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Abstract: In this work we study the asymptotic behavior of solutions of a dissipative

BBM equation in RN with periodic coefficients. We use Bloch waves decomposition to

obtain a complete expansion, as t → +∞, and conclude that the solutions behave, in a

first approximation, as the homogenized heat kernel.

1 – Introduction

The aim of this paper is to investigate the asymptotic behavior, for large

time, of the solutions of the following Cauchy problem associated with the BBM

equation

(1.1)





ρ(x)
∂u

∂t
− ∂

∂xj

(
ajk(x)

∂2u

∂xk ∂t

)
− ν ∂

∂xj

(
ajk(x)

∂u

∂xk

)
= 0 in RN×(0,∞)

u(x, 0) = ϕ(x) in RN

where ν is a positive constant.

The coefficients (ajk(x))1≤j,k≤N are assumed to be bounded, symmetric and

periodic. The variable density ρ also is periodic and bounded. More precisely, we

set Y = [0, 2π)N and we denote by L∞# (Y ) the subspace of L∞(RN ) of functions

which are Y -periodic, that is,

L∞# (Y ) =
{
φ ∈ L∞(RN ) : φ(x+ 2π p) = φ(x), ∀x ∈ Rn, ∀ p ∈ ZN

}
.
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Also, we assume that

(1.2)





ajk ∈ L∞# (Y ) ,

∃α > 0, such that ajk(x) ηj ηk ≥ α|η|2, ∀ η ∈ NN , a.e. x ∈ RN ,

ajk = akj ∀ j, k = 1, 2, ..., N ,

and

(1.3)




ρ ∈ L∞# (Y ), i.e. ρ is Y -periodic

∃ ρ1, ρ2 ∈ R+, such that 0 < ρ0 ≤ ρ(x) ≤ ρ1, a.e. x ∈ Y .

Observe that equation in (1.1) has a dissipative nature. Indeed, the energy

associated to (1.1) is given by

E(t) =
1

2

∫

RN

[
ρ(x)u2 + ajk(x)

∂u

∂xj

∂u

∂xk

]
dx

and it is decreasing due to the coercivity condition in (1.2) and according to the

law
dE

dt
= −ν

∫

RN
ajk(x)

∂u

∂xj

∂u

∂xk
dx .

Moreover, solutions of (1.1) satisfy the conservation law

(1.4)
∂

∂t

∫

RN
u ρ(x) dx = 0 ,

that is, the mass of u = u(x, t) with respect to the weight ρ(.) is conserved along

time:

(1.5) mρ(u) = mρ(ϕ) =

∫

RN
ϕρ(x) dx .

An important model associated to (1.1) is the nonlinear Benjamin–Bona–

Mahony equation with constant coefficients

(1.6)




ut −∆ut − ν∆u = ∇ · F (u) ; x ∈ RN , t > 0

u(x, 0) = ϕ(x)

where ν > 0 is a fixed constant, F ∈ C1(R,RN ) is a fixed vector field and

∇ · F (u) =
N∑
j=1

∂

∂xj
F (u). The equation (1.6) is a direct generalization to higher

dimensions of the equation

(1.7)




ut − uxxt − ν uxx + uux = 0 ; x ∈ R, t > 0

u(x, 0) = ϕ(x)
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with ∇ · F (u) = −uux that was originally derived as a model for surface water

waves in a uniform channel (see for instance, [1], [3] and [4]). It also cover cases of

the following type: surfaces of long wavelength in liquids, acoustic-gravity waves

in compressible fluids, hydromagnetic waves in cold plasma, acoustic waves in

anharmonic crystals, etc (see [13], [14] and [18]). The wide applicability of these

equations is the main reason why, during the last decades, they have attracted

so much attention from mathematicians.

In this paper we derive a complete asymptotic expansion of solution of (1.1)

as t → +∞. In order to understand the type of the asymptotic expansion, one

may expect, it is convenient to analyse first the parabolic equation

(1.8)





∂u

∂t
− ∂

∂xj

(
ajk(x)

∂u

∂xk

)
= 0, in RN×(0,∞)

u(x, 0) = ϕ(x) in RN .

Equation (1.1) can be viewed as a perturbation of (1.8). Moreover, when

ρ ≡ 1 it was proved in [11] that

t
N
2

(1− 1
p
)
∥∥∥u(·, t)−m(ϕ)Gh(·, t)

∥∥∥
p
→ 0, as t→ +∞, 1 ≤ p ≤ ∞

where m(ϕ) =

∫

RN
ϕdx and Gh the fundamental solution of the homogenized

system

(1.9)





ut − qjk
∂2u

∂xj∂xk
= 0 , x ∈ RN , t > 0

u(x, 0) = δ0(x) .

Here and in the sequel we denote by δ0 the Dirac delta at the origin and by qi,j
the homogenized coefficients associated to the periodic matrix with coefficients

(1.2). We observe that the homogenized coefficients qjk associated to the periodic

matrix a are given by (see [20], [21])

qjk =
1

|Y |

∫

Y
ajk dy +

1

|Y |

∫

Y
ajm

∂χ`
∂ym

dy , 1 ≤ j, k ≤ N

where χ` is the solution of the Y -periodic elliptic problem

∣∣∣∣∣∣∣∣

− ∂

∂xj

(
ajk

∂χ`
∂xk

)
=

∂a`k
∂yk

χ` is Y -periodic , 1 ≤ ` ≤ N .
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Note that the solution χ` is uniquely determined up to an additive constant.

Moreover, the homogenized matrix q = (qjk) is symmetric, that is,

qjk = qkj

and elliptic with the same constant of ellipticity α of the matrix aj,k(x) in (1.2),

that is,
N∑

j,k=1

qjk ξjξk ≥ α|ξ|2 , ∀ ξ ∈ RN .

We refer to [8] and [9] for more details on homogenization.

In this work we study the asymptotic expansion of the solutions of the linear

equation in (1.1) with periodic coefficients, using Bloch waves decomposition.

We observe that equation in (1.1) can be assumed as a model for the heat

conduction involving a thermodynamic temperature θ = u− ν∆u and a conduc-

tive temperature u (see [5]). We are going to prove that the solutions of (1.1)

behave as a linear combination of the derivatives of the fundamental solution of

the heat equation modulated by periodic functions cα(·). Furthermore, from the

decomposition we prove it follows that the total mass of the solution is captured

by the first term in the asymptotic expansion.

A similar analysis was done in some recent works: in [15] the asymptotic

expansion of the solutions of the heat equation with periodic coefficients and

initial data in L1(RN ) ∩ L2(RN ) was studied. The results in [15] are an exten-

sion of those for the heat equation with constant coefficients (see [10]). In [7]

C. Conca and J.H. Ortega studied the asymptotic behavior of the solutions of a

linear parabolic equations in RN with periodically oscillating coefficients. In [16]

R. Orive, E. Zuazua and A. Pazoto applied Bloch waves theory to study the

asymptotic expansion of a linear wave equation with damping and periodic coeffi-

cients. In [17] R. Prado Raya and E. Zuazua obtained the complete asymptotic ex-

pansion of solutions, as time goes to infinite, of the both the linearized Benjamin–

Bona–Mahony–Burger equation and the linear Korteweg–de-Vries–Burger equa-

tion. They also compute the second term in the asymptotic expansion of the

solution to the two-dimensional Benjamin–Bona–Mahony–Burger equation, with

quadratic nonlinear term.

In this work, the general notation is standard and is the same that which

appears, for instance, in J.L. Lions [12].
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2 – Main results

The well-posedness of (1.1) under the conditions (1.2) and (1.3) can be ob-

tained inverting the operator

A
def
= − ∂

∂xj

(
ajk(x)

∂

∂xk

)

and rewriting (1.1) as an abstract evolution equation in the Hilbert space H =

H1(RN ), with the inner product

(u, v)H1(RN ) =

∫

RN
u v ρ(x) dx +

N∑

j,k=1

∫

RN
ajk(x)

∂u

∂xj

∂v

∂xk
dx

where the functions (ajk(x)) and ρ(x)are given in (1.2) and (1.3) respectively.

Under these conditions the operator associated to (1.1) is maximal and dissipative

in H. Then Lummer–Philips theorem guarantees that the operator associated to

(1.1) is the infinitesimal generator of a continuous semigroup. Thus, we deduce

that for any initial data ϕ ∈ L2(RN ) the problem (1.1) has a unique global weak

solution u = u(x, t) such that u ∈ C(R+, L2(RN )).

The main result of this work is the following theorem.

Theorem 2.1 (Asymptotic Expansion). Let the initial data ϕ ∈ L1(RN ) ∩
L2(RN ) with |x|k+1 ϕ(x) ∈ L1(RN ) for some fixed integer k ≥ 0. Let u = u(x, t)

be the solution of (1.1). Then, there exist periodic functions cα(·) ∈ L∞6= (Y ),

|α| ≤ k, and constants cβ,n , 4 ≤ |β| ≤ 2 k, depending on the initial data and

the coefficients (ajk) , such that

(2.1)

∥∥∥∥∥∥
u(·, t)−

∑

|α|≤k

cα(·)
[
Gα(·, t) +

p∑

n=1

(−t)n
n!

p1∑

m=0

∑

|β|=4n+2m

cβ,nGα+β(·, t)
]∥∥∥∥∥∥
≤

≤ Ck t
− 2k+N+2

4

as t→∞, where p = p(α) = [k−|α|2 ], p1 = p1(α, n) = p(α)− n and the functions
Gα(·, t), α ∈ Nn, are given by

(2.2) Gα(x, t) =

∫

RN
ξα e

− 1
ρ̄

∑
j,k

qjk ξj ξk t

eix·ξ dξ

where qjk, 1≤j, k≤N , are the homogenized constant coefficients associated with
the matrix a = (aεjk(x)), a

ε
jk(x) = ajk(x/ε), as ε → 0, and ρ̄ is the averaged
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density:

(2.3) ρ =
1

(2π)N

∫

Y
ρ(x) dx .

Let us also underline that the functions Gα which appear in the asymptotic

expansion (2.1) are such that Gα = (−i)|α| ∂
αG

∂xα
where G = G(x, t) is the funda-

mental solution of the underlying parabolic homogenized system

∣∣∣∣∣∣∣∣

ρGt − qjk
∂2G

∂xj ∂xk
= 0 , x ∈ RN , t > 0

G(x, 0) = δ0(x)

where ρ is the averaged density given in (2.3).

Thus the convergence result (2.1) shows us that the solution u of (1.1) may

be approximated by a linear combination at order k, of the derivatives of the

fundamental solution of the heat equation, modulated by the functions cα(·).
The role of these coefficients is to adapt the Gaussian asymptotic profiles to the

periodicity of the medium where the solution u involves. Indeed, c0(·) turns

out be a constant and more precisely c0 =
1

ρ̄
mρ(u) so that the first term in the

asymptotic expansion is really the Gaussian kernel G (see Section 8 and (1.5)).

In what concerns the coefficients cβ , two ingredients are involved: the moments

of the initial data ϕ ∈ L1(RN ; 1 + |x|k+1) and the derivatives of the periodicity

of the medium.

This work is organized as follows. The next section contains the basic results

on Bloch waves. In Section 4 we present some technical lemmas that we use in

the Section 5. Section 5 is devoted to the asymptotic expansion and in Section 6

we prove the main result in the particular case that the density ρ(x) is constant.

Finally, in Section 7 we prove Theorem 2.1 for a general nonconstant density and

in Section 8 we analyze the periodic functions cα and the constants cβ entering

in the asymptotic expansion.

3 – Bloch waves decomposition

In this section we recall some basic results on Bloch waves decomposition.

We refer to [8] and [9] for the notations and the proofs.
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Let us consider the following spectral problem parametrized by ξ ∈ Rn:

to find λ = λ(ξ) ∈ R and ψ = ψ(x; ξ), not identically zero, such that

(3.1)





Aψ(·, ξ) = λ(ξ)ψ(·, ξ) in Rn ,

ψ(·, ξ) is (ξ, Y )-periodic, i.e.,

ψ(y + 2πm; ξ) = e2πim·ξ ψ(y) , ∀m ∈ ZN , y ∈ RN ,

where i =
√
−1 and A is the elliptic operator in divergence form

(3.2) A
def
= − ∂

∂xj

(
ajk(x)

∂

∂xk

)
.

We can write ψ(x, ξ) = eix·ξ φ(x, ξ), φ being Y -periodic in the variable x.

From (3.1) we can observe that the (ξ, Y )-periodicity is unaltered if we replace

ξ by (ξ +m), with m ∈ ZN . Therefore, ξ can be confined to the dual cell

Y ′ =

[
−1

2
,
1

2

)N
.

From the ellipticity and symmetry assumptions on the matrix aj,k(x) can be

proved (see [20]) that for each ξ ∈ Y ′ the spectral problem (3.1) admits a sequence

of eigenvalues with the following properties:

(3.3)




0 ≤ λ1(ξ) ≤ · · · ≤ λm(ξ) ≤ · · · → +∞ and

λm(ξ) is a Lipschitz function of ξ ∈ Y ′ , ∀m ≥ 1 .

Besides, the corresponding sequence of eigenfunctions {ψm(ξ)}m may be nor-

malized to constitute an orthonormal basis of L2
#(Y ). Moreover, as a consequence

of the min-max principle we have that

(3.4) · · · ≥ λm(ξ) ≥ · · · ≥ λ2(ξ) ≥ λN2 > 0 , ∀ ξ ∈ Y ′

where λN2 is the second eigenvalue of the operator A, given in (3.2), in the cell Y

with Neumann boundary conditions on ∂Y .

The following result provides the classical Bloch wave decomposition of L2(Rn):

Proposition 3.1. Let g ∈ L2(Rn). The m-th Bloch coefficient of g is defined

as follows:

ĝm(ξ) =

∫

Rn
g(x) e−ix·ξ φm(x, ξ) dx , ∀m ≥ 1, ξ ∈ Y ′ .

Then the following inverse formula:

g(x) =

∫

Y ′

∞∑

m=1

ĝm(ξ) eix·ξ φm(x; ξ) dξ
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and the Parseval’s identity:

(3.5)

∫

Rn
|g(x)|2 dx =

∫

Y ′

∞∑

m=1

|ĝm(ξ)|2 dξ

hold.

Further, for all g in the domain of A, it holds that

Ag(x) =

∫

Y ′

∞∑

m=1

λm(ξ) ĝm(ξ) eix·ξ φm(x; ξ) dξ

and, consequently,

‖g‖2H1(RN ) =

∫

Y ′

∞∑

m=1

(
1 + λm(ξ)

)
|ĝm(ξ)|2 dξ ,

(3.6) ‖g‖2H−1(RN ) =

∫

Y ′

∞∑

m=1

|ĝm(ξ)|2
1 + λm(ξ)

dξ .

Observe that Proposition 3.1 guarantees that the set {eix·ξφm(x, ξ) : m ≥ 1,

ξ ∈ Y ′} forms a basis of L2(RN ) in a generalized sense. Moreover, L2(RN ) may

be identified with L2(Y ′, `(N)) via Parseval’s identity (3.5), (3.6).

The following result on the behavior of λ1(ξ) and φ1(x, ξ), near ξ = 0, will

also be necessary in this work.

Proposition 3.2. We assume that (ajk) satisfy the conditions (1.2). Then

there exists δ1 > 0 such that the first eigenvalue λ1(ξ) is an analytic function on

Bδ1
def
= {ξ : |ξ|<δ1}, and there is a choice of the first eigenvector φ1(·, ξ) such that

ξ 7→ φ1(·, ξ) ∈ L∞# (Y ) ∩H1
#(RN )

is analytic on Bδ1 and

φ1(x, 0) = |Y |−1/2 =
1

(2π)N/2
, x ∈ RN .

Moreover,

(3.7)





λ1(0) = 0 , ∂jλ1(0) = 0, 1 ≤ j ≤ N ,

1

2
∂2
jk λ1(0) = qjk , 1 ≤ j, k ≤ N ,

∂αλ1(0) = 0 , ∀α such that |α| is odd ,
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and

(3.8) c|ξ|2 ≤ λ1(ξ) ≤ c̃|ξ|2 , ∀ ξ ∈ Y ′

where c and c̃ are positive constants.

As a consequence of this proposition we have:

Proposition 3.3. Assume the same hypotheses of Proposition 3.2 and let

f(ξ) =
λ1(ξ)

1 + λ1(ξ)
· Then there exists δ > 0 such that f(ξ) is analytic on Bδ .

Furthermore, f(ξ) satisfies

c1
|ξ|2

1 + |ξ|2 ≤ f(ξ) ≤ c2
|ξ|2

1 + |ξ|2 , c1, c2 > 0 ,

and

(3.9)





f(0) = ∂if(0) = 0 , i = 1, 2, ..., N ,

∂2
ij f(0) = 2 qij , i, j = 1, ..., N ,

∂βf(0) = 0 , ∀β such that |β| is odd .

These results follows directly from the computations of the derivatives of f(ξ)

at ξ = 0.

4 – Technical Lemmas

In this section we are going to present a basic lemma on asymptotic analysis

and some technical results which will be useful in the proof of the asymptotic

expansion.

Definition 4.1. Given f, g ∈ C1(R;R), we say that f and g are of the same

order as t→ +∞ and we denote it by f ∼ g when

lim
t→∞

f(t)

g(t)
= 1 .

Lemma 4.1. Let C > 0. Then

(4.1)

∫

Bδ

e−C|ξ|
2 t |ξ|k dξ ∼ Ck t

− k+N
2 ,

as t→ +∞ for all k ∈ N, where Ck is a positive constant which may be computed

explicitly.
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On the other hand, if q = qjk is a symmetric positive matrix satisfying (2.6)

then

(4.2)

∫

Y ′
e
−
∑
j,k

qjkξjξk t

ξβ dξ ∼ C|β| t
−

|β|+N
2

as t→ +∞ for all multi index β ∈ (N∪{0})N and for a suitable positive constant

C|β| which may be computed as well.

Lemma 4.2. Let ϕ ∈ L1(Rn) be a function such that |x|k ϕ ∈ L1(Rn). Then

its first Bloch coefficient ϕ̂1(ξ) belongs to C
k(Bδ), where Bδ is the neighborhood

of ξ = 0 where the first Bloch wave φ1(x, ξ) is analytic.

Proof: Since

ϕ̂1(ξ) =

∫

RN
ϕ(x) e−ix·ξ φ1(x; ξ) dx ,

for all α ∈ (N ∪ {0})N with |α| ≤ k, we have

∂|α|ϕ̂1

∂ξα
(ξ) =

∑

β≤α

(
α
β

)∫

RN
ϕ(x) (−i)|β| xβeix·ξ ∂

|α−β|φ1

∂ξα−β
(x; ξ) dx ,

where β ≤ α means that βj ≤ αj for all j = 1, ..., N , and

(
α
β

)
=

N∏

k=1

(
αj
βj

)
.

Moreover, Proposition 3.2 gives us that the function ξ → φ1(x; ξ) is analytic

with values in L∞# (Y ), which guarantees that

∣∣∣∣∣
∂|α|ϕ̂1

∂ξα
(ξ)

∣∣∣∣∣ ≤
∑

β≤α

(
α
β

)
cβ

∫

RN
|ϕ(x)xβ | dx

≤
∑

β≤α

(
α
β

)
cβ

∫

RN
(1 + |x|k) |ϕ(x)| dx ,

for 0 ≤ |α| ≤ k, where cβ is a positive constant. Thus, using again Proposition

3.2, we have that the map ξ → eiξ·x ∂αξ φ1(x; ξ) is continuous, and the result

follows.

Lemma 4.3. Consider the function

(4.3) G(x) =

∫

Y ′
g(ξ) eix·ξ w(x; ξ) dξ , x ∈ RN ,
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where g ∈ L2(Y ′) and w ∈ L∞(Y ′;L2
#(Y )). Then G ∈ L2(RN ) and

‖G‖2L2(RN ) =

∫

Y ′
|g(ξ)|2 ‖w( · ; ξ)‖2L2(Y ) dξ .

Proof: To check this result we expand w(x; ξ) as a function of x in the

orthonormal basis {φm(x; ξ)}∞m=1 where ξ ∈ Y ′ is a parameter:

w(x; ξ) =
∞∑

m=1

am(ξ)φm(x; ξ) .

Introducing this expression in (4.3), we get

G(x) =

∫

Y ′
g(ξ)

∞∑

m=1

am(ξ) eix·ξ φm(x; ξ) dξ .

Applying the Parseval’s identity of Proposition 3.1, it follows that

‖G‖2 =

∫

Y ′
|g(ξ)|2

∞∑

m=1

|am(ξ)|2 dξ .

The proof of the lemma is complete using the Parseval’s identity in L2(Y ):

‖w( · ; ξ)‖2L2(Y ) =
∞∑

m=1

|am(ξ)|2 , ∀ ξ ∈ Y ′ .

5 – Asymptotic expansion for constant density

In this section and in the next, Ck will indicate different positive constants

which depend on the integer k. In these two sections we develop the asymptotic

expansion for the case when the density function ρ(x) ≡ ρ1 = ρ0 = 1. The general

case is studied in Section 7.

First we compute the Bloch coefficients of the solution u of (1.1). Next, we

show that the terms corresponding to the eigenvalue λm(ξ), m ≥ 2, are negligible

since they decay exponentially as t→ +∞.

Lemma 5.1. Let u = u(x, t) be the solution of (1.1) with ϕ ∈ L2(RN ). Then

(5.1) u(x, t) =
∞∑

m=1

∫

Y ′
ϕ̂m0 (ξ) e

−
λm(ξ)

1+λm(ξ)
t
eix·ξ φm(x, ξ) dξ

where ϕ̂m0 (ξ) are the Bloch coefficients associated to the initial data ϕ(x).
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Proof: Since u(x, t) ∈ L2(Rn) for all t > 0, we have that

(5.2) u(x, t) =
∞∑

m=1

∫

Y ′
ûm(ξ, t) eix·ξ φm(x, ξ) dξ

where ûm(ξ, t) are the Bloch coefficients of u(x, t). On the other hand, from

Proposition 3.1 we obtain

∞∑

m=1

∫

Y ′

[
ûmt (ξ, t) + λm(ξ) ûmt (ξ, t) + λm(ξ) ûm(ξ, t)

]
eix·ξ φm(x, ξ) dξ = 0 .

Thus, since system {φm(x, ·)} is orthogonal, it follows, that for each m ≥ 1,

ûm(ξ, t) satisfies the following ordinary differential equation:

(5.3)




ûmt (ξ, t) + λm(ξ) ûmt (ξ, t) + λm(ξ) ûm(ξ, t) = 0 in Y ′× (0,+∞)

ûm(ξ, 0) = ϕ̂m0 (ξ) .

Solving the differential equation (5.3) we find

(5.4) ûm(ξ, t) = ϕ̂m0 (ξ) e
−

λm(ξ)
1+λm(ξ)

t
, m ≥ 1 .

From (5.4) and (5.2) the result follows.

Lemma 5.2. Let ûm(ξ, t), m ≥ 2, be the Bloch coefficients, associated with

the solution u = u(x, t) of (1.1), given in (5.4). Then, there exists a positive

constant γ such that

∞∑

m=2

∫

Y ′
|ûm(ξ; t)|2 dξ ≤ e−γt ‖ϕ‖2L2(RN ) for all t > 0 .

Proof: From (3.6) it follows that, for m ≥ 2,

λm(ξ) ≥ λN2 > 0 for all ξ ∈ Y ′ .

Therefore

(5.5)
λm(ξ)

1 + λm(ξ)
≥ λN2

1 + λm(ξ)
for all m ≥ 2 and ξ ∈ Y ′ .

In order to obtain the result, we consider two cases:
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Case 1: λN2 ≤ λm(ξ) ≤ 1.

In this case, from (5.5) it results that

λm(ξ)

1 + λm(ξ)
≥ λN2

1 + λm(ξ)
≥ λN2

2
for all m ≥ 2 .

Case 2: λm(ξ) > 1.

If λm(ξ) ≥ 1 then

λm(ξ)

1 + λm(ξ)
≥ 1

2
for all m ≥ 2

since 1 + λm(ξ) ≤ 2λm(ξ).

Now, letting β = min

{
λN2
2
,
1

2

}
, we deduce that

0 < e
−

λm(ξ)
1+λm(ξ)

t ≤ e−βt for all m ≥ 2, ξ ∈ Y ′ .
Consequently,

|ûm(ξ, t)| = |ϕ̂m0 (ξ) e
−

λm(ξ)
1+λm(ξ)

t| ≤ |ϕ̂m0 (ξ)| e−βt for all m ≥ 2, ξ ∈ Y ′ .
Thus,

∞∑

m=2

∫

Y ′
|ûm(ξ, t)|2 dξ ≤

∞∑

m=2

∫

Y ′
|ϕ̂m0 (ξ)|2 e−2βt dξ

≤ e−2βt
∞∑

m=2

∫

Y ′
|ϕ̂m0 (ξ)|2 dξ .

Parseval’s identity implies that
∞∑

m=2

∫

Y ′
|ûm(ξ, t)|2 dξ ≤ e−2βt‖ϕ‖2L2(RN ) for all t > 0 .

Taking γ = 2β the conclusion of the lemma follows.

In the next lemma we prove that the term corresponding to λ1(ξ) also goes

to zero exponentially, as t → +∞, whenever ξ ∈ {ξ ∈ Y ′ : |ξ| > δ}, with δ > 0

sufficiently small.

Lemma 5.3. Let û1 = û1(ξ, t) be the first Bloch coefficient of the solution

u of (1.1) given in (5.4). Then, there exists a positive constant γ1 , such that

(5.6)

∫

Y ′\Bδ

|û1(ξ, t)|2 dξ ≤ e−γ1t‖ϕ‖2L2(RN ) for all t > 0

where Bδ = {ξ ∈ Y ′ : |ξ| < δ} with δ such that 0 < δ < 1/2.



486 E. BISOGNIN, V. BISOGNIN, R.C. CHARÃO and A.F. PAZOTO

Proof: Let 0 < δ <
1

2
· From Proposition 3.2, we know that

(5.7) λ1(ξ) ≥ c|ξ|2 for all ξ ∈ Y ′

where c is a positive constant.

On the other hand, proceeding as in the proof of Lemma 5.2, we can consider

two cases:

First case: λ1(ξ) ≥ 1, ξ ∈ Y ′\Bδ .

In this case
λ1(ξ)

1 + λ1(ξ)
≥ λ1(ξ)

2λ1(ξ)
=

1

2
.

Second case: 0 ≤ λ1(ξ) < 1, ξ ∈ Y ′\Bδ .

From (5.7) it follows that

λ1(ξ)

1 + λ1(ξ)
≥ λ1(ξ)

2
≥ c|ξ|2

2
> c

δ2

2
, ξ ∈ Y ′\Bδ .

Thus, letting β̃ = min

{
1

2
, c
δ2

2

}
we have

λ1(ξ)

1 + λ1(ξ)
≥ β̃ > 0 for all ξ ∈ Y \Bδ .

Therefore, from (5.4) with m = 1 we have

∫

Y ′\Bδ

|û1(ξ, t)|2 dξ =

∫

Y ′\Bδ

|ϕ̂1
0(ξ)|2 e

−
2λ1(ξ)

1+λ1(ξ)
t
dξ

≤ e−2β̃t
∫

Y ′\Bδ

|ϕ̂1
0(ξ)|2 dξ

≤ e−2β̃t
∫

Y ′
|ϕ̂1

0(ξ)|2 dξ

≤ e−2β̃t
∞∑

m=1

∫

Y ′
|ϕ̂m0 (ξ)|2 dξ = e−2β̃t‖ϕ‖2L2(RN )

for all t > 0.

Taking γ1= 2β̃ we conclude the proof of Lemma 5.3.
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Remark 5.1. Due to Parseval’s identity, it follows from Lemma 5.2 and

Lemma 5.3 that

‖u(t)‖2L2(RN ) =

∫

Y ′
|û1(ξ, t)|2 dξ +

+∞∑

m=2

∫

Y ′
|ûm(ξ, t)|2 dξ

≤
∫

Bδ

|û1(ξ, t)|2 dξ + e−γt‖ϕ‖2L2(RN )

where γ is a positive constant and Bδ = {ξ ∈ Y ′ : |ξ| < δ}, 0 < δ < 1/2. Thus,

to prove Theorem 2.1 it is sufficient to analyse the first term in the Bloch ex-

pansion and, more precisely, its projection to ξ ∈ Bδ, since the other one decay

exponentially as t→ +∞.

According to Remark 5.1, our analysis may be restricted to consider

(5.8) I(x, t) =

∫

Bδ

ϕ̂1
0(ξ) e

−
λ1(ξ)

1+λ1(ξ)
t
eix·ξ φ1(x; ξ) dξ .

Our next step is to prove that (5.8) may be replaced by

(5.9) J(x, t) =
∑

|α|≤k

cα

∫

Bδ

ξα e
−

λ1(ξ)

1+λ1(ξ)
t
eix·ξ φ1(x, ξ) dξ

where cα =
1

α!
Dα ϕ̂1

0(0), |α| ≤ k, are the Taylor coefficients of the expansion of

ϕ̂1
0(ξ) around ξ = 0. To do this, we assume that the initial data ϕ0 ∈ L1(RN ) ∩

L2(RN ) and is such that |x|k+1 ϕ(x) ∈ L1(RN ) for some k ∈ N. Under these

conditions, there exists 0 < δ0 < 1/2 such that the first Bloch coefficient ϕ̂1
0(ξ)

of the initial data belongs to Ck+1(Bδ0) (see Lemma 4.2).

In the sequel, we will fix δ = min{δ0; δ1}, where δ1 was given in Proposition

3.2.

Lemma 5.4. There exists a positive constant Ck = Ck(ϕ) > 0 such that

‖I(·, t)− J(·, t)‖2L2(RN ) ∼ Ck t
− 2k+2+N

2 as t→ +∞ .

where J(x, t) was defined in (5.9).

Proof: Parseval’s identity implies that

(5.10) ‖I(·, t)− J(·, t)‖2L2(RN ) =

∫

Bδ

∣∣∣∣∣ϕ̂
1
0(ξ) −

∑

|α|≤k

cα ξ
α

∣∣∣∣∣

2

e
−

2λ1(ξ)

1+λ1(ξ) dξ
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and Proposition 3.3 give us that

(5.11)
λ1(ξ)

1 + λ1(ξ)
≥ c1|ξ|2

1 + δ2
= γ1|ξ|2 , ξ ∈ Bδ ,

where γ1 =
c1

1 + δ2
·

Thus, putting (5.10) and (5.11) together, we obtain

(5.12) ‖I(·, t)− J(·, t)‖2L2(RN ) ≤
∫

Bδ

∣∣∣∣∣ϕ̂
1
0(ξ)−

∑

|α|≤k

cα ξ
α

∣∣∣∣∣

2

e−2 γ1|ξ|2 t dξ .

On the other hand, since ϕ̂1
0 ∈ Ck+1(Bδ) we have from Taylor’s expansion

(5.13)

∣∣∣∣∣ϕ̂
1
0(ξ)−

∑

|α|≤k

cα ξ
α

∣∣∣∣∣ ≤ Ck|ξ|k+1, for all ξ ∈ Bδ

where Ck > 0 is constant.

Therefore, estimates (5.12) and (5.13)imply that

‖I(·, t)− J(·, t)‖2L2(RN ) ≤ C2
k

∫

Bδ

|ξ|2(k+1) e−2γ1|ξ|2t dξ

and, from Lemma 4.1 we obtain

(5.14) ‖I(·, t)− J(·, t)‖2L2(RN ) ∼ C2
k t
− 2k+2+N

2 , t→∞

with Ck > 0 a positive constant.

In a second step, we compute the Taylor expansion of φ1(x, ξ) around ξ = 0

and we prove that all terms entering in (5.9), which are denoted by

(5.15)
Jα(x, t) =

∫

Bδ

ξα e
−

λ1(ξ)

1+λ1(ξ)
t
eix·ξ φ1(x, ξ) dξ ,

α ∈ (N ∪ 0)N , |α| ≤ k, (x, t) ∈ RN× R+ ,

can be approximated in the L2-setting by a linear combination of the form

(5.16)
1

(2π)N

∑

|γ|≤k−|α|

dγ(x)

∫

Bδ

ξγ e
−

λ1(ξ)

1+λ1(ξ)
t
eix·ξ dξ

where dγ are periodic functions defined by

(5.17) dγ(x) =
1

γ!
Dγ

ξ φ1(x, 0) , |γ| ≤ k .
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This can be done because φ1(·, ξ) ∈ L∞# (Y ) ∩H1
#(Y ) is an analytic function

of ξ (see Proposition 3.2) in Bδ.

Lemma 5.5. There exists a constant Ck > 0 such that

∥∥∥∥∥Jα(·, t) −
∑

|γ|≤k−|α|

dγ(·) Iα+γ(·, t)
∥∥∥∥∥

2

L2(RN )

∼ Ck t
− 2k+2+N

2 , t→∞

where Iγ(x, t) =

∫

Bδ

ξγ e
−

λ1(ξ)

1+λ1(ξ)
t
eix·ξ dξ and |α| ≤ k.

Proof: Let

(5.18) Rk,α(x, ξ) = φ1(x, ξ) −
∑

|γ|≤k−|α|

dγ(x) ξ
γ

where dγ(·) is defined in (5.17) and α ∈ (N ∪ 0)N with |α| ≤ k. Since φ1(·, ξ) is
an analytic function with respect to ξ in the Bδ and values in L2

#(Y ) we have,

for all ξ ∈ Bδ ,

(5.19) ‖Rk,α(·, ξ)‖L2(RN ) ≤ Ck|ξ|k+1−|α| .

Thus

(5.20) Rk,α ∈ L∞(Bδ;L
2
#(Y )) .

Now, we consider the function F given by

F (x, t) = Jα(x, t) −
∑

|γ|≤k−|α|

dγ(x) Iα+γ(x, t)

=

∫

Bδ

ξα e
−

λ1(ξ)

1+λ1(ξ)
t

[
φ1(x, ξ) −

∑

|γ|≤k−|α|

dγ(x)ξ
γ

]
eix·ξ dξ

=

∫

Bδ

ξα e
−

λ1(ξ)

1+λ1(ξ)
t
Rk,α(x, ξ) e

ix·ξ dξ .

From Lemma 4.3, (5.19) and (5.20) we obtain, using (5.11),

‖F (·, t)‖2L2(RN ) =

∫

Bδ

∣∣∣ξα e−
λ1(ξ)

1+λ1(ξ)
t
∣∣∣
2
‖Rk,α(·, ξ)‖2L2(Y ) dξ

≤ C2
k

∫

Bδ

|ξ|2|α| e−
2λ1(ξ)

1+λ1(ξ)
t |ξ|2k+2−2|α| dξ

≤ C2
k

∫

Bδ

|ξ|2k+2 e−2γ1|ξ|2 t dξ .



490 E. BISOGNIN, V. BISOGNIN, R.C. CHARÃO and A.F. PAZOTO

Consequently, from Lemma 4.1 it follows that

(5.21) ‖F (·, t)‖2L2(RN ) ≤ Ck t
− 2k+2+N

2 as t→ +∞ .

The proof of Lemma 5.5 is complete.

Next, we are going to study the integral Iγ which appears in the statement of

Lemma 5.5. We consider

(5.22)
∑

|α|≤k

d̃α ξ
α

the power expansion of the function f(ξ) =
λ1(ξ)

1 + λ1(ξ)
, ξ ∈ Bδ , around ξ = 0

and observe that, according to Proposition 3.3, we have

(5.23) f(0) =
∂f

∂ξj
(0) = 0 , j = 1, 2, ..., N .

and

(5.24)
∂2f

∂ξj∂ξk
(0) = 2 qjk , j, k = 1, 2, ..., N .

In view of (5.22), (5.23) and (5.24), the map

(5.25) r(ξ) = f(ξ) −
N∑

j,k

qjk ξj ξk

is analytic in Bδ (see Proposition 3.3). Moreover,

(5.26) e−f(ξ)t = e
−
∑
j,k

qjkξjξk t

e−r(ξ)t = e
−
∑
j,k

qjkξjξk t
(
∞∑

n=0

tn

n!
(−r(ξ))n

)
.

Now, if we define for p ∈ N

(5.27) Ĩγ(x, t) =

∫

Bδ

ξγ e
−
∑
j,k

qjkξjξk t
( p∑

n=0

tn

n!
(−r(ξ))n

)
eix·ξ dξ

and replacing (5.25) in Iγ(x, t) defined in Lemma 5.5, (5.26) allows us to study

the asymptotic behavior of

(5.28) Iγ(x, t)− Ĩγ(x, t) =
∫

Bδ

ξγ e
−
∑
j,k

qjkξjξk t
(
e−r(ξ)t−

p∑

n=0

tn

n!
(−r(ξ))n

)
eix·ξ dξ .
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Lemma 5.6. Let 2 p ≥ k − |γ| − 1. Then, there exists a constant Ck > 0

such that

‖Iγ(·, t)− Ĩγ(·, t)‖2L2(RN ) ∼ Ck t
− 2k+N+2

2 , as t→∞ .

where Ĩγ was defined in (5.27).

Proof: Parseval’s identity and (5.28) imply that

‖Iγ(·, t)− Ĩγ(·, t)‖2L2(RN ) =

=

∫

Bδ

|ξ|2|γ| e
−2
∑
j,k

qjkξjξk t
∣∣∣∣∣e
−r(ξ)t −

p∑

n=0

(−t)n
n!

r(ξ)n
∣∣∣∣∣

2

dξ(5.29)

and, since the function ez, z ∈ R, is analytic, there exists a positive constant Cp

satisfying

(5.30)

∣∣∣∣∣e
−r(ξ)t −

p∑

n=0

(−t)n
n!

r(ξ)n
∣∣∣∣∣ ≤ Cp|r(ξ)|p+1 tp+1 , t > 0, ξ ∈ Bδ .

On the other hand, recalling that f(ξ) is analytic in Bδ and the definition

of r(ξ), from the fact that Dαf(0) = 0 when |α| is odd (see Proposition 3.3),

it follows that

(5.31) r(ξ) =
∞∑

m=1

∑

|α|=2+2m

1

α!
∂αξ f(0) ξ

α , ξ ∈ Bδ .

Thus, we can obtain a positive constant C such that

(5.32) |r(ξ)| ≤ C|ξ|4 , ξ ∈ Bδ .

Now, returning to (5.29) and using (5.30) and (5.32) together with Lemma

4.1 we obtain

‖Iγ(·, t)− Ĩγ(·, t)‖2L2(RN ) ≤ C2
p

∫

Bδ

|ξ|2|γ| e
−2
∑
j,k

qjkξjξk t

|r(ξ)|2p+2 t2p+2 dξ

≤ C2
p t

2p+2
∫

Bδ

e
−2
∑
j,k

qjkξjξk t

|ξ|8p+8+2|γ| dξ

∼ C2
p Ck t

2p+2−
8p+8+2|γ|+N

2 as t→∞ ,

for |γ| ≤ k and p to be chosen. Letting p such that

2 p ≥ k − |γ| − 1

the proof of the lemma is complete.
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The next step is to study the asymptotic behavior of r(ξ) defined in (5.25).

But, before doing it, observe that if we consider the Taylor expansion of r(ξ),

around ξ = 0, we obtain

(5.33)

(r(ξ))n =



∑

β≥0

1

β!
∂βξ r(0) ξ

β



n

=




∞∑

m=0

∑

|β|=4+2m

1

β!
∂βξ f(0) ξ

β



n

=
∞∑

m=0

∑

β=4n+2m

cβ,n ξ
β ,

because Dβ f(0) = 0 for |β| < 4 and for |β| odd.
This fact suggest for Ĩγ(x, t) (see definition in (5.27)) an approximation of

type
∫

Bδ

ξγ e
−
∑
j,k

qjkξjξkt p∑

n=1

(−t)n
n!

p1∑

m=0

∑

|β|=4+2m

cβ,n ξ
β eix·ξ dξ ,

where p1= p1(γ, n), p1 ≥ n, to be chosen later.

Lemma 5.7. Let

Ĩγ∗(x, t) =

∫

Bδ

ξγ e
−
∑
j,k

qjkξjξk t
( p∑

n=1

(−t)n
n!

r(ξ)n
)
eix·ξ dξ

and

Jγ∗(x, t) =

∫

Bδ

ξγ e
−
∑
j,k

qjkξjξk t



p∑

n=1

(−t)n
n!

p1∑

m=0

∑

|β|=4+2m

cβ,n ξ
β


 eix·ξ dξ ,

with cβ,n = 1
β! ∂

β
ξ (r(ξ)

n)(0).

Then

‖Ĩγ∗(·, t)− Jγ∗(·, t)‖2L2(RN ) ∼ Ck t
− 2k+N+2

2 as t→ +∞

where Ck is a positive constant and |γ| ≤ k.

Proof: From Parseval’s Theorem we can write

‖Ĩγ∗(·, t)− Jγ∗(·, t)‖2L2(RN ) =

=

∫

Bδ

∣∣∣∣∣∣
ξγ e

−
∑
j,k

qjkξjξk t



p∑

n=1

(−t)n
n!

[
r(ξ)n −

p1∑

m=0

∑

|β|=4+2m

cβ,n ξ
β

]


∣∣∣∣∣∣

2

dξ .
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On the other hand, from the analyticity of r(ξ), we obtain a positive constant

Cn such that

∣∣∣∣∣∣
r(ξ)n −

p1∑

m=0

∑

|β|=4+2m

cβ,n ξ
β

∣∣∣∣∣∣
≤ Cn|ξ|4n+2p1+2 , ∀ ξ ∈ Bδ ,

where cβ,n =
1

β!
∂βξ (r(ξ))

n(0) and p1 = p1(γ, n) ≥ n to be chosen later.

Thus,

‖Ĩγ∗(·, t)− Jγ∗(·, t)‖2L2(RN ) ≤

≤
∫

Bδ

|ξ|2|γ| e
−2
∑
j,k

qjkξjξk t



p∑

n=1

tn

n!

∣∣∣∣∣r(ξ)
n −

p1∑

m=0

∑

|β|=4+2m

cβ,n ξ
β

∣∣∣∣∣




2

dξ

≤
∫

Bδ

|ξ|2|γ| e
−2
∑
j,k

qjkξjξk t
( p∑

n=1

tn

n!
Cn|ξ|4n+2p1+2

)2

dξ .

Consequently, from Lemma 4.1, for |γ| ≤ k it follows that,

‖Ĩγ∗(·, t)− Jγ∗(·, t)‖2L2(RN ) ≤

≤ Cp

p∑

n=1

t2n
∫

Bδ

|ξ|2|γ|+2(4n+2p1+2) e
−2
∑
j,k

qjkξjξk t

dξ

∼ CpCk

p∑

n=1

t−
2|γ|+8n+4p1+4+N

2
+2n

as t→ +∞, where Cp is a positive constant.

Now, choosing p1 = p1(γ, n) such that

2 p1 ≥ k − |γ| − 2n− 1 ,

the fact that p = p(k) implies

‖Ĩγ∗(·, t)− Jγ∗(·, t)‖2L2(RN ) ∼ Ck t
− 2k+N+2

2 , as t→∞ .

Remark 5.2. Although the heat kernel is defined as a integral in RN and

in our case only in Bδ (see Lemma 5.7) we observe that the difference between

these two integrals decay exponentially in L2(RN ) due to Parseval’s identity and
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the coercivity of (qjk) in RN (see (2.6)), i.e.

∥∥∥∥∥

∫

RN\Bδ

ξβ e
−
∑
j,k

qjkξjξk t

eix·ξ dξ

∥∥∥∥∥
L2(RN )

=



∫

RN\Bδ

∣∣∣∣∣ξ
β e
−
∑
j,k

qjkξjξk t
∣∣∣∣∣

2

dξ




1/2

≤ C e−αδ
2t

for t ≥ t0, where C is a positive constant which depends on β ∈ Nn and t0
(t0 a fixed positive number). Here α > 0 is the constant of coercivity.

6 – Proof of Theorem 2.1 with ρ ≡ 1

Let

H(x, t) =
∑

|α|≤k

c̃α(x)


Gα(x, t) +

p∑

n=1

(−t)n
n!

p1∑

m=0

∑

|β|=4+2m

cβ,nGα+β(x, t)




where c̃α(x) =
∑
γ≤α

dγ(x)cα−γ , |α| ≤ k and

Gα(x, t) =

∫

RN
ξα e

−
∑
j,k

qjkξjξk t

eix·ξ dξ .

Let u(x, t) be the solution of (1.1). Using the expression (5.1) for u(x, t) and

the definition of I(x, t), given in (5.8), we obtain the estimate

‖u(·, t)−H(·, t)‖L2(RN ) ≤

(6.1)

≤ ‖u(·, t)− I(·, t)‖L2(RN ) + ‖I(·, t)−H(·, t)‖L2(RN )

≤
∥∥∥∥∥

∞∑

m=2

∫

Y ′
ϕ̂m0 (ξ) e

−
λm(ξ)

1+λm(ξ)
t
eix·ξ φm(x, ξ) dξ

∥∥∥∥∥
L2(RN )

+

∥∥∥∥∥

∫

Y ′\Bδ

ϕ̂1
0(ξ) e

−
λ1(ξ)

1+λ1(ξ)
t
eix·ξ φ1(x, ξ) dξ

∥∥∥∥∥
L2(RN )

+ ‖I(·, t)−H(·, t)‖L2(RN )

=

(
∞∑

m=2

∫

Y ′
|ûm(ξ, t)|2 dξ

)1/2
+

(∫

Y ′\Bδ

|û1(ξ, t)|2 dξ
)1/2

+ ‖I(·, t)−H(·, t)‖L2(RN )

where we have used Parseval’s Theorem for Bloch waves(Proposition 3.1).
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Applying Lemma 5.2 and Lemma 5.3 it follows that

(6.2)
‖u(·, t)−H(·, t)‖L2(RN ) ≤ 2 ‖ϕ‖L2(RN ) e

−γ2t + ‖I(x, t)−H(x, t)‖L2(RN ) ,

t > 0 ,

where γ2 = 2min{γ, γ1}, γ and γ1 are the constants that appear in Lemma 5.2

and 5.3 respectively.

Now, from Lemma 5.4 we obtain

‖I(·, t)−H(·, t)‖L2(RN ) ≤ ‖I(·, t)−J(·, t)‖L2(RN ) + ‖J(·, t)−H(·, t)‖L2(RN )
(6.3)

≤ Ck t
− 2k+2+N

4 + ‖J(·, t)−H(·, t)‖L2(RN )

as t→∞.

We also have

‖J(·, t)−H(·, t)‖L2(RN ) =

∥∥∥∥∥∥

∑

|α|≤k

cα Jα(·, t)−H(·, t)

∥∥∥∥∥∥
L2(RN )

≤

∥∥∥∥∥∥

∑

|α|≤k

cα


Jα(·, t) −

∑

|γ|≤k−|α|

dγ(·) Iγ+α(·, t)



∥∥∥∥∥∥
L2(RN )

+

∥∥∥∥∥∥

∑

|α|≤k

cα
∑

|γ|≤k−|α|

dγ(·) Iγ+α(·, t)−H(·, t)

∥∥∥∥∥∥
L2(RN )

≤ Ck

∑

|α|≤k

∥∥∥∥∥∥
Jα(·, t) −

∑

|γ|≤k−|α|

dγ(·) Iγ+α(·, t)

∥∥∥∥∥∥
L2(RN )

+

∥∥∥∥∥∥

∑

|α|≤k

cα
∑

|γ|≤k−|α|

dγ(·) Iγ+α(·, t)−H(·, t)

∥∥∥∥∥∥
L2(Rn)

,

where Ck = sup|α|≤k |cα|.
Thus, from Lemma 5.5 it results

(6.4)

‖J(·, t)−H(·, t)‖L2(Rn) ≤

≤ Ck t
− 2k+2+N

4 +

∥∥∥∥∥∥

∑

|α|≤k

cα
∑

|γ|≤k−|α|

dγ(·) Iγ+α(·, t)−H(x, t)

∥∥∥∥∥∥
L2(RN )

.
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Here, we observe that

(6.5)
∑

|α|≤k

cα
∑

|γ|≤k−|α|

dγ(x) Iγ+α(x, t) =
∑

|α|≤k

c̃α(x) Iα(x, t)

where c̃α(x) are defined in the beginning of this section.

Then

∥∥∥∥∥∥

∑

|α|≤k

cα
∑

|γ|≤k−|α|

dγ(·) Iγ+α(·, t)−H(x, t)

∥∥∥∥∥∥
L2(RN )

=

=

∥∥∥∥∥∥

∑

|α|≤k

c̃α(·) Iα(·, t)−H(·, t)

∥∥∥∥∥∥
L2(RN )

≤

∥∥∥∥∥∥

∑

α|≤k

c̃α(·)
[
Iα(·, t)− Ĩα(·, t)

]
∥∥∥∥∥∥
L2(RN )

+

∥∥∥∥∥∥

∑

|α|≤k

c̃α(·)̃ Iα(·, t)−H(·, t)

∥∥∥∥∥∥
L2(RN )

where Ĩα(·, t) is defined in (5.27) and c̃α(x) ∈ L∞6= (Y ) because dγ(x) ∈ L∞6= (Y ).

Therefore, Lemma 5.6 implies that

∥∥∥∥∥∥

∑

|α|≤k

cα
∑

|γ|≤k−|α|

dγ(·) Iγ+α(·, t)−H(·, t)

∥∥∥∥∥∥
L2(RN )

≤

≤ Ck

∑

|α|≤k

∥∥∥Iα(·, t)− Ĩα(·, t)
∥∥∥
L2(RN )

+

∥∥∥∥∥∥

∑

|α|≤k

c̃α(·)̃ Iα(·, t)−H(·, t)

∥∥∥∥∥∥
L2(RN )

(6.6)

≤ Ck t
− 2k+N+2

4 +

∥∥∥∥∥∥

∑

|α|≤k

c̃α(·) Ĩα(·, t)−H(·, t)

∥∥∥∥∥∥
L2(RN )

as t→∞.

On the other hand

(6.7)

∑

|α|≤k

c̃α(·) Ĩα(·, t)−H(·, t) =

= −
∑

|α|≤k

c̃α(·)
∫

Rn\Bδ

ξα e
−
∑
j,k

qjkξjξk t

eix·ξ dξ

+
∑

|α|≤k

c̃α(·) Ĩα∗(·, t)−H1(·, t)
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where

(6.8) H1(x, t) =
∑

|α|≤k

c̃α(x )
p∑

n=1

(−t)n
n!

p1∑

m=0

∑

|β|=4+2m

cβ,nGα+β(x, t) .

From Lemma 5.7 and Remark 5.2 it results

∥∥∥∥∥∥

∑

|α|≤k

c̃α(·) Ĩα(·, t)−H(·, t)

∥∥∥∥∥∥
L2(RN )

≤

≤ C e−αδ
2t +

∥∥∥∥∥∥

∑

|α|≤k

c̃α(·) Ĩα∗(·, t)−H1(·, t)

∥∥∥∥∥∥
L2(RN )

≤ C e−αδ
2t +

∥∥∥∥∥∥

∑

|α|≤k

c̃α(·)
[
Jα∗(·, t)− Ĩα∗(·, t)

]
∥∥∥∥∥∥
L2(RN )

+

∥∥∥∥∥∥

∑

|α|≤k

c̃α(·) Jα∗(·, t)−H1(·, t)

∥∥∥∥∥∥
L2(RN )

≤ Ck

[
e−αδ

2t + t−
2k+N+2

4

]

+

∥∥∥∥∥∥

∑

|α|≤k

∫

RN\Bδ

c̃α(x) ξ
α e
−
∑
j,k

qjkξjξk t



p∑

n=1

(−t)n
n!

p1∑

m=0

∑

|β|=4+2m

cβ,n ξ
β


eix·ξ dξ

∥∥∥∥∥∥
L2(RN )

where we have used the definition of Jα∗ and H1 , and the fact that c̃α(x) ∈
L∞6= (Y ).

Consequently,

(6.9)

∥∥∥∥∥∥

∑

|α|≤k

c̃α(x) Ĩα(·, t)−H(·, t)

∥∥∥∥∥∥
≤ Ck t

− 2k+2+N
4 + ‖F (·, t)‖L2(RN )

where Ck is a positive constant, and

F (x, t) =
∑

|α|≤k

c̃α(x)

∫

RN\Bδ

ξα e
−
∑
j,k

qjkξjξk t



p∑

n=1

(−t)n
n!

p1∑

m=0

∑

|β|=4+2m

cβ,n ξ
β


eix·ξ dξ .
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Finally we estimate F (x, t). We have

‖F (·, t)‖L2(RN ) ≤

≤ Ck t
p
∑

|α|≤k

p∑

n=1

∥∥∥∥∥∥

∫

RN\Bδ

ξα e
−
∑
j,k

qjkξjξk t



p1∑

m=0

∑

|β|=4+2m

cβ,n ξ
β


eix·ξ dξ

∥∥∥∥∥∥
L2(RN )

≤ Ck t
p
∑

|α|≤k

p∑

n=1

p1∑

m=0

∑

|β|=4+2m



∫

RN\Bδ

∣∣∣∣∣ξ
α+β e

−
∑
j,k

qjkξjξk t
∣∣∣∣∣

2

dξ




1/2

due to Parseval’s Theorem, where Ck is another positive constant which depends

on k.

Then, using Remark 5.2 we get

‖F (·, t)‖L2(RN ) ≤

≤ Ck t
p
∑

|α|≤k

p∑

k=1

p1∑

m=0

∑

|β|=4+2m

(∫

RN\Bδ

|ξ|2|α|+2|β| e
−2
∑
j,k

qjkξjξk t

dξ

)1
2

(6.10)

≤ Ck t
p e−αδ

2t , t > 0 ,

where we have indicated by Ck different positive constants.

Returning to (6.2) and using triangular inequality associated with estimates

(6.3) up to (6.10), we obtain the existence of a positive constant Ck = C(ϕ , k)

(ϕ is the initial data) such that

‖u(·, t)−H(·, t)‖ ≤ Ck t
− 2k+2+N

4

as t→ +∞.

7 – The general case ρ = ρ(x)

Theorem 2.1 is proved following the same steps of Sections 5 and 6 for the case

ρ ≡ 1. However, the Bloch wave decomposition used in these sections cannot be

applied for the problem (1.1), due to variable density ρ. Consequently, we need

to introduce a different spectral problem.
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Given ξ ∈ Y ′, we consider the spectral problem of finding numbers λ = λ(ξ) ∈
R and functions ψ = ψ(x; ξ) (not identically zero) such that

(7.1)





Aψ(·, ξ) = λ(ξ)ψ(·, ξ)ρ(·) in RN ,

ψ(·, ξ) is (ξ, Y )-periodic, i.e.

ψ(x+ 2m; ξ) = e2πim·ξ ψ(x) , ∀m ∈ ZN , x ∈ RN ,

where A is the elliptic operator in divergence form defined in (3.2) and ρ satisfies

(1.2). If we consider ψ(x; ξ) = eix·ξ φ(x; ξ), the variational formulation obtained

for (7.1) for any ϕ ∈ H1
#(Y ) is given by

〈A(ξ)φ, ϕ〉 =

∫

Y
ak`(x)

(
∂φ

∂xk
+ i ξk φ

)(
∂φ

∂x`
+ i ξ` φ

)
dx = λ(ξ)

∫

Y
φ ϕ̄ ρ(x) dx .

Since the operator associated with (7.1) is uniformly elliptic and self-adjoint,

defined in a bounded domain, it is known (see Refs. 8 and 9) that the above

spectral problem admits a discrete sequence of eigenvalues with the following

properties:

(7.2)




0 ≤ λ1(ξ) ≤ · · · ≤ λm(ξ) ≤ · · · → ∞ ,

λm(ξ) is a Lipschitz function of ξ ∈ Y ′ , ∀m ≥ 1 .

Besides, the corresponding eigenfunctions are such that ψm(·, ξ)=eiξ·xφm(·, ξ),
where the functions in L2

loc(RN ; ρ(x) dx), i.e.
∫

Y
φm φ̄n ρ(x) dx = δmn (Kronecker’s delta) .

The eigenfunctions ψm(·, ξ) and φm(·, ξ) are (ξ, Y )-periodic and Y -periodic,

respectively. Moreover, as a consequence of the min-max principle (see Ref. 9)

we have

λ2(ξ) ≥
λ

(N)
2

ρ1
> 0 , ∀ ξ ∈ Y ′ ,

where λ
(N)
2 is the second eigenvalue of A in the cell Y with Neumann boundary

condition on ∂Y for ρ ≡ 1 and ρ1 is defined in (1.3).

Now, with the orthonormal basis of Bloch waves {eix·ξ φm(x; ξ) : m ≥ 1,

ξ ∈ Y ′}, we have a similar Bloch wave decomposition as in Proposition 3.1.

Proposition 7.1. Let g ∈ L2(RN ). Them-th Bloch coefficient of g is defined

as follows:

ĝm(ξ) =

∫

RN
g(x) e−ix·ξ φ̄m(x; ξ) ρ(x) dx , ∀m ≥ 1, ξ ∈ Y ′ .
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Then the following inverse formula holds:

g(x) =

∫

Y ′

∞∑

m=1

ĝm(ξ) eix·ξ φm(x; ξ) dξ .

Furthermore, we have Parseval’s identity:

‖g‖2L2(ρ) =

∫

RN
|g(x)|2ρ(x) dx =

∫

Y ′

∞∑

m=1

|ĝm(ξ)|2 dξ .

Finally, for all g in the domain of A, we have

Ag(x) = ρ(x)

∫

Y ′

∞∑

m=1

λm(ξ) ĝm(ξ) eix·ξ φm(x.ξ) dξ .

Using Proposition 7.1, Eq. (1.1) can be written as follows:

∫

Y ′

∞∑

m=1

(
ûmt (ξ, t) + λm(ξ) ûmt (ξ, t) + λm(ξ) ûm(ξ, t)

)
eix·ξ φm(x; ξ) ρ(x) dξ = 0 .

Since {eix·ξ φm(x; ξ) : m ≥ 1, ξ ∈ Y ′} form an orthonormal basis, this is

equivalent to the family of the differential equations

ûmt (ξ, t) + λm(ξ) ûmt (ξ, t) + λm(ξ) ûm(ξ, t) = 0 , ∀m ≥ 1, ξ ∈ Y ′ .

Once the differential equations are solved, (1.1) is solved as in (5.3) and

Lemma 5.1 holds. Then, the developments of Sections 5 and 6 apply with minor

changes and Theorem 2.1 holds.

In order to understand the type of changes that the variable density ρ(·) causes
in the fundamental solution, we are going to study the Taylor expansion of the

first Bloch eigenvalue and eigenvector. For a more complete analysis the reader

is referred to [6].

We observe that

λ1(0) = 0 and φ(x; 0) = (2π)−N/2 ρ̄−1/2 ,

with ρ̄ defined in (2.6) and we consider the equation

(7.3) A(ξ)φ1( · ; ξ) = λ2(ξ) ρ(·)φ1( · ; ξ) ,

where

A(ξ) = −
(
∂

∂xk
+ i ξk

)[
ak`(x)

(
∂

∂x`
+ i ξ`

)]
.
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If we differentiate equation (7.3) with respect to ξk with k = 1, ..., N and if

we take scalar product with φ1(x; ξ) in ξ = 0, we get

∂kλ1(0) = 0 .

Furthermore, if we observe that

A∂kφ1( · ; 0) = i(2π)−N/2 ρ̄−1/2 ∂ak`
∂x`

then

∂kφ1(x; 0) = i(2π)−N/2 ρ̄−1/2 χk(x) ,

where χk is the correctors function in homogenization theory, solution of the cell

problem

(7.4)





Aχk =
∂ak`
∂y`

in Y ,

χk ∈ H1
#(Y ) ,

1

|Y |

∫

Y
χk dy = 0 .

If we differentiate again the eigenvalue equation, we have that

∂2
k` λ1(0) =

1

ρ̄

1

(2π)N

∫

Y

(
2 ak` + akm

∂χ`

∂xm
+ am`

∂χk

∂xm

)
dx =

2 qk`
ρ̄

,

with qk` the homogenized coefficients as in previous section (see [6]).

Since f(ξ) is defined in Proposition 3.3 and due to the analysis above for the

eigenvalue λ1 , we obtain

f(0) = ∂kf(0) = 0 , k = 1, ..., N ,

∂2
k`f(0) =

2 qk`
ρ̄

, k, ` = 1, ..., N .

Then, for all ξ ∈ Bδ we have

e−f(ξ)t ∼ e
− 1

ρ̄

∑
k,`

qk`ξkξ`t

.
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8 – Analysis of the periodic functions and constants entering in the

asymptotic expansion

To finish this work we describe the periodic functions cα(·) and constants cβ,n ,

where β ∈ (N ∪ {0})N , that appear in the statement of Theorem 2.1.

Computation of cα(·). According to (5.9), (5.17) and (6.5),

(8.1) cα(x) =
∑

β≤α

(2π)N

(α− β)!β! ∂
α−βφ1(x; 0) ∂

βϕ̂1
0(0) ,

and for the first Bloch coefficient of the initial data

∂γ ϕ̂1
0(0) =

∫

RN
ϕ0(x)

∑

α≤γ

[
(−i)|γ−α| xγ−α ∂αφ1(x; 0)

]
dx .

We observe that the higher order derivatives of λ1 and φ1 in ξ = 0 may be com-

puted as in the previous section.

First, note that

c0(x) = (2π)Nφ1(x; 0) ϕ̂
1
0(0)

and since φ1(x; 0) = (2π)−N/2 ρ̄−1/2, it follows that c0 is constant. Furthermore,

according to Proposition 7.1, we have

ϕ̂1
0(0) = (2π)−N/2 ρ̄−1/2

∫

RN
ϕ(x) ρ(x) dx = (2π)−N/2 ρ̄−1/2 mρ(ϕ) .

Thus, the first term of the asymptotic expansion of the solution of (1.1) turns

out to be a constant and more precisely

c0 := c0(x) =
1

ρ̄
mρ(ϕ) .

Computation of cβ,n. We recall that the constants cβ,n were defined in

(5.33) (and lemma 5.7) and satisfy

∞∑

m=1

∑

|β|=4n+2m

ξβ cβ,n = (−1)n



∞∑

m=0

∑

|β|=4+2m

1

β!
ξβ ∂β f(0)



n

where f(ξ) was defined in Proposition 3.3. This shows that the constants ∂βf(0)

depend on the derivatives of λ1 at ξ = 0, computed in Section 7.
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E-mail: charao@mtm.ufsc.br

and

A.F. Pazoto,
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