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QUASI-INVARIANT OPTIMAL CONTROL PROBLEMS *

Delfim F.M. Torres

Abstract: We study in optimal control the important relation between invariance of

the problem under a family of transformations, and the existence of preserved quantities

along the Pontryagin extremals. Several extensions of Noether theorem are provided, in

the direction which enlarges the scope of its application. We formulate a more general

version of Noether’s theorem for optimal control problems, which incorporates the possi-

bility to consider a family of transformations depending on several parameters and, what

is more important, to deal with quasi-invariant and not necessarily invariant optimal

control problems. We trust that this latter extension provides new possibilities and we

illustrate it with several examples, not covered by the previous known optimal control

versions of Noether’s theorem.

1 – Introduction

The study of invariant variational problems

J [x(·)] =

∫ b

a
L(t, x(t), ẋ(t)) dt −→ min

in the calculus of variations was initiated in 1918 by Emmy Noether who, influ-

enced by the works of Klein and Lie on the transformation properties of differen-

tial equations, published in her gorgeous paper [13, 14] a fundamental, and now

classical result, known as Noether’s theorem. The universal principle described

by Noether’s theorem (see e.g. [5, pp. 262–266], [19, §4.3.], or [6, §20]), asserts
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that invariance of the integral functionals of the calculus of variations with re-

spect to a family of transformations result in existence of a certain conservation

law or equivalently a first integral of the corresponding Euler-Lagrange differ-

ential equations. This means that the invariance hypothesis leads to quantities,

computed in terms of the Lagrangian and the family of transformations, which

are constant along the extremals. This result is of great importance in physics,

engineering, systems and control and their applications (see [18, 9, 12, 1]). One

important application of the Noether theorem is, for example, to the n-body

problem. For a discussion of this problem, and interpretation of the respective

first integrals from invariance under Galilean transformations and application of

Noether’s theorem, we refer the reader to [11] and [7, pp. 190–192] or [9, Ch. 2].

In the optimal control setting, the relation between invariance of a problem

and the existence of expressions which are constant along any of its extremals, has

been obtained in the publications by van der Schaft [25] and Sussmann [17], fol-

lowing the classical Noether’s approach based on the transversality conditions(1)

(cf. [3, 4]). Using the original paper of Emmy Noether [13, 14] and the more

simpler and direct approach of Andrzej Trautman [24], Hanno Rund [16] (see

also [10]) and John David Logan [9] for insight and motivation, extensions to

the previous known optimal control versions of Noether’s theorem were obtained

by the present author in [20, 22, 23]. Here we attempt to enlarge the range of

application of the theorems, extending the very concept of invariance (Defini-

tion 3.1) by allowing several parameters and equalities up to first-order terms

in the parameters (quasi-invariance). This extension allows one to formulate a

Noether type theorem for optimal control problems (Theorem 5.1) in a much

broader way, enlarging the scope of its application. Examples not covered by the

previous optimal control versions of Noether’s theorem are provided in detail.

2 – The maximum principle

Consider the following optimal control problem, denoted in the sequel by (P ):

to minimize the integral functional

J [x(·), u(·)] =

∫ b

a
L(t, x(t), u(t)) dt

over the classW n
1,1 of absolutely continuous state trajectories x(·)=(x1(·), ..., xn(·))

(1) In the calculus of variations, transversality conditions are expressed by the so called
general variation of the functional (see e.g. [6, §13] or [7, p. 185]).
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mapping [a, b] to Rn, and the class Lm
∞ of measurable and essentially bounded

controls u(·) = (u1(·), ..., um(·)) mapping [a, b] to a given set Ω ⊆ Rm, subject to

the dynamic control system

ẋ(t) = ϕ(t, x(t), u(t)) for a.a. t ∈ [a, b] ,

where L and ϕ are assumed to be C1.

The next theorem gives a summary of the celebrated Pontryagin maximum

principle [15], which is the first-order necessary optimality condition of optimal

control theory.

Theorem 2.1 (Pontryagin maximum principle). Let (x(·), u(·)) be a mini-

mizer of the optimal control problem (P ). Then, there exists a nonzero pair

(ψ0, ψ(·)), where ψ0 ≤ 0 is a constant and ψ(·) a n-vector absolutely continuous

function with domain [a, b], such that the following hold for almost all t on the

interval [a, b]:

(i) the Hamiltonian system























ẋ(t) =
∂H(t, x(t), u(t), ψ0, ψ(t))

∂ψ
,

ψ̇(t) = −
∂H(t, x(t), u(t), ψ0, ψ(t))

∂x
;

(ii) the maximality condition

H(t, x(t), u(t), ψ0, ψ(t)) = max
v∈Ω

H(t, x(t), v, ψ0, ψ(t)) ;

with the Hamiltonian H(t, x, u, ψ0, ψ) = ψ0L(t, x, u) + ψ · ϕ(t, x, u).

Definition 2.1. A quadruple (x(·), u(·), ψ0, ψ(·)) satisfying the Hamilto-

nian system and the maximality condition is called a (Pontryagin) extremal.

Remark 2.1. Depending on the specific boundary conditions under consid-

eration in problem (P ), transversality conditions may also appear in the Pon-

tryagin maximum principle. As far as the results obtained are valid for arbitrary

boundary conditions and the methods which we will employ do not require the

use of such transversality conditions, they are not included in Theorem 2.1.
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3 – The quasi-invariance definition

The following notion generalizes the invariance definitions used in previous

versions of Noether’s theorem up to first-order terms in the r parameters s1, ..., sr
(cf. e.g. [22, Definition 5]).

Definition 3.1. If there exists a C1 smooth r-parameter family of transfor-

mations
hs : [a, b]× Rn× Ω → R× Rn × Rm ,

hs(t, x, u) =
(

T (t, x, u, s), X(t, x, u, s), U(t, x, u, s)
)

,

s = (s1, ..., sr) , ‖s‖ =

√

√

√

√

r
∑

k=1

(sk)2 < ε ,

(1)

which for s = 0 reduce to the identity map, h0(t, x, u) = (t, x, u) for all (t, x, u) ∈

[a, b]× Rn× Ω, and satisfying

L(t, x(t), u(t)) +
d

dt
F (t, x(t), u(t), s) + o(s) =

= L ◦ hs(t, x(t), u(t))
d

dt
T (t, x(t), u(t), s) ,

(2)

d

dt
X(t, x(t), u(t), s) + o(s) = ϕ ◦ hs(t, x(t), u(t))

d

dt
T (t, x(t), u(t), s) ,(3)

for some function F of class C1 and where o(s) denote terms which go to zero

faster than ‖s‖, i.e.,

lim
‖s‖→0

o(s)

‖s‖
= 0 ,(4)

then problem (P ) is said to be quasi-invariant under hs.

Remark 3.1. The types of invariance transformations that we consider are

transformations of the (t, x1, ..., xn, u1, ..., um)-space which depend upon r small

real independent parameters s1, ..., sr. In Noether’s original paper [13, 14], as

well as in more recent treatments of invariant problems of optimal control (e.g.

[3]), it is assumed that the transformations form a group. In the present work,

however, we follow the approaches in [23] and [22] and we make less stringent

assumptions on the transformations — the group concept is not required for the

investigation of quasi-invariant optimal control problems.



QUASI-INVARIANT OPTIMAL CONTROL PROBLEMS 101

The following example shows an optimal control problem quasi-invariant un-

der a one-parameter family of transformations, in the sense of Definition 3.1, but

not invariant under all previous invariance definitions [25, 17, 3, 4, 20, 22, 23]

used in connection with the Noether theorem. This is due to the fact that the

integral is not invariant, but rather invariant up to an exact differential and to

first-order terms in the parameter s; while the third component ϕ3 of the phase

velocity vector is also invariant only up to first-order terms in the parameter

(quasi-invariant).

Example 3.1 (n = 3, m = 2). We consider problem (P ) with L = u21 + u22

and ϕ = (u1, u2,
u2x

2
2

2 )
T :

∫ b

a
(u1(t))

2 + (u2(t))
2 dt −→ min ,



























ẋ1(t) = u1(t) ,

ẋ2(t) = u2(t) ,

ẋ3(t) =
u2(t) (x2(t))

2

2
.

Direct calculations show that the problem is invariant under hs(t, x1, x2, x3,

u1, u2) = (t, x1+st, x2+st, x3+
1
2x
2
2st, u1+s, u2+s):

h0(t, x1, x2, x3, u1, u2) = (t, x1, x2, x3, u1, u2) ,

L ◦ hs
d

dt
(t) = (u1 + s)

2 + (u2 + s)
2 = (u21 + u

2
2) + 2s(u1 + u2) + 2s

2 ,

and equation (2) is satisfied with F (x1, x2, s) = 2s(x1 + x2) and o(s) = 2s
2;

ϕ1 ◦ h
s d

dt
(t) = u1 + s =

d

dt
(x1 + st) ,

ϕ2 ◦ h
s d

dt
(t) = u2 + s =

d

dt
(x2 + st) ,

ϕ3 ◦ h
s d

dt
(t) =

(u2 + s)(x2 + st)
2

2

=
u2 x

2
2

2
+
1

2
s(x22 + 2x2 u2 t) +

(u2 t
2 + 2x2 t) s

2 + t2s3

2

=
d

dt

(

x3 +
1

2
x22 st

)

+ o(s) ,

(o(s) = (u2t
2+2x2t)s2+t2s3

2 ) and (3) is also satisfied.
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4 – The fundamental invariance theorem

The next fundamental theorem is useful in many ways: to derive conservation

laws for a given quasi-invariant problem (P ) (we will see in Section 5 how Theo-

rem 4.1 provide a simple and direct access to a Noether theorem — Theorem 5.1)

and to give conditions which allow us to determine a family of transformations

under which a given optimal control problem is quasi-invariant (see Examples 4.1

and 4.2, and the ones in Section 6). If only the transformations are known, equa-

tions (5) and (6) represent first-order partial differential equations in the unknown

functions L and ϕ, and the fundamental theorem can be used to characterize a

set of optimal control problems which possess given invariance properties (cf. [21,

§4.2]).

Theorem 4.1. Necessary conditions for problem (P ) to be quasi-invariant

under the r-parameter family of transformations (1) are (k = 1, ..., r):

d

dt

∂F

∂sk

∣

∣

∣

∣

s=0
=

∂L

∂t

∂T

∂sk

∣

∣

∣

∣

s=0
+
∂L

∂x
·
∂X

∂sk

∣

∣

∣

∣

s=0
+
∂L

∂u
·
∂U

∂sk

∣

∣

∣

∣

s=0
+ L

d

dt

∂T

∂sk

∣

∣

∣

∣

s=0
,(5)

d

dt

∂X

∂sk

∣

∣

∣

∣

s=0
=

∂ϕ

∂t

∂T

∂sk

∣

∣

∣

∣

s=0
+
∂ϕ

∂x
·
∂X

∂sk

∣

∣

∣

∣

s=0
+
∂ϕ

∂u
·
∂U

∂sk

∣

∣

∣

∣

s=0
+ ϕ

d

dt

∂T

∂sk

∣

∣

∣

∣

s=0
.(6)

Proof: The proof follows as a simple exercise from the definition of quasi-

invariance: using h0(t, x, u) = (t, x, u), it suffices to differentiate (2) and (3) with

respect to sk and then set s = 0.

Remark 4.1. We are assuming in Theorems 4.1 and 5.1 the possibility to

reverse the order of differentiation.

Remark 4.2. From (2) one has

o(s) = L ◦ hs
d

dt
T (t, x(t), u(t), s)− L−

d

dt
F (t, x(t), u(t), s) ,

while from (3) one obtains

o(s) = ϕ ◦ hs
d

dt
T (t, x(t), u(t), s)−

d

dt
X(t, x(t), u(t), s) .

From these equalities, explicit formulas for the derivatives of each o(s1, ..., sr)

with respect to sk (k = 1, ..., r) can be found. The derivatives vanish for s =

(s1, ..., sr) = 0 due to (4).
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The next two examples illustrate how Theorem 4.1 can be used to guess a

family of transformations which maintain the problem invariant in the sense of

Definition 3.1. Once again, the possibility of invariance up to first-order terms in

the parameter (quasi-invariance) is crucial.

Example 4.1 (n = 4, m = 2). Let us consider the problem

∫ b

a

(

(u1(t))
2 + (u2(t))

2
)

dt −→ min ,



































ẋ1(t) = x3(t) ,

ẋ2(t) = x4(t) ,

ẋ3(t) = −x1(t)
(

(x1(t))
2 + (x2(t))

2
)

+ u1(t) ,

ẋ4(t) = −x2(t)
(

(x1(t))
2 + (x2(t))

2
)

+ u2(t) ,

and look for a one-parameter family of transformations without changing the

time-variable (T = t) and with F ≡ 0, under which the problem is quasi-invariant.

Theorem 4.1 asserts that the following conditions must hold:






























































































u1
∂U1

∂s

∣

∣

∣

∣

s=0
= −u2

∂U2

∂s

∣

∣

∣

∣

s=0

d

dt

∂X1

∂s

∣

∣

∣

∣

s=0
=

∂X3

∂s

∣

∣

∣

∣

s=0

d

dt

∂X2

∂s

∣

∣

∣

∣

s=0
=

∂X4

∂s

∣

∣

∣

∣

s=0

d

dt

∂X3

∂s

∣

∣

∣

∣

s=0
= − (3x21 + x

2
2)
∂X1

∂s

∣

∣

∣

∣

s=0
− 2x1x2

∂X2

∂s

∣

∣

∣

∣

s=0
+
∂U1

∂s

∣

∣

∣

∣

s=0

d

dt

∂X4

∂s

∣

∣

∣

∣

s=0
= − 2x1x2

∂X1

∂s

∣

∣

∣

∣

s=0
− (x21 + 3x

2
2)
∂X2

∂s

∣

∣

∣

∣

s=0
+
∂U2

∂s

∣

∣

∣

∣

s=0
.

(7)

One easily obtains that (7) is satisfied for

∂U1

∂s

∣

∣

∣

∣

s=0
= −u2 ,

∂U2

∂s

∣

∣

∣

∣

s=0
= u1 ,

∂X1

∂s

∣

∣

∣

∣

s=0
= −x2 ,

∂X2

∂s

∣

∣

∣

∣

s=0
= x1 ,

∂X3

∂s

∣

∣

∣

∣

s=0
= −x4 ,

∂X4

∂s

∣

∣

∣

∣

s=0
= x3 .

Choosing U1 = u1 − u2 s, U2 = u2 + u1s, X1 = x1 − x2 s, X2 = x2 + x1s,

X3 = x3 − x4 s, X4 = x4 + x3 s, one can verify that conditions (2) and (3)
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are indeed true:

L ◦ hs
d

dt
T = (u1− u2s)

2 + (u2 + u1s)
2 = (u21 + u

2
2) + (u

2
1 + u

2
2)s

2 = L+ o(s) ,

ϕ1 ◦ h
s d

dt
T = x3 − x4s =

d

dt
(x1 − x2s) =

d

dt
X1 ,

ϕ2 ◦ h
s d

dt
T = x4 + x3s =

d

dt
(x2 + x1s) =

d

dt
X2 ,

ϕ3 ◦ h
s d

dt
T = −(x1 − x2s)

(

(x1 − x2s)
2 + (x2 + x1s)

2
)

+ u1 − u2s

=
[

−x1(x
2
1+x

2
2) + u1 + x2(x

2
1+x

2
2)s− u2s

]

+
[

(x2s−x1)(x
2
1+x

2
2)s

2
]

=
d

dt
X3 + o(s) ,

ϕ4 ◦ h
s d

dt
T = −(x2 + x1s)

(

(x1 − x2s)
2 + (x2 + x1s)

2
)

+ u2 + u1s

=
[

−x2(x
2
1+x

2
2) + u2 − x1(x

2
1+x

2
2)s+ u1s

]

+
[

(−x2−x1s)(x
2
1+x

2
2)s

2
]

=
d

dt
X4 + o(s) .

Example 4.2 (n = 4, m = 2). Consider the problem:






















ẋ1 = u1(1 + x2)

ẋ2 = u1x3

ẋ3 = u2

ẋ4 = u1x
2
3

with L = u21 + u
2
2. From Theorem 4.1 we get the following necessary conditions

for the one-parameter transformation hs = (T,X1, X2, X3, X4, U1, U2) to leave

the problem quasi-invariant:


















































































d

dt

∂F

∂s

∣

∣

∣

∣

s=0
= 2u1

∂U1

∂s

∣

∣

∣

∣

s=0
+ 2u2

∂U2

∂s

∣

∣

∣

∣

s=0
+ (u21 + u

2
2)
d

dt

∂T

∂s

∣

∣

∣

∣

s=0

d

dt

∂X1

∂s

∣

∣

∣

∣

s=0
= u1

∂X2

∂s

∣

∣

∣

∣

s=0
+ (1 + x2)

∂U1

∂s

∣

∣

∣

∣

s=0
+ u1(1 + x2)

d

dt

∂T

∂s

∣

∣

∣

∣

s=0

d

dt

∂X2

∂s

∣

∣

∣

∣

s=0
= u1

∂X3

∂s

∣

∣

∣

∣

s=0
+ x3

∂U1

∂s

∣

∣

∣

∣

s=0
+ u1x3

d

dt

∂T

∂s

∣

∣

∣

∣

s=0

d

dt

∂X3

∂s

∣

∣

∣

∣

s=0
=

∂U2

∂s

∣

∣

∣

∣

s=0
+ u2

d

dt

∂T

∂s

∣

∣

∣

∣

s=0

d

dt

∂X4

∂s

∣

∣

∣

∣

s=0
= 2u1x3

∂X3

∂s

∣

∣

∣

∣

s=0
+ x23

∂U1

∂s

∣

∣

∣

∣

s=0
+ u1x

2
3

d

dt

∂T

∂s

∣

∣

∣

∣

s=0
.
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The conditions are satisfied with F ≡ 0 and

∂U1

∂s

∣

∣

∣

∣

s=0
= −u1 ,

∂U2

∂s

∣

∣

∣

∣

s=0
= −u2 ,

d

dt

∂T

∂s

∣

∣

∣

∣

s=0
= 2 ,

∂X1

∂s

∣

∣

∣

∣

s=0
= 3x1 ,

∂X2

∂s

∣

∣

∣

∣

s=0
= 2 (1 + x2) ,

∂X3

∂s

∣

∣

∣

∣

s=0
= x3 ,

∂X4

∂s

∣

∣

∣

∣

s=0
= 3x4 .

With the transformations U1 = u1(1− s), U2 = u2(1− s), T = t(1 + 2s),

X1 = x1(1 + 3s), X2 = x2 + 2s(1 + x2), X3 = x3(1 + s), X4 = x4(1 + 3s),

the problem is quasi-invariant:

L ◦ hs
d

dt
T = (u21 + u

2
2) + (u

2
1 + u

2
2) (2 s− 3) s

2 ,

ϕ1 ◦ h
s d

dt
T =

d

dt

(

x1(1 + 3 s)
)

− 4u1(1 + x2) s
3 ,

ϕ2 ◦ h
s d

dt
T =

d

dt

(

x2 + 2 s (1 + x2)
)

− u1x3(1 + 2s) s
2 ,

ϕ3 ◦ h
s d

dt
T =

d

dt

(

x3(1 + s)
)

− 2u2s
2 ,

ϕ4 ◦ h
s d

dt
T =

d

dt

(

x4(1 + 3 s)
)

+ u1x
2
3(1− 3 s− 2 s

2) s2 .

We will now see how to derive conservation laws from the knowledge of such

T , F and Xi’s (i = 1, ..., n).

5 – The Noether theorem and conservation laws

Now we obtain, as a corollary of Theorem 4.1, a far more general Noether theo-

rem for optimal control problems, which permits to construct conserved quantities

along the Pontryagin extremals of the problem. Theorem 5.1 gives r conserva-

tion laws when problem (P ) is quasi-invariant under a family of transformations

containing r parameters.

Theorem 5.1. If problem (P ) is quasi-invariant under an r-parameter family

of transformations (1) then, for any quadruple (x(·), u(·), ψ0, ψ(·)) satisfying the

Pontryagin maximum principle for (P ), the r expressions hold true (k = 1, ..., r):

ψ0
∂F (t, x(t), u(t), s)

∂sk

∣

∣

∣

∣

s=0
+ ψ(t) ·

∂X(t, x(t), u(t), s)

∂sk

∣

∣

∣

∣

s=0
−

− H(t, x(t), u(t), ψ0, ψ(t))
∂T (t, x(t), u(t), s)

∂sk

∣

∣

∣

∣

s=0
≡ constant ,
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t∈ [a, b], withH the Hamiltonian associated to the problem (P ): H(t, x, u, ψ0, ψ)=

ψ0L(t, x, u) + ψ · ϕ(t, x, u).

Remark 5.1. Following the usual terminology (cf. e.g. [2, p. 554], [8]),

we call a function C(t, x, u, ψ0, ψ) which is constant along every Pontryagin

extremal (x(·), u(·), ψ0, ψ(·)) of (P ),

C(t, x(t), u(t), ψ0, ψ(t)) = k ,(8)

for some constant k, a constant of the motion or a first integral. The equation

(8) is called the conservation law corresponding to the first integral C(·, ·, ·, ·, ·).

Remark 5.2. As far as everything under consideration, including the Pon-

tryagin maximum principle, is of a local character, the fact that we restrict

ourserves to state variables in Euclidean spaces Rn does not lead to any loss

of generality. In particular, Theorem 5.1 is easily formulated on Manifolds.

Example 5.1. For the problem considered in Example 3.1, we conclude from

Theorem 5.1 that 2ψ0(x1(t)+x2(t))+ψ1(t)t+ψ2(t)t+
1
2 ψ3(t)(x2(t))

2t is constant

along the Pontryagin extremals.

Example 5.2. For the problem in Example 4.1, the following first integral

follows from Theorem 5.1: −ψ1(t)x2(t) +ψ2(t)x1(t)−ψ3(t)x4(t) +ψ4(t)x3(t).

Example 5.3. From Example 4.2 and Theorem 5.1, the following constant

of the motion holds:

3ψ1(t)x1(t) + 2ψ2(t)
(

1 + x2(t)
)

+ ψ3(t)x3(t) + 3ψ4(t)x4(t)− 2 tH ,(9)

with H = ψ0

(

(u1(t))
2 + (u2(t))

2
)

+ ψ1(t)u1(t)
(

1 + x2(t)
)

+ ψ2(t)u1(t)x3(t) +

ψ3(t)u2(t) + ψ4(t)u1(t) (x3(t))
2.

Remark 5.3. All the conservation laws obtained in the previous examples

are not obvious and not expected a priori. However, once obtained, they can

easily be checked, by differentiation, using the corresponding adjoint system ψ̇ =

−∂H
∂x
and the extremality condition ∂H

∂u
= 0. Let us illustrate this issue for

Example 5.3. From the adjoint system we get that ψ1 and ψ4 are constants, while

ψ2(t) and ψ3(t) satisfy ψ̇2(t) = −ψ1u1(t), ψ̇3(t) = −ψ2(t)u1(t)−2ψ4 u1(t)x3(t).



QUASI-INVARIANT OPTIMAL CONTROL PROBLEMS 107

Having in mind that the problem is autonomous, and therefore the Hamiltonian

H is constant along the extremals (cf. [21]), differentiation of (9) allow us to write

that

3ψ1u1(t)
(

1 + x2(t)
)

− 2ψ1u1(t)
(

1 + x2(t)
)

+

+ 2ψ2(t)u1(t)x3(t) − ψ2(t)u1(t)x3(t)

− 2ψ4 u1(t) (x3(t))
2 + ψ3(t)u2(t) + 3ψ4 u1(t) (x3(t))

2 − 2H = 0 ,

that is,

ψ1

(

1+x2(t)
)

u1(t) + ψ2(t)x3(t)u1(t) + ψ3(t)u2(t) + ψ4(x3(t))
2 u1(t) = 2H .(10)

From the definition of the Hamiltonian, equality (10) is equivalent to H =

−ψ0((u1(t))
2+(u2(t))

2), a relation that immediately follows from the extremality

condition:






2ψ0 u1(t) + ψ1
(

1 + x2(t)
)

+ ψ2(t)x3(t) + ψ4(x3(t))
2 = 0

2ψ0 u2(t) + ψ3(t) = 0
=⇒

=⇒







ψ1

(

1 + x2(t)
)

u1(t) + ψ2(t)x3(t)u1(t) + ψ4(x3(t))
2 u1(t) = −2ψ0(u1(t))

2

ψ3(t)u2(t) = −2ψ0(u2(t))
2 .

Proof of Theorem 5.1: Let (x(·), u(·), ψ0, ψ(·)) be a Pontryagin extremal

of (P ). Multiplying (5) by ψ0, (6) by ψ(t), we can write:

ψ0
d

dt

∂F

∂sk

∣

∣

∣

∣

s=0
+ ψ(t) ·

d

dt

∂X

∂sk

∣

∣

∣

∣

s=0
=

= ψ0

(

∂L

∂t

∂T

∂sk

∣

∣

∣

∣

s=0
+
∂L

∂x
·
∂X

∂sk

∣

∣

∣

∣

s=0
+
∂L

∂u
·
∂U

∂sk

∣

∣

∣

∣

s=0
+ L

d

dt

∂T

∂sk

∣

∣

∣

∣

s=0

)

(11)

+ ψ(t) ·

(

∂ϕ

∂t

∂T

∂sk

∣

∣

∣

∣

s=0
+
∂ϕ

∂x
·
∂X

∂sk

∣

∣

∣

∣

s=0
+
∂ϕ

∂u
·
∂U

∂sk

∣

∣

∣

∣

s=0
+ ϕ

d

dt

∂T

∂sk

∣

∣

∣

∣

s=0

)

.

According to the maximality condition of the Pontryagin maximum principle, the

function

ψ0 L
(

t, x(t), U(t, x(t), u(t), s)
)

+ ψ(t) · ϕ
(

t, x(t), U(t, x(t), u(t), s)
)

attains an extremum for s = 0. Therefore for each k ∈ {1, ..., r}

ψ0
∂L

∂u
·
∂U

∂sk

∣

∣

∣

∣

s=0
+ ψ(t) ·

∂ϕ

∂u
·
∂U

∂sk

∣

∣

∣

∣

s=0
= 0
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and (11) simplifies to

ψ0

(

∂L

∂t

∂T

∂sk

∣

∣

∣

∣

s=0
+
∂L

∂x
·
∂X

∂sk

∣

∣

∣

∣

s=0
+ L

d

dt

∂T

∂sk

∣

∣

∣

∣

s=0
−

d

dt

∂F

∂sk

∣

∣

∣

∣

s=0

)

+

+ ψ(t) ·

(

∂ϕ

∂t

∂T

∂sk

∣

∣

∣

∣

s=0
+
∂ϕ

∂x
·
∂X

∂sk

∣

∣

∣

∣

s=0
+ ϕ

d

dt

∂T

∂sk

∣

∣

∣

∣

s=0
−

d

dt

∂X

∂sk

∣

∣

∣

∣

s=0

)

= 0 .

Using the adjoint system ψ̇ = −∂H
∂x
and the equality dH

dt
= ∂H

∂t
(cf. [21]), one

easily concludes that the above equality is equivalent to

d

dt

(

ψ0
∂F

∂sk

∣

∣

∣

∣

s=0
+ ψ(t) ·

∂X

∂sk

∣

∣

∣

∣

s=0
− H

∂T

∂sk

∣

∣

∣

∣

s=0

)

= 0 .

The proof is complete.

6 – Illustrative examples

The following proposition extends the study of the Martinet flat problem of

sub-Riemannian geometry in [23, §4] (see Example 6.1 below) to the general

homogeneous case.

Proposition 6.1. If there exist constants α, β1, ..., βn, γ1, ..., γm ∈ R, such
that for all λ > 0

L(λαt, λβ1x1, ..., λ
βnxn, λ

γ1u1, ..., λ
γmum) =(12)

= λ−αL(t, x1, ..., xn, u1, ..., um) ,

ϕi(λ
αt, λβ1x1, ..., λ

βnxn, λ
γ1u1, ..., λ

γmum) =(13)

= λβi−αϕi(t, x1, ..., xn, u1, ..., um) ,

(i = 1, ..., n)

then
n
∑

i=1

βi ψi(t)xi(t)− αH(t, x(t), u(t), ψ0, ψ(t)) t ≡ constant

along any Pontryagin extremal (x(·), u(·), ψ0, ψ(·)) of (P ).
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Proof: Differentiating (12) and (13) with respect to λ, and setting λ = 1,

we get

αL(t, x, u) + α
∂L(t, x, u)

∂t
t +

n
∑

j=1

βj
∂L(t, x, u)

∂xj
xj +

m
∑

k=1

γk
∂L

∂uk
uk = 0 ,

(α− βi)ϕi(t, x, u) + α
∂ϕi(t, x, u)

∂t
t +

n
∑

j=1

βj
∂ϕi(t, x, u)

∂xj
xj

+
m
∑

k=1

γk
∂ϕi(t, x, u)

∂uk
uk = 0 .

From these equations, one concludes that conditions (5) and (6) of the funda-

mental invariance theorem are fulfilled if we choose F ≡ 0 and a one-parameter

family of transformations satisfying the relations

∂T

∂s

∣

∣

∣

∣

s=0
= α t ,

∂Xi

∂s

∣

∣

∣

∣

s=0
= βi xi ,

∂Uk

∂s

∣

∣

∣

∣

s=0
= γk uk .(14)

For that it suffices to choose T = eαst, Xi= e
βisxi (i=1, ..., n), and Uk= e

γks uk

(k = 1,...,m). The problem is quasi-invariant under these transformations

(Definition 3.1) and the conclusion follows from Theorem 5.1.

Remark 6.1. It is possible to prove the Proposition 6.1 with other choices of

the parameter family of maps satisfying (14). For example, the same conclusion

follows from Theorem 5.1 with T = (s+1)αt, Xi = (s+1)
βixi, Uk = (s+1)

γkuk,

and F ≡ 0, or T = (1 + αs)t, Xi = (1 + βis)xi, and Uk = (1 + γks)uk.

Example 6.1 (n=3, m=2). In the Martinet flat problem of sub-Riemannian

geometry, L = u21 + u22, ϕ1 = u1, ϕ2 = u2, ϕ3 =
u1x

2
2

2 . For α = 2, β1= β2 = 1,

β3 = 3, γ1= γ2 = −1, one concludes from Proposition 6.1 that

ψ1(t)x1(t) + ψ2(t)x2(t) + 3ψ3(t)x3(t)− 2Ht(15)

is constant in t along any Pontryagin extremal
(

x1(·), x2(·), x3(·), u1(·), u2(·), ψ0, ψ1(·), ψ2(·), ψ3(·)
)

of the problem, with H the Hamiltonian

H(x2, u1, u2, ψ0, ψ1, ψ2, ψ3) = ψ0(u
2
1 + u

2
2) + ψ1u1 + ψ2 u2 + ψ3

u1 x
2
2

2
.

The first integral (15) was first discovered in [22].
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Now we will consider optimal control problems subject to control-affine dy-

namics with drift. In all the cases our new version of Noether’s theorem is in

order. The application of Theorem 5.1 with invariance up to first-order terms of

the parameter s will be crucial in the examples, and therefore the first integrals

we obtain can not be deduced from the previous results in [25, 17, 3, 4, 20, 22, 23].

Example 6.2 (n=2, m=1). Consider problem (P ) with L=u2, ϕ1=1+ y
2

and ϕ2 = u:
∫ b

a
(u(t))2 dt −→ min ,







ẋ(t) = 1 + (y(t))2 ,

ẏ(t) = u(t) .

From Theorem 4.1 one gets the following necessary conditions for the problem to

be quasi-invariant under the one-parameter transformation hs = (T,X, Y, U):















































d

dt

∂F

∂s

∣

∣

∣

∣

s=0
= 2u

∂U

∂s

∣

∣

∣

∣

s=0
+ u2

d

dt

∂T

∂s

∣

∣

∣

∣

s=0

d

dt

∂X

∂s

∣

∣

∣

∣

s=0
= 2 y

∂Y

∂s

∣

∣

∣

∣

s=0
+ (1 + y2)

d

dt

∂T

∂s

∣

∣

∣

∣

s=0

d

dt

∂Y

∂s

∣

∣

∣

∣

s=0
=

∂U

∂s

∣

∣

∣

∣

s=0
+ u

d

dt

∂T

∂s

∣

∣

∣

∣

s=0
.

These conditions are satisfied with F ≡ 0, T = t(1− 2s), U = u(1 + s),

X = x+2s(t− 2x), and Y = y(1− s), for which the problem is quasi-invariant:

L ◦ hs
d

dt
T = u2(1 + s)2 (1− 2 s) = u2 − (3 + 2 s)u2s2 = L+ o(s) ,

ϕ1 ◦ h
s d

dt
T =

[

1 + y2(1−s)2
]

(1−2 s) =
d

dt

[

x+ 2 s(t−2x)
]

+ (5 y2 − 2 y2s) s2

=
d

dt
X + o(s) ,

ϕ2 ◦ h
s d

dt
T = u(1 + s) (1− 2 s) = u(1− s)− 2u s2 =

d

dt
Y + o(s) .

From Theorem 5.1 the following conservation law holds:

2ψx(t− 2x(t))− ψy(t) y(t) + 2Ht ≡ constant ,

where H = ψ0(u(t))
2 + ψx[1 + (y(t))

2] + ψy(t)u(t).
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In the following two examples we establish conservation laws for the time-

optimal problem.

Example 6.3 (n = 4, m = 1). Let us consider the minimum-time problem

under the control system


























ẋ1(t) = 1 + x2(t) ,

ẋ2(t) = x3(t) ,

ẋ3(t) = u(t) ,

ẋ4(t) = (x3(t))
2 − (x2(t))

2 .

In this case the Lagrangian is given by L = 1 and in order to satisfy condition

(5) of the fundamental invariance theorem we fix T = t (no transformation of

the time-variable) and F ≡ 0. The functional is invariant and condition (6) of

Theorem 4.1 simplifies to






































































d

dt

∂X1

∂s

∣

∣

∣

∣

s=0
=

∂X2

∂s

∣

∣

∣

∣

s=0

d

dt

∂X2

∂s

∣

∣

∣

∣

s=0
=

∂X3

∂s

∣

∣

∣

∣

s=0

d

dt

∂X3

∂s

∣

∣

∣

∣

s=0
=

∂U

∂s

∣

∣

∣

∣

s=0

d

dt

∂X4

∂s

∣

∣

∣

∣

s=0
= −2x2

∂X2

∂s

∣

∣

∣

∣

s=0
+ 2x3

∂X3

∂s

∣

∣

∣

∣

s=0
.

It is now a simple exercise to conclude that the problem is quasi-invariant, in the

sense of Definition 3.1, under X1= (x1− t)s+x1, X2 = x2(s+1), X3 = x3(s+1),

X4 = x4(2s+ 1), U = u(s+ 1):

d

dt
X1 =

d

dt

[

(x1− t)s+ x1
]

= (ẋ1− 1)s+ ẋ1 = x2 s+ x2 + 1 = 1 +X2 ,

d

dt
X2 =

d

dt

[

x2(s+ 1)
]

= ẋ2(s+ 1) = x3(s+ 1) = X3 ,

d

dt
X3 =

d

dt

[

x3(s+ 1)
]

= u(s+ 1) = U ,

d

dt
X4 =

d

dt

[

x4(2 s+ 1)
]

= ẋ4(2 s+ 1) = (x
2
3 − x

2
2) (2 s+ 1) = X2

3 −X
2
2 − o(s) ,

with o(s) = s2(x23 − x
2
2). One obtains from Theorem 5.1 the conservation law

ψ1(t) (x1(t)− t)+ψ2(t)x2(t)+ψ3(t)x3(t)+ 2ψ4(t)x4(t) ≡ constant .(16)
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Example 6.4 (n = 3, m = 1). We consider now the time-optimal problem

(L = 1) with the control system















ẋ = 1 + y2 − z2 ,

ẏ = z ,

ż = u .

From the fundamental invariance theorem one can easily get the one-parameter

transformation hs(t, x, y, z, u) = (t, 2(x−t)s + x, y(s+1), z(s+1), u(s+1)), for

which the problem is quasi-invariant (F ≡ 0):

d

dt
X =

d

dt

[

2(x− t)s+ x
]

= (2 s+ 1) (y2 − z2) + 1 = 1 + Y 2 − Z2 − o(s) ,

d

dt
Y =

d

dt

[

y(s+ 1)
]

= z(s+ 1) = Z ,

d

dt
Z =

d

dt

[

z(s+ 1)
]

= u(s+ 1) = U ,

with o(s) = s2(y2 − z2). The first integral associated to the transformation is

2ψx(x− t) + ψy y + ψz z .(17)

In Examples 6.3 and 6.4, if instead of the time-optimal problem one consider

problem (P ) with J [u(·)]=
∫ b
a u(t)dt→ min, the same parameter-transformations

are in order choosing appropriate functions F : F = s x3 and F = s z respectively.

The new functionals become invariant up to an exact differential and the terms

ψ0 x3 and ψ0 z must be added respectively to the conservation law (16) and to

the constant of the motion (17).
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