PORTUGALIAE MATHEMATICA Vol. 61 Fasc. 1 – 2004 Nova Série

BOUNDED HOLOMORPHIC MAPPINGS AND THE COMPACT APPROXIMATION PROPERTY IN BANACH SPACES

Erhan Çalışkan

Abstract: We study the compact approximation property in connection with the space of bounded holomorphic mappings on a Banach space. When U is a bounded balanced open subset of a Banach space E, we show that the predual of the space of the bounded holomorphic functions on U, $G^{\infty}(U)$, has the compact approximation property if and only if E has the compact approximation property. We also show that E has the compact approximation property if each continuous Banach-valued polynomial on E can be uniformly approximated on compact sets by polynomials which are weakly continuous on bounded sets.

1 – Introduction

Let E and F be complex Banach spaces, and let L(E; F) be the Banach space of all continuous linear operators $T: E \to F$. E is said to have the approximation property (AP for short) if given a compact set $K \subset E$ and $\epsilon > 0$, there is a finite rank operator $T \in L(E; E)$ such that $||Tx - x|| < \epsilon$ for every $x \in K$. E is said to have the compact approximation property (CAP for short) if given a compact set $K \subset E$ and $\epsilon > 0$, there is a compact operator $T \in L(E; E)$ such that $||Tx - x|| < \epsilon$ for every $x \in K$. The AP implies the CAP, but Willis [12] has shown that the reverse implication is not true.

Let U be an open subset of E, and let $\mathcal{H}^{\infty}(U; F)$ denote the Banach space of all bounded holomorphic mappings $f: U \to F$, with the norm of the supremum.

Received: December 2, 2002.

AMS Subject Classification: 46G20, 46B28, 46G25.

Keywords: Banach spaces; compact approximation property; bounded holomorphic functions.

When $F = \mathbb{C}$, we write $\mathcal{H}^{\infty}(U)$ instead of $\mathcal{H}^{\infty}(U;\mathbb{C})$. Let $G^{\infty}(U)$ denote the predual of $\mathcal{H}^{\infty}(U)$ constructed by Mujica [8]. If U is open, balanced and bounded, then Mujica [8] proved that E has the AP if and only if $G^{\infty}(U)$ has the AP if and only if, for each Banach space F, every $f \in \mathcal{H}^{\infty}(U;F)$ lies in the τ_{γ} -closure of the subspace of all $g \in \mathcal{H}^{\infty}(U;F)$ with a finite dimensional range, where τ_{γ} is a locally convex topology on $\mathcal{H}^{\infty}(U;F)$ which is finer than the compact-open topology.

In this paper we show that if U is open, balanced and bounded, then E has the CAP if and only if $G^{\infty}(U)$ has the CAP if and only if, for each Banach space F, every $f \in \mathcal{H}^{\infty}(U; F)$ lies in the τ_{γ} -closure of the subspace of all $g \in$ $\mathcal{H}^{\infty}(U; F)$ with a relatively compact range. We obtain this result by combining the techniques of Mujica [8] and results of Aron and Prolla [2] and Aron, Hervés and Valdivia [1].

We also show that E has the CAP if and only if each continuous Banach-valued polynomial on E can be uniformly approximated on compact sets by compact polynomials, or equivalently, by polynomials which are weakly continuous on bounded sets. This improves results of Mujica and Valdivia [10, Proposition 2.2] and Mujica [9, Proposition 3.3].

2 – The compact approximation property

The symbol \mathbb{C} represents the field of all complex numbers, \mathbb{N} represents the set of all positive integers, and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

An operator T in L(E; F) is said to have a finite rank if T(E) is finite dimensional, and an operator T in L(E; F) is called a compact operator if T takes bounded subsets of E to relatively compact subsets of F. Let $L_k(E; F)$ denote the subspace of all compact operators of L(E; F). When $F = \mathbb{C}$ we write E'instead of $L(E; \mathbb{C})$.

The following characterization of the CAP is similar to the characterization of the AP due to Grothendieck (see [6, Theorem 1.e.4]). τ_c will always denote the compact-open topology.

Proposition 1. For a Banach space E the following statements are equivalent:

- (i) E has the CAP.
- (ii) $L(E;E) = \overline{L_k(E;E)}^{\tau_c}$.
- (iii) For every Banach space F, $L(F; E) = \overline{L_k(F; E)}^{\tau_c}$.

BOUNDED HOLOMORPHIC MAPPINGS

- (iv) For every Banach space F, $L(E; F) = \overline{L_k(E; F)}^{\tau_c}$.
- (v) For every choice of $(x_n)_{n=1}^{\infty} \subset E$ and $(x'_n)_{n=1}^{\infty} \subset E'$ such that $\sum_{n=1}^{\infty} \|x_n\| \cdot \|x'_n\| < \infty$ and $\sum_{n=1}^{\infty} x'_n(Tx_n) = 0$ for every $T \in L_k(E; E)$, we have that $\sum_{n=1}^{\infty} x'_n(x_n) = 0$.

Using Proposition 1(v) we easily get the following

Corollary 2. If E is a reflexive Banach space, then E' has the CAP if and only if E has the CAP. \blacksquare

It is known that a Banach space E has the AP if E' has the AP (see [6, Theorem 1.e.7]). But the following problem, mentioned by Casazza [3, Problem 8.5], still remains open.

Problem: Let *E* be a Banach space. If *E'* has the CAP, must *E* have the CAP? \Box

Corollary 2 is an affirmative answer in the case of reflexive Banach spaces.

It is easy to show that if E has the CAP, then every complemented subspace of E has the CAP. Using Proposition 1 (v) and [5, Proposition 1] we have the following

Proposition 3. For a reflexive Banach space E, the following statements are equivalent:

- (a) E has the CAP.
- (b) Every complemented subspace of E has the CAP.
- (c) Every complemented and separable subspace of E has the CAP. \blacksquare

3 – The compact approximation property and bounded holomorphic mappings

The letter U denotes a nonvoid open subset of E. The symbol U_E represents the unit open ball of E, and the symbol B_E represents the closed unit ball of E.

Let $\mathcal{P}(E; F)$ denote the vector space of all continuous polynomials from Einto F. We say that $P \in \mathcal{P}(E; F)$ is compact if P takes bounded subsets of E to relatively compact subsets of F. Let $\mathcal{P}_k(E; F)$ denote the subspace of all compact members of $\mathcal{P}(E; F)$.

Let $\mathcal{P}_w(E; F)$ (resp. $\mathcal{P}_{wu}(E; F)$) denote the subspace of all members of $\mathcal{P}(E; F)$ which are weakly (resp. weakly uniformly) continuous in the bounded subsets of E.

Let $\mathcal{P}(^{m}E; F)$ denote the subspace of all *m*-homogeneous members of $\mathcal{P}(E; F)$, let $\mathcal{P}_{w}(^{m}E; F)$ (resp. $\mathcal{P}_{wu}(^{m}E; F)$) denote the subspace of all members of $\mathcal{P}(^{m}E; F)$ which are weakly (resp. weakly uniformly) continuous on bounded subsets of *E*, for every $m \in \mathbb{N}_{0}$.

Let $\mathcal{H}(U; F)$ denote the vector space of all holomorphic mappings from U into F. Let $\mathcal{H}^{\infty}(U; F)$ denote the subspace of all bounded members of $\mathcal{H}(U; F)$, and let $\mathcal{H}^{\infty}_{K}(U; F)$ be the subspace of all members of $\mathcal{H}^{\infty}(U; F)$ which have relatively compact range.

When $F = \mathbb{C}$ we write $\mathcal{H}^{\infty}(U)$ and $\mathcal{P}(^{m}E)$ instead of $\mathcal{H}^{\infty}(U;\mathbb{C})$ and $\mathcal{P}(^{m}E;\mathbb{C})$.

We refer to [4] or [7] for the properties of $\mathcal{P}(E; F)$ and $\mathcal{H}(U; F)$, and to [1] and [2] for the properties of $\mathcal{P}_w(E; F)$ and $\mathcal{P}_{wu}(E; F)$.

The symbol Λ denotes a directed set.

The following result of J.Mujica [7] is essential to prove Theorem 5.

Theorem 4 ([8, Theorem 2.1]). Let U be an open subset of a Banach space E. Then there is a Banach space $G^{\infty}(U)$ and a mapping $\delta_U \in \mathcal{H}^{\infty}(U; G^{\infty}(U))$ with $\|\delta_U\| = 1$ and with the following universal property: For each Banach space F and each mapping $f \in \mathcal{H}^{\infty}(U; F)$, there is a unique operator $T_f \in L(G^{\infty}(U); F)$ such that $T_f \circ \delta_U = f$. The correspondence

$$f \in \mathcal{H}^{\infty}(U; F) \longrightarrow T_f \in L(G^{\infty}(U); F)$$

is an isometric isomorphism. These properties characterize $G^{\infty}(U)$ uniquely up to an isometric isomorphism.

The space $G^{\infty}(U)$ is defined as the closed subspace of all linear functionals $u \in \mathcal{H}^{\infty}(U)'$ such that $u|_{B_{\mathcal{H}^{\infty}(U)}}$ is τ_c -continuous, and the evaluation mapping $\delta_U \colon x \in U \to \delta_x \in G^{\infty}(U)$ is defined by $\delta_x \colon f \in \mathcal{H}^{\infty}(U) \to f(x) \in \mathbb{C}$, for every $x \in U$.

Definition ([8, Theorem 4.8]). Let E and F be Banach spaces, and let U be an open subset of E. Let τ_{γ} denote the locally convex topology on $\mathcal{H}^{\infty}(U;F)$ generated by all the seminorms of the form

$$p(f) = \sup_{j} \alpha_j \|f(x_j)\| ,$$

where $(x_j)_{j=1}^{\infty}$ varies over all sequences in U, and $(\alpha_j)_{j=1}^{\infty}$ varies over all sequences of positive numbers tending to zero. \Box

28

BOUNDED HOLOMORPHIC MAPPINGS

The next result is similar to a result of J.Mujica [8, Theorem 5.6].

Theorem 5. Let E be a Banach space, and let U be a balanced, bounded, and open set in E. The following statements are equivalent:

- (a) E has the CAP.
- (**b**) For each Banach space F, $\mathcal{H}^{\infty}(U;F) = \overline{\mathcal{P}_w(E;F)}^{\tau_{\gamma}}$.
- (c) For each Banach space F, $\mathcal{H}^{\infty}(U;F) = \overline{\mathcal{P}_k(E;F)}^{\tau_{\gamma}}$.
- (d) For each Banach space $F, \ \mathcal{H}^{\infty}(U;F) = \overline{\mathcal{H}^{\infty}_{K}(U;F)}^{\tau_{\gamma}}.$
- (e) $\delta_U \in \overline{\mathcal{H}_K^{\infty}(U; G^{\infty}(U))}^{\tau_{\gamma}}$.
- (f) $G^{\infty}(U)$ has the CAP.
- (g) For each Banach space F, and for each open set $V \subset F$,

1

$$\mathcal{H}^{\infty}(V;E) = \overline{\mathcal{H}^{\infty}_{K}(V;E)}^{\tau_{\gamma}}$$

(**h**)
$$I_U \in \overline{\mathcal{H}_K^{\infty}(U;E)}^{\tau_{\gamma}}$$
.

Proof: (a) \Rightarrow (b): Let $f \in \mathcal{H}^{\infty}(U; F)$. Let p be a continuous seminorm on $(\mathcal{H}^{\infty}(U; F), \tau_{\gamma})$. Then by [8, Proposition 5.2] there is a $P \in \mathcal{P}(E; F)$ such that $p(P-f) < \frac{\epsilon}{2}$. On the other hand, by [8, Proposition 4.9] $\tau_{\gamma} = \tau_c$ on $\mathcal{P}({}^kE; F)$, for every $k \in \mathbb{N}_0$. Now let $P = P_0 + P_1 + \cdots + P_n$, where $P_j \in \mathcal{P}({}^jE; F)$, for every j = 0, 1, ..., n. Hence, since E has the CAP, then by [10, Proposition 2.1], and [9, Proposition 3.3] there is a $Q_j \in \mathcal{P}_w({}^jE; F)$ such that $p(Q_j - P_j) < \frac{\epsilon}{2(n+1)}$, for every j = 0, 1, ..., n. Note that $Q_0 + Q_1 + \cdots + Q_n = Q \in \mathcal{P}_w(E; F)$. Since $p(Q - P) < \frac{\epsilon}{2}$, then $p(Q - f) \leq p(Q - P) + p(P - f) < \epsilon$. Thus, we have (b).

(**b**) \Rightarrow (**c**): By [1, Theorem 2.9] we have $\mathcal{P}_w(E; F) = \mathcal{P}_{wu}(E; F)$, and by [2, Lemma 2.2] we have $\mathcal{P}_{wu}(E; F) \subset \mathcal{P}_k(E; F)$. Hence from (b) we get (c).

 $(\mathbf{c}) \Rightarrow (\mathbf{d})$: Since U is bounded, we have $\mathcal{P}_k(E;F) \subset \mathcal{H}_K^{\infty}(U;F)$. Hence from (c) we get (d).

(d) \Rightarrow (e): We know from Theorem 4 that $\delta_U \in \mathcal{H}^{\infty}(U; G^{\infty}(U))$. But, taking $F = G^{\infty}(U)$ in (d), we have that $\mathcal{H}^{\infty}(U; G^{\infty}(U) = \overline{\mathcal{H}^{\infty}_K(U; G^{\infty}(U))}^{\tau_{\gamma}}$.

(e) \Rightarrow (f): Let $\delta_U \in \overline{\mathcal{H}_K^{\infty}(U; G^{\infty}(U))}^{\tau_{\gamma}}$. It is enough to show that the identity mapping I on $G^{\infty}(U)$ belongs to $\overline{L_k(G^{\infty}(U); G^{\infty}(U))}^{\tau_c}$. In fact, from (e), there is a net $(f_{\alpha})_{\alpha \in \Lambda} \subset \mathcal{H}_K^{\infty}(U; G^{\infty}(U))$ such that $f_{\alpha} \xrightarrow{\tau_{\gamma}} \delta_U$. Then by Theorem 4, and [8, Proposition 3.4 and Theorem 4.8] we have a corresponding net $(T_{f_{\alpha}})_{\alpha \in \Lambda} \subset L_k(G^{\infty}(U); G^{\infty}(U))$ which converges to I for τ_c . Therefore, we have $I \in \overline{L_k(G^{\infty}(U); G^{\infty}(U))}^{\tau_c}$.

 $(\mathbf{f}) \Rightarrow (\mathbf{a})$: Since by [8, Proposition 2.3] E is topologically isomorphic to a complemented subspace of $G^{\infty}(U)$, it follows from (f) that E has the CAP.

(a) \Rightarrow (g): Suppose that E has the CAP. Let F be a Banach space, and let $V \subset F$ be an open subset. Let $f \in \mathcal{H}^{\infty}(V; E)$. Then, by Theorem 4, there is a $T_f \in L(G^{\infty}(V); E)$. Hence, by Proposition 1, there is a net $(T_{\alpha})_{\alpha \in \Lambda} \subset L_k(G^{\infty}(V); E)$ such that $T_{\alpha} \stackrel{\tau_{\alpha}}{\to} T_f$. By Theorem 4 $(T_{\alpha})_{\alpha \in \Lambda} = (T_{f_{\alpha}})_{\alpha \in \Lambda}$ correspond to a net $(f_{\alpha})_{\alpha \in \Lambda}$ in $\mathcal{H}^{\infty}(V; E)$. By [8, Proposition 3.4], $(f_{\alpha})_{\alpha \in \Lambda} \subset \mathcal{H}^{\infty}_K(V; E)$, and by [8, Theorem 4.8], $f_{\alpha} \stackrel{\tau_{\alpha}}{\to} f$. Hence we have (g).

 $\begin{array}{l} (\mathbf{g}) \Rightarrow (\mathbf{a}): \ \operatorname{By}\,(\mathbf{g}) \ \mathcal{H}^{\infty}(U_F; E) = \overline{\mathcal{H}^{\infty}_K(U_F; E)}^{\tau_{\gamma}}. \ \text{We claim that } L(G^{\infty}(U_F); E) = \\ \overline{L_k(G^{\infty}(U_F); E)}^{\tau_c}. \ \text{Let } T \in L(G^{\infty}(U_F); E). \ \text{Then by Theorem 4 there is a} \\ f \in \mathcal{H}^{\infty}(U_F; E) \ \text{such that } T = T_f. \ \text{Hence, by hypothesis there existe a net} \\ (f_{\alpha})_{\alpha \in \Lambda} \subset \mathcal{H}^{\infty}_K(U_F; E) \ \text{such that } f_{\alpha} \xrightarrow{\tau_{\gamma}} f. \ \text{By Theorem 4 and } [8, \operatorname{Proposition 3.4,} \\ \text{and Theorem 4.8] there is a corresponding net } (T_{f_{\alpha}})_{\alpha \in \Lambda} \subset L_k(G^{\infty}(U_F); E) \ \text{which} \\ \text{converges to } T \ \text{for } \tau_c. \ \text{Hence we have that } L(G^{\infty}(U_F); E) = \overline{L_k(G^{\infty}(U_F); E)}^{\tau_c}. \\ \text{We claim that } L(F; E) = \overline{L_k(F; E)}^{\tau_c}. \ \text{Let } A \in L(F; E). \ \text{By [8, Proposition 2.3],} \\ \text{there are operators } S \in L(F; G^{\infty}(U_F)) \ \text{and } R \in L(G^{\infty}(U_F); E) \ \text{such that} \\ R \circ S(y) = y \ \text{for every } y \in F. \ \text{Then, } A \circ R \in L(G^{\infty}(U_F); E) \ \text{and hence there} \\ \text{is a net } (B_{\alpha})_{\alpha \in \Lambda} \subset L_k(G^{\infty}(U_F); E) \ \text{which converges to } A \circ R \ \text{for } \tau_c. \ \text{Thus,} \\ B_{\alpha} \circ S \in L_k(F; E) \ \text{and converges to } A \circ R \circ S = A \ \text{for } \tau_c. \ \text{Therefore we have that} \\ L(F; E) = \overline{L_k(F; E)}^{\tau_c}. \end{array}$

 $(\mathbf{d}) \Rightarrow (\mathbf{h})$: Obvious.

(**h**) \Rightarrow (**d**): Suppose that $I_U \in \overline{\mathcal{H}_K^{\infty}(U; E)}^{\tau_{\gamma}}$. Let $f \in \mathcal{H}^{\infty}(U; F)$, let p be a continuous seminorm on $(\mathcal{H}^{\infty}(U; F), \tau_{\gamma})$. We want to find $g \in \mathcal{H}_K^{\infty}(U; F)$ such that p(g-f) < 1. We may assume that

$$p(h) = \sup_{j} \alpha_{j} \|h(x_{j})\|, \quad \forall h \in \mathcal{H}^{\infty}(U; F)$$

where $(x_j)_{j=1}^{\infty} \subset U$ and $(\alpha_j)_{j=1}^{\infty} \in c_0$ with $\alpha_j > 0$ for every $j \in \mathbb{N}$. By [8, Proposition 5.2] there exists $P \in \mathcal{P}(E; F)$ such that

$$p(P-f) < \frac{1}{2} \; .$$

Write $P = P_0 + P_1 + \cdots + P_m$, with $P_k \in \mathcal{P}(^kE; F)$, $\forall k = 0, 1, ..., m$. Certainly $P_0 \in \mathcal{H}^{\infty}_K(U; F)$. For every k = 1, ..., m we shall find $u_k \in \mathcal{H}^{\infty}_K(U; E)$ such that

$$(*) \qquad \qquad p(P_k \circ u_k - P_k) < \frac{1}{2m} \ .$$

30

Then it will follow that

$$P_0 + \sum_{k=1}^m P_k \circ u_k \in \mathcal{H}_K^\infty(U; F)$$

and

$$p\left(P_0 + \sum_{k=1}^m P_k \circ u_k - f\right) = p\left(P - P_1 - P_2 - \dots - P_m + \sum_{k=1}^m P_k \circ u_k - f\right) < 1$$
,

thus proving (d).

Now, fix k with $1 \leq k \leq m$, let $\beta_j = \sqrt[k]{\alpha_j}$, for every $j \in \mathbb{N}$ and let $K = \{\beta_j x_j \colon j \in \mathbb{N}\} \cup \{0\}$. Since K is compact, there exists $\delta > 0$ such that $\|P_k(y) - P_k(x)\| < \frac{1}{2m}$ whenever $x \in K$ and $\|y - x\| < \delta$. By (h), there exists $u_k \in \mathcal{H}_K^{\infty}(U; E)$ such that $\sup_j \beta_j \|u_k(x_j) - x_j\| < \delta$. Hence $p(P_k \circ u_k - P_k) = \sup_j \|P_k(\beta_j u_k(x_j)) - P_k(\beta_j x_j)\| < \frac{1}{2m}$, showing that u_k satisfies (*). Thus the proof of the theorem is complete.

Observe that in the previous theorem, in item (g), taking the weaker condition $\mathcal{H}^{\infty}(U_E; E) = \overline{\mathcal{H}^{\infty}_K(U_E; E)}^{\tau_{\gamma}}$ we can obtain the same result.

Using the same proof of [10, Proposition 2.2], we can also prove the following

Proposition 6. Let E and F be Banach spaces. The following statements are equivalent:

(a)
$$\mathcal{P}(E;F) = \mathcal{P}_k(E;F)^{-\tau_c}$$
.
(b) $\mathcal{P}(^mE;F) = \overline{\mathcal{P}_k(^mE;F)}^{-\tau_c}$ for every $m \in \mathbb{N}$.

In the proof of the next Corollary we will use the following version of a theorem of Ryan [11], which appeared in [9] (see also [8, Theorems 2.4 and 4.1]): For each Banach space E and each $m \in \mathbb{N}$ let $Q(^mE)$ be the closed subspace of all linear continuous functionals $v \in \mathcal{P}(^mE)'$ such that $v|_{B_{\mathcal{P}(^mE)}}$ is τ_c -continuous, and let $\delta_m: x \in E \to \delta_x \in Q(^mE)$ denote the evaluation mapping, that is, $\delta_x(P) = P(x)$, for every $x \in E$ and $P \in \mathcal{P}(^mE)$. Then $Q(^mE)$ is a Banach space with the norm induced by $\mathcal{P}(^mE)'$, and $\delta_m \in \mathcal{P}(^mE; Q(^mE))$ with $\|\delta_m\| = 1$. The pair $(Q(^mE), \delta_m)$ has the following universal property: For each Banach space Fand each $P \in \mathcal{P}(^mE; F)$, there is a unique operator $T_P \in L(Q(^mE); F)$ such that $T_P \circ \delta_m = P$. The correspondence

$$P \in \mathcal{P}(^{m}E;F) \longrightarrow T_{P} \in L(Q(^{m}E);F)$$

is an isometric isomorphism, and is also a topological isomorphism when both spaces are endowed with the compact-open topology τ_c . Moreover $P \in \mathcal{P}_k({}^mE;F)$ if, and only if $T_P \in L_k(Q({}^mE);F)$.

Corollary 7. For a Banach space *E*, the following statements are equivalent:

- (a) E has the CAP.
- (b) For each Banach space F, $\mathcal{P}(E;F) = \overline{\mathcal{P}_w(E;F)}^{\tau_c}$.
- (c) For each Banach space F, $\mathcal{P}(E;F) = \overline{\mathcal{P}_k(E;F)}^{\tau_c}$.
- (d) $Q(^{m}E)$ has the CAP, for every $m \in \mathbb{N}$.

Proof: (a) \Rightarrow (b): It follows from Theorem 5 and the fact that $\tau_{\gamma} \geq \tau_c$ on $\mathcal{H}^{\infty}(U; F)$ (see [8, Proposition 4.9]).

 $(\mathbf{b}) \Rightarrow (\mathbf{c})$: Clear.

 $(\mathbf{c}) \Rightarrow (\mathbf{d})$: It follows from Proposition 6 and the aforementioned result of Ryan that $L(Q(^mE); F) = \overline{L_k(Q(^mE); F)}^{\tau_c}$ for each Banach space F. Hence by Proposition 1 $Q(^mE)$ has the CAP, for every $m \in \mathbb{N}$.

 $(\mathbf{d}) \Rightarrow (\mathbf{a})$: Clear since $Q(^{1}E) = E$.

Corollary 7 improves [10, Proposition 2.2] and [9, Proposition 3.3].

Willis [12] has constructed a Banach space Z which has the CAP, but does not have the AP. If U is an open, balanced, bounded subset of Z, then it follows from Theorem 5 and [8, Theorem 5.4] that $G^{\infty}(U)$ has the CAP, but does not have the AP. The same is true for $Q(^{m}Z)$ for every $m \in \mathbb{N}$.

One can obtain results similar to Theorem 5 and Corollary 7 for the metric compact approximation property. For the definition see [3].

ACKNOWLEDGEMENTS – This paper is based on a part of the author's doctoral thesis at the Universidade Estadual de Campinas, Brazil, written under supervision of Professor Jorge Mujica. The author would like to thank his thesis advisor.

32

BOUNDED HOLOMORPHIC MAPPINGS

REFERENCES

- ARON, R.M.; HERVÉS, C. and VALDIVIA, M. Weakly continuous mappings on Banach spaces, J. Funct. Anal., 52 (1983), 189–204.
- [2] ARON, R.M.; PROLLA, J.B. Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math., 313 (1980), 195–216.
- [3] CASAZZA, P. Approximation Properties, in "Handbook of the Geometry of Banach Spaces", Vol. 1 (W. Johnson and J. Lindenstrauss, Eds.), North-Holland, Amsterdam, 2001, pp. 271–316.
- [4] DINEEN, S. Complex Analysis on Infinite Dimensional Spaces, Springer, London, 1999.
- [5] LINDENSTRAUSS, J. On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 967–970.
- [6] LINDENSTRAUSS, J. and TZAFRIRI, L. Classical Banach Spaces I, Springer, Berlin, 1977.
- [7] MUJICA, J. Complex Analysis in Banach Spaces, North-Holland Math. Stud., vol. 120, North-Holland, Amsterdam, 1986.
- [8] MUJICA, J. Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc., 324 (1991), 867–887.
- [9] MUJICA, J. Reflexive Spaces of Homogeneous Polynomials, Bull. Polish Acad. Sci. Math., 49 (2001), 211–223.
- [10] MUJICA, J. and VALDIVIA, M. Holomorphic Germs on Tsirelson's Space, Proc. Amer. Math. Soc., 123 (1995), 1379–1384.
- [11] RYAN, R. Applications of topological tensor products to infinite dimensional holomorphy, Ph.D. Thesis, Trinity College, Dublin, 1980.
- [12] WILLIS, G. The Compact Approximation Property does not imply the Approximation Property, *Studia Math.*, 103 (1992), 99–108.

Erhan Çalışkan,

Departamento de Matemática e Estatística, Universidade Federal de Campina Grande, Caixa Postal 10044, Bodocongó, CEP 58109-970 Campina Grande, PB – BRAZIL E-mail: caliskan@dme.ufcg.edu.br