
.

Λ∞(B,A) is a Fréchet space under the topology defined by the system of semi-

norms (‖ · ‖)n≥1.

When A = C we write Λ∞(B) instead of Λ∞(B,C).

For a comprehensive survey on the theory of Köthe sequence spaces we refer

the readers to the book of Meise–Vogt (Chapters 27-31, p. 326–403 in [9]).

Let E ∈ (Hub). Then we have the following

4.5. Proposition. Let A be a Banach space. The following assertions are

equivalent

(i) Hb(E,Λ∞(B,A)) = Hub(E,Λ∞(B,A)).

(ii) ∀{γ(n)} ↑ ∀{ρn} ↑ +∞ ∃k ∀r > 0 ∀n ∃N0, C > 0

(5) bj,n‖f‖γ(k),r ≤ C max
1≤N≤N0

bj,N ‖f‖γ(N),ρN

for all j ≥ 1 and for f ∈ Hb(E,A).
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Proof: (i)⇒(ii) Let f ∈ Hb(E,A).

Put gj = f ⊗ ej ∈ Hb(E,Λ∞(B,A)) where {ej}j≥1 are vectors in Λ∞(B) of

the form ej = (0, 0, ..., 0, 1
ĵ
, 0, ...). By applying 4.3 Proposition to gj and using

‖gj‖n,γ(k),r = bj,n‖f‖γ(k),r

we obtain (ii).

(ii)⇒(i) Let f ∈ Hb(E,Λ∞(B,A)) be given. Since

Λ∞(B,A) =

{
a = (ai)i≥1 : ai ∈ A, ‖a‖n = sup

i
‖ai‖bi,n < +∞ for all n ≥ 1

}

it implies that f = (fi)i≥1 where fi ∈ Hb(E,A). From E ∈ (Hub) and f ∈

Hb(E,Λ∞(B,A)) it follows that for each n ≥ 1 if f can be considered as a holor-

morphic mapping of bounded type with values in the Banach space Λ∞(B,A)n
induced by the continuous semi-norm ‖ · ‖n then 4.4 Lemma implies that there

exists γ(n) ≥ 1 such that

M(n, γ(n), r) = sup
{
‖f(x)‖n : ‖x‖γ(n) ≤ r

}
< +∞

for all r > 0.

We may assume that the sequence {γ(n)} is increasing.

Take some sequence {ρn} ↑ +∞ and by using (ii) for {γ(n)} ↑ and {ρn} we

derive that ∃k ∀r > 0 ∀n ∃N0, C > 0:

bi,n‖fi‖γ(k),r ≤ C max
1≤N≤N0

bi,N‖fi‖γ(N),ρN .

Hence
‖f‖n,γ(k),r = sup

i
bi,n‖fi‖γ(k),r

≤ C max
1≤N≤N0

sup
i

bi,N‖fi‖γ(N),ρN

= C max
1≤N≤N0

‖f‖N,γ(N),ρN .

It follows that f ∈ Hub(E,Λ∞(B,A)).

Proof of 4.1 Theorem: By 4.2 Proposition , we have E×C ∈ (Hub). Using

4.4 Lemma for F = A, we get

Hb(E×C, A) = Hub(E×C, A) .
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We have H(C, A) is topologically isomorphic to H(C)⊗̂εA [14] (Also see Ex. 4.91,

p. 313 in [2]). Morever, the Fréchet-nuclear space H(C) is topologically isomor-

phic to Λ∞∞(α), where

Λ∞∞(α) =

{
ξ = (ξj) ⊂ CN : ‖ξ‖k = sup

j
|ξj |e

ρkαj < +∞, for all k

}

and α = (αj), αj = j, ρ = {ρk} ↑ +∞.

Hence

H(C, A) = H(C) ⊗̂ε A = H(C) ⊗̂π A = Λ∞∞(α) ⊗̂π A = Λ∞(B,A) .

Now we have

Hb(E×C, A) = Hb(E,H(C, A)) = Hb(E,Λ∞(B,A)) .

Hence

Hb(E,Λ∞(B,A)) = Hub(E,Λ∞(B,A)) .

Now by applying 4.5 Proposition to the sequence {γ(n) = n} and {ρk} ↑ +∞ as

above we have

∃k > 0 ∀r > 0 ∀n > k ∃N0 > n, D > 0 ∀f ∈ Hb(E,A)

(6) eρnj‖f‖k,r ≤ D max
1≤N≤N0

eρN j‖f‖N,ρN for all j ≥ 1 .

For each n we can choose j0 such that for j ≥ j0

(7) e(ρn−1−ρn)jD < 1 .

For k ≤ N ≤ n− 1 and j ≥ j0 the following inequality holds

(8) DeρN j‖f‖N,ρN < eρnj‖f‖k,r

for r ≥ ρn−1.

Indeed, in the converse case, we assume that there exist k ≤ N ≤ n − 1 and

j ≥ j0 such that

eρnj‖f‖k,r ≤ DeρN j‖f‖N,ρN

for r ≥ ρn−1.

It follows that

(9)
‖f‖k,r
‖f‖N,ρN

≤ D · e(ρN−ρn)j < 1 .
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However, since N ≥ k it implies that UN ⊂ Uk and

{
‖f(x)‖ :

x

ρN
∈ UN

}
⊂

{
‖f(x)‖ :

x

r
∈ Uk

}

for r ≥ ρn−1. This shows that

1 ≤
‖f‖k,r
‖f‖N,ρN

and, hence, it contradicts to (9).

Therefore, for j ≥ j0 and r ≥ ρn−1

(10) eρnj‖f‖k,r ≤ Dmax
{
eρN j‖f‖N,ρN : N = 1, 2, ..., k − 1, n, ..., N0

}
.

Now let f ∈ Hb(E,A) and p, s be given. If ‖f‖p,ρs= +∞ then (3) holds.

Now assume that ‖f‖p,ρs < +∞. Let j be the smallest natural number larger

or equal to j0 such that

D‖f‖p,ρs ≤ e(ρn−ρk−1)j‖f‖k,r .

Then

(11) e(ρn−ρk−1)(j−1)‖f‖k,r ≤ D‖f‖p,ρs ≤ e(ρn−ρk−1)j‖f‖k,r .

For j such that (11) holds there exists n ≤ N ∗≤ N0 which satisfies

eρN∗j‖f‖N∗,ρN∗ = max
1≤N≤N0

eρN j‖f‖N,ρN .

Indeed, otherwise there exists 1 ≤ N ∗ ≤ k − 1 such that

eρN∗j‖f‖N∗,ρN∗ = max
1≤N≤N0

eρN j‖f‖N,ρN .

From (10) we infer that

eρnj‖f‖k,r ≤ DeρN∗j‖f‖N∗,ρN∗ for r ≥ ρn−1 .

Hence

‖f‖k,r ≤ De(ρN∗−ρn)j‖f‖N∗,ρN∗ < ‖f‖N∗,ρN∗

holds for all r > 0. It is impossible.

Now from (10) we deduce

eρnj‖f‖k,r ≤ DeρN∗j‖f‖N∗,ρN∗
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or equivalently

‖f‖k,r ≤ De(ρN∗−ρn)j‖f‖N∗,ρN∗

≤ De
θ·

ρN∗−ρn

ρn−ρk−1
(ρn−ρk−1)(j−1)

‖f‖N∗,ρN∗

where θ =
j

j − 1
·

Put d = θ ·
ρN∗ − ρn

ρn − ρk−1
. Then

(12) ‖f‖k,r ≤ D

(
D
‖f‖p,ρs
‖f‖k,r

)d
‖f‖N∗,ρN∗ .

However

(13) d = θ
ρN∗ − ρn

ρn − ρk−1
≤

θ

ρn − ρk−1
ρN∗ ≤ ρN∗

for n sufficiently large such that
θ

ρn− ρk−1
≤ 1. On the other hand,

(14) 1 ≤ e(ρn−ρk−1)(j−1) ≤ D
‖f‖p,ρs
‖f‖k,r

·

By combining (12), (13) and (14) we obtain that

‖f‖k,r ≤ D

(
D
‖f‖p,ρs
‖f‖k,r

)ρN∗

‖f‖N∗,ρN∗ .

Thus

‖f‖
1+ρN∗

k,r ≤ C ‖f‖N∗,ρN∗ ‖f‖
ρN∗

p,ρs

where C = D1+ρN∗ which completes the proof of 4.1 Theorem.

5 – Fréchet-valued holomorphic mappings of uniformly bounded type

and the linear topological invariants (Hub) and (DN)

Based on results obtained in Section 4 this section is devoted to study the con-

nection between the uniform boundedness of Fréchet-valued holomorphic map-

pings and the linear topological invariants (Hub) and (DN). The main result of

this section is the following
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5.1. Theorem. Let F be a Fréchet space. Then

Hb(E,F ) = Hub(E,F )

holds for all Fréchet-Schwartz space E having the property (Hub) if and only if

F ∈ (DN).

Proof:
Neccesity. Take E = Λ1(β) with β = (βn), βn = n. Then Λ1(β) is a nuclear

Fréchet space and by the hypothesis L(Λ1(β), F ) = LB(Λ1(β), F ). Hence by

(Theorem 2.1 in [15]) F ∈ (DN).

Sufficiency. By the hypothesis and (Theorem 2.6 in [17]) we have that F is

a subspace of A⊗̂πs ∼= A⊗̂πΛ
∞
∞(α) = Λ∞(B,A) where A is a Banach space and

s ∼= Λ∞∞(α), α = (log(n+ 1))n≥1. Hence it suffices to show that

Hb(E,Λ∞(B,A)) = Hub(E,Λ∞(B,A)) .

We shall show that the condition (ii) of 4.5 Proposition is satisfied. Indeed, take

a sequence {γn} ↑ and {ρn} ↑ +∞ such that lim
n→∞

ρn

n
= 0. As in (Theorem 3.2

in [15]) we may assume that γ(n) = n for all n ≥ 1. By the hypothesis and by

applying 4.1Theorem for the sequence {ρn} we infer that there exists k such

that ∀p, s > 0 ∀r > 0 ∀n sufficiently large ∃N0 > n, C > 0 ∀f ∈ Hb(E,A)

∃n ≤ N∗ ≤ N0 :

(15) ‖f‖
1+ρN∗

k,r ≤ C ‖f‖N∗,ρN∗ ‖f‖
ρN∗

p,ρs .

Now take p = 1, s = 1. For given n there exists n0 sufficiently large such that for

all N ≥ n0 we have

ρN (n− 1) ≤ N − n .

Applying (15) for p = 1, s = 1 and n = n0 ∀r > 0 we can find N0 > n0, C > 1

∀f ∈ Hb(E,A) ∃n0 ≤ N∗ ≤ N0 :

(16) ‖f‖
1+ρN∗

k,r ≤ C ‖f‖N∗,ρN∗
‖f‖ρN∗

1,ρ1
.

Now we need to prove

(17) enαj‖f‖k,r ≤ C max
1≤N≤N0

eNαj‖f‖N,ρN for all j ≥ 1 .

Given j ≥ 1. Then either

enαj‖f‖k,r ≤ eαj‖f‖1,ρ1
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or, in the converse case,

eαj‖f‖1,ρ1
≤ enαj‖f‖k,r .

In the first case (17) obviously holds. We consider the second. Then we have

‖f‖1,ρ1
≤ e(n−1)αj‖f‖k,r .

From (16) we have

‖f‖
1+ρN∗

k,r ≤ C ‖f‖N∗,ρN∗ eρN∗ (n−1)αj‖f‖
ρN∗

k,r

≤ C ‖f‖N∗,ρN∗ e(N∗−n)αj‖f‖
ρN∗

k,r .

Hence

enαj‖f‖k,r ≤ C eN
∗αj‖f‖N∗,ρN∗ .

Combining all these results we see that (17) is satisfied.

By 4.5 Proposition we have

Hb(E,A⊗̂πΛ
∞
∞(α)) = Hub(E,A⊗̂πΛ

∞
∞(α)) .

This completes the proof.

At the end of this paper we want to give an equivalent condition for which

(1) holds in the case that E = Λ(B) is the space of Köthe sequences and F is a

Fréchet space. With the notations used as above with B = (bj,k)j,k≥1 a matrix

satisfying (*) we define the sequence space Λ(B) given by

Λ(B) =

{
ξ = (ξ1, ξ2, ...) : ‖ξ‖k =

∞∑

j=1

|ξj | bj,k < +∞ for all k ≥ 1

}
.

Λ(B) is a Fréchet space with the topology defined by the system of semi-norms

(‖ · ‖k). If we consider the Schauder basis {ej}j≥1 in Λ(B) of the form

ej =
(
0, 0, ..., 0, 1

ĵ
, 0, ...

)

then {ej}j≥1 is an absolute basis of Λ(B) and

‖ej‖k = bj,k

for j, k ≥ 1.
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Now we prove the following

5.2. Proposition. Let Λ(B) ∈ (Hub) and F be a Fréchet space. The fol-

lowing are equivalent

(i) Hb(Λ(B), F ) = Hub(Λ(B), F ) ;

(ii) ∀{γ(n)} ↑ ∀{ρn} ↑ +∞ ∃k ∀r > 0 ∀n ∃ N0 > 0, C > 0

(18)
‖x‖nr

p

bj1,γ(k) · · · bjp,γ(k)
≤ C max

1≤N≤N0

‖x‖Nρ
p
N

bj1,γ(N) · · · bjp,γ(N)

for x ∈ F , j1, ..., jp ≥ 1, p ≥ 1.

Proof: (i)⇒(ii) Let {γ(n)} ↑ and {ρn} ↑ +∞ be given. By 4.3 Proposition

we can find k satisfying (4). For j1, ..., jp ≥ 1, p ≥ 1, x ∈ F we define f ∈

Hb(Λ(B), F ) given by

f(ξ) = ξj1 ... ξjp x

where ξ = (ξ1, ..., ξj1 , ..., ξj2 , ..., ξjp , ...) ∈ Λ(B). Then

‖x‖nr
p

bj1,γ(k) · · · bjp,γ(k)p
p

= ‖f‖n,γ(k),r ≤ C max
1≤N≤N0

‖f‖N,γ(N),ρN ,

‖x‖nr
p

bj1,γ(k) · · · bjp,γ(k)p
p
≤ C max

1≤N≤N0

‖x‖Nρ
p
N

bj1,γ(N) · · · bjp,γ(N)p
p

.

Hence we have (18).

(ii)→(i) Let f ∈ Hb(E,F ). Since Λ(B) ∈ (Hub) it follows that for each n ≥ 1

then exists γ(n) such that

M(n, γ(n), ρ) = sup
{
‖f(ξ)‖n : ‖ξ‖γ(n)≤ ρ

}
< +∞

for all ρ > 0. We may assume that {γ(n)} ↑. Fix a sequence {ρn} ↑. Write the

Taylor expansion of f at 0 ∈ Λ(B)

f(ξ) =
∑

p≥0

Pp f(ξ) =
∑

p≥0

∑

j1,...,jp≥1

P̂p f(ej1 , ..., ejp) ξj1 ... ξjp .

Using (ii) for the sequence {γ(n)} ↑ defined as above we can find k such that (18)



144 LE MAU HAI, NGUYEN VAN KHUE and BUI QUOC HOAN

holds. On the other hand, in (18) we can take r = 1. Now we have

‖f(ξ)‖n ≤
∑

p≥0

∑

j1,...,jp≥1

‖P̂p f(ej1 , ..., ejp)‖n |ξj1 | · · · |ξjp |

≤
∑

p≥0

∑

j1,...,jp≥1

‖P̂p f(ej1 , ..., ejp)‖n

bj1,γ(k) · · · bjp,γ(k)
bj1,γ(k)|ξj1 | · · · bjp,γ(k)|ξjp |

≤
∑

p≥0

sup
j1,...,jp≥1

‖P̂p f(ej1 , ..., ejp)‖n

bj1,γ(k) · · · bjp,γ(k)

∑

j1,...,jp≥1

bj1,γ(k)|ξj1 | · · · bjp,γ(k)|ξjp |

≤ C
∑

p≥0

sup
j1,...,jp≥1

(
max

1≤N≤N0

‖P̂p f(ej1 , ..., ejp)‖Nρ
p
N

bj1,γ(N) · · · bjp,γ(N)

)
‖ξ‖p

γ(k)(19)

≤ C
∑

p≥0

ρ
p
N0

1

ρp
sup

j1,...,jp≥1

(
max

1≤N≤N0

‖P̂p f(ej1 , ..., ejp)‖Nρp

bj1,γ(N) · · · bjp,γ(N)

)
‖ξ‖p

γ(k)

≤ C
∑

p≥0

ρ
p
N0

ρp
max

1≤N≤N0

sup
j1,...,jp≥1

∥∥∥∥∥P̂p f

(
ρej1

bj1,γ(N)
, ...,

ρejp

bjp,γ(N)

)∥∥∥∥∥
N

‖ξ‖p
γ(k)

≤ C
∑

p≥0

ρ
p
N0

ρp
max

1≤N≤N0

(
pp

p!
‖f‖N,γ(N),ρ

)
‖ξ‖p

γ(k) .

Now let ‖ξ‖γ(k) ≤ R for arbitrary R > 0. From (19) we derive that

‖f‖n,γ(k),R ≤ C max
1≤N≤N0

M(N, γ(N), ρ)
∑

p≥0

ρ
p
N0
· pp

p!

Rp

ρp
< +∞

for ρ sufficiently large and the conclusion follows.
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[15] Vogt, D. – Frécheträume, zwischen denen jede stetige lineare Abbildung
beschränkt ist, J. Reine. Angew. Math., 345 (1983), 182–200.

[16] Vogt, D. – Subspaces and quotient spaces of (s), in “Functional Analysis: Surveys
and Recent Results” (K.-D. Bierstedt, B. Fuchssteiner, Eds.), North-Holland Math.
Stud., 27, pp. 167–187, 1977.

[17] Vogt, D. – On two classes of F -spaces, Arch. Math., 45 (1985), 255–266.

Le Mau Hai, Nguyen Van Khue and Bui Quoc Hoan,

Department of Mathematics, Pedagogical Institute Hanoi,

Tuliem – Hanoi – VIETNAM


