
PORTUGALIAE MATHEMATICA

Vol. 60 Fasc. 3 – 2003

Nova Série

HYPERSURFACES OF INFINITE DIMENSIONAL
BANACH SPACES, BERTINI THEOREMS AND

EMBEDDINGS OF PROJECTIVE SPACES

E. Ballico *

Abstract: Let V , E be infinite dimensional Banach spaces, P(V ) the projective

space of all one-dimensional linear subspaces of V , W a finite codimensional closed linear

subspace of P(V ) and X ⊂ P(V ) a closed analytic subset of finite codimension such that

P(W ) ⊂ X and X is not a linear subspace of P(V ). Here we show that X is singular

at some point of P(W ). We also prove that any closed embedding j : P(V ) → P(E)

with j(P(V )) finite codimensional analytic subset of P(E) is a linear isomorphism onto

a finite codimensional closed linear subspace of P(E).

1 – Introduction

For any locally convex and Hausdorff complex topological vector space V

let P(V ) be the projective space of all one-dimensional linear subspaces of V .

In section 2 we will prove the following result.

Theorem 1. Let V be an infinite dimensional complex Banach space, W a

finite codimensional closed linear subspace of V and X ⊂ P(V ) a finite codimen-

sional closed analitic subset such that M := P(W ) ⊆ X. Assume that X is not

a linear subspace of P(V ). Then X is singular and its singular locus Sing(X)

contains a closed finite codimensional analytic subset T of M .

By [6], Th. III.3.1.1, Sing(X) is a closed analytic subset of P(V ).

As a very easy corollary of Theorem 1 we will prove the following result.
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Proposition 1. Let V be an infinite dimensional complex Banach space,W a

finite codimensional closed linear subspace of V, X ⊂ P(V ) a finite codimensional

closed analytic subset of P(V ) and Q a degree d hypersurface of P(W ) such that

Q ⊂ X. Then for every integer t such that 0 < t < d every degree t hypersurface

Y of P(V ) containing X is singular at at least one point of Q.

A key point of our proof of Theorem 1 is the following Bertini type result

which will be proved in section 2

Theorem 2. Let V be an infinite dimensional complex Banach space, A a

finite dimensional linear subspace of V and Y a closed analytic hypersurface of

P(V ). Then there exists a linear subspace B of V such that A ⊂ B, dim(B) =

dim(A) + 1 and Sing(Y ) ∩A = Sing(Y ∩B) ∩A.

We believe that Theorem 2 has an independent interest, because it allows quite

often to transfer properties which are known in the case of a finite-dimensional

ambient projective space to the case of finite-codimensional closed submanifolds

of P(V ) with V any Banach space. We used this informal principle to guess the

truth of Theorem 1 and then proved Theorem 2 to prove our guess.

In section we will prove the following classification of all finite codimensional

embeddings of infinite dimensional projective spaces.

Theorem 3. Let V and E be infinite dimensional complex Banach spaces.

Let j : P(V ) → P(E) be a closed embedding with j(P(V )) finite codimensional

closed analytic subset of P(E). Then j is a linear isomorphism onto a finite

codimensional closed linear suspace of P(E).

As far as we know this is the first uniqueness result for finite-codimensional

embeddings. It shows that the assumption of finite-codimensionality is extremely

strong and probably too restrictive.

2 – Proof of Theorems 1 and 2 and of Proposition 1

Proof of Theorem 2: Set m := dim(A). Let GA be the closed ana-

lytic subset of the Grassmannian G(m+ 1, V ) of all (m+ 1)-dimensional

linear subspaces of V parametrizing the (m+ 1)-dimensional linear subspaces

containing A ([2], §2, or [6], p. 89). We have GA
∼= G(1, V/A) = P(V/A).
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Set Z := P(A)\(P(A) ∩ Sing(Y )). We may assume Z 6= ∅, otherwise the state-

ment of Theorem 2 is vacuosly true. For every P ∈ Z ∩ Y let TPY ⊂ P(V ) be

the Zariski tangent space of Y at P . Since P ∈ Z, Y is smooth at P . Thus TPY

is a closed hyperplane of P(V ). Set GA(P ) := {U ∈ GA : U ⊂ TPY }. GA(P ) is

a closed analytic subset of GA of codimension m. If B ∈ GA\GA(P ), then B ∩Y

is smooth at P . Since dim(Z) = m− 1, there is B ∈ GA with B /∈ GA(P ) for all

P ∈ Z, i.e. such that Sing(Y ) ∩A = Sing(Y ∩B) ∩A.

Lemma 1. Fix positive integers m, k and d with d ≥ 2 and 2 k ≥ m > k.

Let Y ⊂ Pm be a degree d hypersurface containing a dimension k linear subspace

L of Pm. Then Sing(Y ) ∩ L 6= ∅.

Proof: Take homogeneous coordinates x0, . . . , xm of Pm such that L =

{xk+1 = . . . = xm = 0}. Let F be a degree d homogeneous equation of Y . Since

L ⊂ Y , there are degree d− 1 homogeneous polynomials Gi, k+1 ≤ i ≤ m, such

that F =
∑m

i=k+1 xi Gi. Since d− 1 > 0, the polynomials Gi, k + 1 ≤ i ≤ m, are

not constant. Since m − k ≥ k, the restriction to L of the m − k homogeneous

polynomial Gi, k + 1 ≤ i ≤ m, must have at least one common zero, P . At P

every partial derivative ∂F/∂xi, 0 ≤ i ≤ m, vanishes. Hence Y is singular at P .

Proof of Theorem 1: Taking a minimal closed linear subspace of P(V )

containing X instead of P(V ) we reduce to the case in which X 6= P(V ) and X

is not contained in any closed hyperplane of P(V ). By [6], Th. III.2.3.1, X is the

zero-locus of finitely many continuous homogeneous polynomials on V , i.e. the

intersection of finitely many closed algebraic hypersurfaces of P(V ). Let Y be

any closed analytic hypersurface of P(V ) containing X. By assumption we have

d := deg(Y ) > 1.

(a) Here we will check that Sing(Y )∩M 6= ∅ and that Sing(Y )∩M contains

a finite codimensional closed analytic subset T (Y ) of M . Assume that this is

not true. Then for an arbitrary integer n we may find a dimension n projective

subspace E of M such that E ∩ Sing(Y ) = ∅. Let a be the codimension of X in

P(V ). Take any integer n ≥ 2 a + 1 and any E as above. Using Theorem 2 we

obtain the existence of a dimension n + a linear subspace N of P(V ) such that

Sing(Y ∩N) ∩ E = ∅, contradicting Lemma 1.

(b) Take finitely many closed analytic hypersurfaces Y1, . . . , Yx such that

X = Y1 ∩ . . . ∩ Yx. By part (a) and the infinite dimensionality of M we have

Sing(Y1)∩ . . .∩Sing(Yx)∩M 6= ∅ and that Sing(Y1)∩ . . .∩Sing(Yx)∩M contains a
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finite codimensional closed analytic subset ofM . Since Sing(Y1)∩. . .∩Sing(Yx) ⊆

Sing(X), we are done.

Proof of Proposition 1: Since t<d, Y containsP(W ). Hence by Theorem1

Y is singular at each point of a non-empty closed analytic subset B of P(W ) with

finite codimension in P(W ). Since Q ∩B 6= ∅, we are done.

3 – Proof of Theorem 3

Proposition 2. Let V be a locally convex and Hausdorff complex topologi-

cal vector space, Y any Hausdorff complex analytic set and C any finite dimen-

sional connected closed analytic subset of P(V ). Assume that C is not a point.

Then there is no holomorphic map φ : P(V ) → Y such that φ|φ−1(Y \φ(C)) :

φ−1(Y \φ(C)) → Y \φ(C) is a surjective biholomorphism, while φ(C) is a point,

i.e. there is no contraction φ : P(V )→ Y of C.

Proof: The result is well-known if V is finite dimensional; it follows from

the result quoted at the end of this proof. Hence we may assume V infinite

dimensional. Assume the existence of such a contraction φ. Since φ(C) is finite,

there is an open neighborhood Ω of φ(C) in Y such that the holomorphic functions

on Ω induce an embedding of Ω as a closed analytic subset of an open subset of a

complex topological vector space. Hence U := φ−1(Ω) is an open neighborhood

of C in P(V ) such that the holomorphic functions on U separates the points

of U\C. Since C is finite dimensional, the vector space H0(C,OC(1)) is finite

dimensional. Hence the linear span 〈C〉 of C in P(V ) is finite dimensional. The

holomorphic functions on U ∩ 〈C〉 separate distict points of U ∩ 〈C〉\C. Since

U ∩〈C〉 is a neighborhood of C in the finite dimensional projective space 〈C〉 and

C has positive dimension, this is well-known to be false (see [3] and references

therein for stronger statements).

Proof of Theorem 3: By [4], Th. 7.1, for every holomorphic line bundle L

on P(V ) there is a unique integer t such that L ∼= OP(V )(t). Let d be the unique

integer such that j∗(OP(E)(1)) ∼= OP(V )(d). The line bundle OP(V )(t) has no

global section if t < 0, it is trivial and with only the costants as global sections

if t = 0, while if t > 0 its global sections are given by the degree t continuous

homogeneous polynomials on V . Thus d > 0. Every closed curve of j(P(V ))

has degree divisible by d. Since every finite codimensional closed analytic subset

of P(E) contains a line ([1], Th. 1.1, or modify the proof of a similar statement
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given in [7], Lemma 1.4), we obtain d = 1. This implies that any line of P(V )

is sent isomorphically onto a line of P(E). This implies that for any two points

P , Q of j(P(V )) such that P 6= Q the line spanned by P and Q is contained in

j(P(V )). Thus j(P(V )) is a linear subspace of P, proving the result.

Remark 1. In the statement of Theorems 1 and 2 and of Proposition 1 we

assumed that V is a Banach space and not a more general topological vector

space only because in their proof we quoted [6], p. 89 and Th. III.2.3.1. In the

statement of Theorem 3 we assumed that V is a Banach space only to quote [4],

Th. 7.1.
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(Analyse année 1972–1973)”, Lecture Notes in Math. 410, Springer, Berlin, 1974,
pp. 107–116.

[6] Ramis, J.-P. – Sous-ensembles analytiques d’une varieté banachique complexe, Erg.
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