PORTUGALIAE MATHEMATICA Vol. 60 Fasc. 3 – 2003 Nova Série

HYPERSURFACES OF INFINITE DIMENSIONAL BANACH SPACES, BERTINI THEOREMS AND EMBEDDINGS OF PROJECTIVE SPACES

E. BALLICO*

Abstract: Let V, E be infinite dimensional Banach spaces, $\mathbf{P}(V)$ the projective space of all one-dimensional linear subspaces of V, W a finite codimensional closed linear subspace of $\mathbf{P}(V)$ and $X \subset \mathbf{P}(V)$ a closed analytic subset of finite codimension such that $\mathbf{P}(W) \subset X$ and X is not a linear subspace of $\mathbf{P}(V)$. Here we show that X is singular at some point of $\mathbf{P}(W)$. We also prove that any closed embedding $j : \mathbf{P}(V) \to \mathbf{P}(E)$ with $j(\mathbf{P}(V))$ finite codimensional analytic subset of $\mathbf{P}(E)$ is a linear isomorphism onto a finite codimensional closed linear subspace of $\mathbf{P}(E)$.

1 – Introduction

For any locally convex and Hausdorff complex topological vector space V let $\mathbf{P}(V)$ be the projective space of all one-dimensional linear subspaces of V. In section 2 we will prove the following result.

Theorem 1. Let V be an infinite dimensional complex Banach space, W a finite codimensional closed linear subspace of V and $X \subset \mathbf{P}(V)$ a finite codimensional closed analitic subset such that $M := \mathbf{P}(W) \subseteq X$. Assume that X is not a linear subspace of $\mathbf{P}(V)$. Then X is singular and its singular locus $\operatorname{Sing}(X)$ contains a closed finite codimensional analytic subset T of M.

By [6], Th. III.3.1.1, $\operatorname{Sing}(X)$ is a closed analytic subset of $\mathbf{P}(V)$. As a very easy corollary of Theorem 1 we will prove the following result.

Received: September 30, 2002; Revised: October 29, 2002.

AMS Subject Classification: 32K05, 58B12, 14N05.

Keywords and Phrases: infinite-dimensional projective space; Banach analytic set; Banach analytic manifold; singular Banach analytic set; Berini theorem.

^{*} The author was partially supported by MURST and GNSAGA of INdAM (Italy).

E. BALLICO

Proposition 1. Let V be an infinite dimensional complex Banach space, W a finite codimensional closed linear subspace of $V, X \subset \mathbf{P}(V)$ a finite codimensional closed analytic subset of $\mathbf{P}(V)$ and Q a degree d hypersurface of $\mathbf{P}(W)$ such that $Q \subset X$. Then for every integer t such that 0 < t < d every degree t hypersurface Y of $\mathbf{P}(V)$ containing X is singular at at least one point of Q.

A key point of our proof of Theorem 1 is the following Bertini type result which will be proved in section 2

Theorem 2. Let V be an infinite dimensional complex Banach space, A a finite dimensional linear subspace of V and Y a closed analytic hypersurface of $\mathbf{P}(V)$. Then there exists a linear subspace B of V such that $A \subset B$, dim $(B) = \dim(A) + 1$ and Sing $(Y) \cap A = \text{Sing}(Y \cap B) \cap A$.

We believe that Theorem 2 has an independent interest, because it allows quite often to transfer properties which are known in the case of a finite-dimensional ambient projective space to the case of finite-codimensional closed submanifolds of $\mathbf{P}(V)$ with V any Banach space. We used this informal principle to guess the truth of Theorem 1 and then proved Theorem 2 to prove our guess.

In section we will prove the following classification of all finite codimensional embeddings of infinite dimensional projective spaces.

Theorem 3. Let V and E be infinite dimensional complex Banach spaces. Let $j: \mathbf{P}(V) \to \mathbf{P}(E)$ be a closed embedding with $j(\mathbf{P}(V))$ finite codimensional closed analytic subset of $\mathbf{P}(E)$. Then j is a linear isomorphism onto a finite codimensional closed linear suspace of $\mathbf{P}(E)$.

As far as we know this is the first uniqueness result for finite-codimensional embeddings. It shows that the assumption of finite-codimensionality is extremely strong and probably too restrictive.

2 – Proof of Theorems 1 and 2 and of Proposition 1

Proof of Theorem 2: Set $m := \dim(A)$. Let G_A be the closed analytic subset of the Grassmannian G(m+1, V) of all (m+1)-dimensional linear subspaces of V parametrizing the (m+1)-dimensional linear subspaces containing A ([2], §2, or [6], p.89). We have $G_A \cong G(1, V/A) = \mathbf{P}(V/A)$.

374

HYPERSURFACES

Set $Z := \mathbf{P}(A) \setminus (\mathbf{P}(A) \cap \operatorname{Sing}(Y))$. We may assume $Z \neq \emptyset$, otherwise the statement of Theorem 2 is vacuosly true. For every $P \in Z \cap Y$ let $T_P Y \subset \mathbf{P}(V)$ be the Zariski tangent space of Y at P. Since $P \in Z, Y$ is smooth at P. Thus $T_P Y$ is a closed hyperplane of $\mathbf{P}(V)$. Set $G_A(P) := \{U \in G_A : U \subset T_P Y\}$. $G_A(P)$ is a closed analytic subset of G_A of codimension m. If $B \in G_A \setminus G_A(P)$, then $B \cap Y$ is smooth at P. Since dim(Z) = m - 1, there is $B \in G_A$ with $B \notin G_A(P)$ for all $P \in Z$, i.e. such that $\operatorname{Sing}(Y) \cap A = \operatorname{Sing}(Y \cap B) \cap A$.

Lemma 1. Fix positive integers m, k and d with $d \ge 2$ and $2k \ge m > k$. Let $Y \subset \mathbf{P}^m$ be a degree d hypersurface containing a dimension k linear subspace L of \mathbf{P}^m . Then $\operatorname{Sing}(Y) \cap L \neq \emptyset$.

Proof: Take homogeneous coordinates x_0, \ldots, x_m of \mathbf{P}^m such that $L = \{x_{k+1} = \ldots = x_m = 0\}$. Let F be a degree d homogeneous equation of Y. Since $L \subset Y$, there are degree d-1 homogeneous polynomials $G_i, k+1 \leq i \leq m$, such that $F = \sum_{i=k+1}^m x_i G_i$. Since d-1 > 0, the polynomials $G_i, k+1 \leq i \leq m$, are not constant. Since $m-k \geq k$, the restriction to L of the m-k homogeneous polynomial $G_i, k+1 \leq i \leq m$, must have at least one common zero, P. At P every partial derivative $\partial F/\partial x_i, 0 \leq i \leq m$, vanishes. Hence Y is singular at P.

Proof of Theorem 1: Taking a minimal closed linear subspace of $\mathbf{P}(V)$ containing X instead of $\mathbf{P}(V)$ we reduce to the case in which $X \neq \mathbf{P}(V)$ and X is not contained in any closed hyperplane of $\mathbf{P}(V)$. By [6], Th. III.2.3.1, X is the zero-locus of finitely many continuous homogeneous polynomials on V, i.e. the intersection of finitely many closed algebraic hypersurfaces of $\mathbf{P}(V)$. Let Y be any closed analytic hypersurface of $\mathbf{P}(V)$ containing X. By assumption we have $d := \deg(Y) > 1$.

(a) Here we will check that $\operatorname{Sing}(Y) \cap M \neq \emptyset$ and that $\operatorname{Sing}(Y) \cap M$ contains a finite codimensional closed analytic subset T(Y) of M. Assume that this is not true. Then for an arbitrary integer n we may find a dimension n projective subspace E of M such that $E \cap \operatorname{Sing}(Y) = \emptyset$. Let a be the codimension of X in $\mathbf{P}(V)$. Take any integer $n \geq 2a + 1$ and any E as above. Using Theorem 2 we obtain the existence of a dimension n + a linear subspace N of $\mathbf{P}(V)$ such that $\operatorname{Sing}(Y \cap N) \cap E = \emptyset$, contradicting Lemma 1.

(b) Take finitely many closed analytic hypersurfaces Y_1, \ldots, Y_x such that $X = Y_1 \cap \ldots \cap Y_x$. By part (a) and the infinite dimensionality of M we have $\operatorname{Sing}(Y_1) \cap \ldots \cap \operatorname{Sing}(Y_x) \cap M \neq \emptyset$ and that $\operatorname{Sing}(Y_1) \cap \ldots \cap \operatorname{Sing}(Y_x) \cap M$ contains a

E. BALLICO

finite codimensional closed analytic subset of M. Since $\operatorname{Sing}(Y_1) \cap \ldots \cap \operatorname{Sing}(Y_x) \subseteq \operatorname{Sing}(X)$, we are done.

Proof of Proposition 1: Since t < d, Y contains $\mathbf{P}(W)$. Hence by Theorem 1 Y is singular at each point of a non-empty closed analytic subset B of $\mathbf{P}(W)$ with finite codimension in $\mathbf{P}(W)$. Since $Q \cap B \neq \emptyset$, we are done.

3 – Proof of Theorem 3

Proposition 2. Let V be a locally convex and Hausdorff complex topological vector space, Y any Hausdorff complex analytic set and C any finite dimensional connected closed analytic subset of $\mathbf{P}(V)$. Assume that C is not a point. Then there is no holomorphic map $\phi : \mathbf{P}(V) \to Y$ such that $\phi | \phi^{-1}(Y \setminus \phi(C)) :$ $\phi^{-1}(Y \setminus \phi(C)) \to Y \setminus \phi(C)$ is a surjective biholomorphism, while $\phi(C)$ is a point, i.e. there is no contraction $\phi : \mathbf{P}(V) \to Y$ of C.

Proof: The result is well-known if V is finite dimensional; it follows from the result quoted at the end of this proof. Hence we may assume V infinite dimensional. Assume the existence of such a contraction ϕ . Since $\phi(C)$ is finite, there is an open neighborhood Ω of $\phi(C)$ in Y such that the holomorphic functions on Ω induce an embedding of Ω as a closed analytic subset of an open subset of a complex topological vector space. Hence $U := \phi^{-1}(\Omega)$ is an open neighborhood of C in $\mathbf{P}(V)$ such that the holomorphic functions on U separates the points of $U \setminus C$. Since C is finite dimensional, the vector space $H^0(C, \mathcal{O}_C(1))$ is finite dimensional. Hence the linear span $\langle C \rangle$ of C in $\mathbf{P}(V)$ is finite dimensional. The holomorphic functions on $U \cap \langle C \rangle$ separate distict points of $U \cap \langle C \rangle \setminus C$. Since $U \cap \langle C \rangle$ is a neighborhood of C in the finite dimensional projective space $\langle C \rangle$ and C has positive dimension, this is well-known to be false (see [3] and references therein for stronger statements).

Proof of Theorem 3: By [4], Th. 7.1, for every holomorphic line bundle Lon $\mathbf{P}(V)$ there is a unique integer t such that $L \cong \mathcal{O}_{\mathbf{P}(V)}(t)$. Let d be the unique integer such that $j^*(\mathcal{O}_{\mathbf{P}(E)}(1)) \cong \mathcal{O}_{\mathbf{P}(V)}(d)$. The line bundle $\mathcal{O}_{\mathbf{P}(V)}(t)$ has no global section if t < 0, it is trivial and with only the costants as global sections if t = 0, while if t > 0 its global sections are given by the degree t continuous homogeneous polynomials on V. Thus d > 0. Every closed curve of $j(\mathbf{P}(V))$ has degree divisible by d. Since every finite codimensional closed analytic subset of $\mathbf{P}(E)$ contains a line ([1], Th. 1.1, or modify the proof of a similar statement

376

HYPERSURFACES

given in [7], Lemma 1.4), we obtain d = 1. This implies that any line of $\mathbf{P}(V)$ is sent isomorphically onto a line of $\mathbf{P}(E)$. This implies that for any two points P, Q of $j(\mathbf{P}(V))$ such that $P \neq Q$ the line spanned by P and Q is contained in $j(\mathbf{P}(V))$. Thus $j(\mathbf{P}(V))$ is a linear subspace of \mathbf{P} , proving the result.

Remark 1. In the statement of Theorems 1 and 2 and of Proposition 1 we assumed that V is a Banach space and not a more general topological vector space only because in their proof we quoted [6], p. 89 and Th. III.2.3.1. In the statement of Theorem 3 we assumed that V is a Banach space only to quote [4], Th. 7.1. \Box

REFERENCES

- [1] BALLICO, E. Lines in algebraic subsets of infinite-dimensional projective spaces, preprint.
- [2] DOUADY, A. Le probleme des modules pour les sous-espace analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier, Grenoble, 16 (1966), 1–95.
- [3] HIRONAKA, H. and MATSUMURA, H. Formal functions and formal embeddings, J. Math. Soc. Japan, 20 (1968), 52–82.
- [4] LEMPERT, L. The Dolbeaut complex in infinite dimension I, J. Amer. Math. Soc., 11 (1998), 485–520.
- [5] MAZET, P. Un théoreme d'image directe propre, in: "Séminaire Pierre Lelong (Analyse année 1972–1973)", Lecture Notes in Math. 410, Springer, Berlin, 1974, pp. 107–116.
- [6] RAMIS, J.-P. Sous-ensembles analytiques d'une varieté banachique complexe, Erg. der Math. 53, Springer-Verlag, Berlin – Heidelberg – New York, 1970.
- [7] TYURIN, A.N. Vector bundles of finite rank over infinite varieties, Math. USSR Izvestija, 10 (1976), 1187–1204.

E. Ballico, Dept. of Mathematics, University of Trento, 38050 Povo (TN) – ITALY E-mail: ballico@science.unitn.it