ON MODULI OF REGULAR SURFACES
 WITH $K^{2}=8$ AND $p_{g}=4$

Paola Supino
Recommended by Fabrizio Catanese

Abstract

Let S be a surface of general type with not birational bicanonical map and that does not contain a pencil of genus 2 curves. If $K_{S}^{2}=8, p_{g}(S)=4$ and $q(S)=0$ then S can be given as double cover of a quadric surface. We show that its moduli space is generically smooth of dimension 38 , and single out an open subset. Note that for these surfaces $h^{2}\left(S, T_{S}\right)$ is not zero.

1 - Introduction

It is known that if X is a surface of general type with a pencil of genus 2 curves then its bicanonical map is non birational (see [1]). On the other hand, there are also surfaces with non birational bicanonical map, which have no pencil of curves of genus 2. According with [2], these surfaces are said to be special. Under the assumption that $p_{g} \geq 4$, the classification of all special surfaces has been completed in [2]. There are three main types of such surfaces, while others of them can be obtained by specialization. Two of these types are classically known (see [1] and [3]), and also their moduli space has been studied (see [4]). Here we concern with the third type, discovered in [2]. These surfaces have the following invariants: $K^{2}=8, p_{g}=4$ and $q=0$.

We recall theorem (3.1) in [2].

Theorem 1.1. If S is a minimal regular surface of general type with $K^{2}=8$ and $p_{g}=4$ which is special, then S is one of the following types:

[^0](i) The canonical system K has four distinct simple base points $p_{1}, p_{2}, q_{1}, q_{2}$. The canonical map $\phi_{K_{S}}$ is of degree 2 onto a smooth quadric Q of \mathbb{P}^{3}. If $p: \widetilde{S} \rightarrow S$ is the blow-up of the points $p_{1}, p_{2}, q_{1}, q_{2}$, then there exists a morphism $\varphi: \widetilde{S} \rightarrow Q \subset \mathbb{P}^{3}$ such that $\varphi=\phi_{K_{S}} \circ p$. The morphism φ is generically finite of degree 2 , with branch curve B on Q of type $B=\eta_{1}+\eta_{2}+\eta_{1}^{\prime}+\eta_{2}^{\prime}+B^{\prime}$, where $\eta_{1}, \eta_{1}^{\prime}$ are two distinct lines of the same ruling of $Q, \eta_{2}, \eta_{2}^{\prime}$ are two distinct lines of the other ruling, B^{\prime} is a curve of type $(8,8)$ not containing $\eta_{i}, \eta_{i}^{\prime}$, having 4-uple points at the intersection of the four lines, and no further essential singularity.
(ii) The canonical system $\left|K_{S}\right|$ has a fixed component which is an irreducible (-2)-curve Z. The linear system $\left|K_{S}-Z\right|$ has no fixed component but has two distinct simple base points. The canonical map $\phi_{K_{S}}$ has degree 2 onto a smooth quadric Q of \mathbb{P}^{3}. If $p: \widetilde{S} \rightarrow S$ is the blow-up of the base points of $\left|K_{S}-Z\right|$, then there exists a morphism $\varphi: \widetilde{S} \rightarrow Q$ such that $\varphi=\phi_{K_{S}} \circ p$. The morphism φ is generically finite of degree 2 , with branch curve B on Q of type $B=\eta+\eta^{\prime}+B^{\prime}$, where η, η^{\prime} are two distinct lines of the same ruling of Q, B^{\prime} is a curve of type $(8,8)$ not containing η, η^{\prime}, having two $[4,4]$-points at the intersection of the η, η^{\prime} with a line of the other ruling, and tangent lines η, η^{\prime}, and no further essential singularity.

Remark 1.2. Here, the essential singularities are the ones that affect the invariants of S.

The surfaces in theorem 1.1(ii) are specialization of the surfaces in theorem 1.1(i). We call general the latter surfaces and particular the former ones (see remark (3.10) in [2]). \square

For the tangent bundle one has

$$
\begin{equation*}
\chi\left(T_{S}\right)=-10 \chi\left(\mathcal{O}_{S}\right)+2 K_{S}^{2}=-34 \tag{1}
\end{equation*}
$$

We will prove the following:
Theorem 1.3. The family \mathcal{F} of regular surfaces with $K^{2}=8, p_{g}=4$ with non trivial torsion and without a pencil of genus 2 curves described in theorem 1.1(i) corresponds to an open subset of its moduli space, which is irreducible, smooth of dimension 38.

The prove is based on the geometric description of S by means of the double map on the quadric surface Q.

1.1. Notations and set up

We recall the notations used in [2]: we consider $n=\eta_{1} \cap \eta_{2}, n^{\prime}=\eta_{1}^{\prime} \cap \eta_{2}^{\prime}$, $m=\eta_{2} \cap \eta_{1}^{\prime}, m^{\prime}=\eta_{1} \cap \eta_{2}^{\prime}$, points on the quadric Q. We denote by E_{i}, E_{i}^{\prime} for $i=1,2$ the exceptional curves in \widetilde{S} corresponding to the points $p_{1}, p_{2}, q_{1}, q_{2}$ of S by the blow up p.

We introduce further notations. We denote by Γ_{1} and Γ_{2} the two pencils of lines on Q to which η_{1} and η_{2} belong respectively. Let $b l: Y \rightarrow Q$ be the blow up of Q on $n, n^{\prime}, m, m^{\prime}$, and denote by $E_{n}, E_{n^{\prime}}, E_{m}, E_{m^{\prime}}$ the exceptional curves corresponding to the points $n, n^{\prime}, m, m^{\prime}$. We write

$$
E=E_{n}+E_{n^{\prime}}+E_{m}+E_{m^{\prime}}
$$

We mark with a bar the strict transforms of the divisors of Q on Y.
We have the following commutative diagram (cf. the proof of theorem (3.1)(i) in [2]):
(2)

$$
\begin{array}{lll}
\widetilde{S} & \xrightarrow{p} & S \\
\downarrow \psi & & \downarrow \phi_{K} \\
Y & \xrightarrow{b l} & Q
\end{array}
$$

The curves $E_{1}, E_{2}, E_{1}^{\prime}, E_{2}^{\prime}$ are sent to the lines $\eta_{1}, \eta_{2}, \eta_{1}^{\prime}, \eta_{2}^{\prime}$ respectively, by $\phi_{K} \circ p$.
Note that $\psi: \widetilde{S} \rightarrow Y$ is a 2:1 morphism branched along a divisor B_{Y} of Y. In fact, there are curves on \widetilde{S}, denoted by $\bar{N}, \bar{N}^{\prime}, \bar{M}, \bar{M}^{\prime}$ in [2], which are sent on $E_{n}, E_{n^{\prime}}, E_{m}, E_{m^{\prime}}$ respectively. By theorem $1.1 B_{Y}$ belongs to the linear system

$$
\left|10 \bar{\Gamma}_{1}+10 \bar{\Gamma}_{2}-6 E\right|=\bar{\eta}_{1}+\bar{\eta}_{2}+\bar{\eta}_{1}^{\prime}+\bar{\eta}_{2}^{\prime}+\left|B_{Y}^{\prime}\right|
$$

where

$$
B_{Y}^{\prime} \in\left|8 \bar{\Gamma}_{1}+8 \bar{\Gamma}_{2}-4 E\right| .
$$

Since Y and \widetilde{S} are smooth and ψ is finite, the branch locus B_{Y} is smooth.

2 - The number of moduli of S

It is possible to compute the number of moduli of the surface \widetilde{S} (and therefore of S) by applying the projection formula to the tangent sheaf:

$$
\begin{equation*}
h^{i}\left(\widetilde{S}, T_{\widetilde{S}}\right)=h^{i}\left(Y, T_{Y}\left(-\log B_{Y}\right)\right)+h^{i}\left(Y, T_{Y}(-D)\right), \quad i=0,1,2, \tag{3}
\end{equation*}
$$

where $2 D \sim B_{Y}$ (cf. [6]). Note that

$$
D \in\left|5 \bar{\Gamma}_{1}+5 \bar{\Gamma}_{2}-3 E\right|
$$

Proposition 2.1.

$$
h^{2}\left(Y, T_{Y}\left(-\log B_{Y}\right)\right)=0
$$

Proof: Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow T_{Y}\left(-\log B_{Y}\right) \rightarrow T_{Y} \longrightarrow \mathcal{O}_{B_{Y}}\left(B_{Y}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

The curve B_{Y} is the disjoint union of 5 components: there are 4 rational curves composing E, plus the curve B_{Y}^{\prime}, of genus 43 , which can be easily computed by adjunction formula. By Serre duality, $H^{1}\left(B_{Y}, \mathcal{O}_{B_{Y}}\left(B_{Y}\right)\right)=0$. Moreover $H^{2}\left(Y, T_{Y}\right)=H^{2}\left(Q, T_{Q}\right)=0$. Hence, the long exact sequence of cohomology coming from (4) implies that $H^{2}\left(Y, T_{Y}\left(-\log B_{Y}\right)\right) \cong H^{2}\left(Y, T_{Y}\right)=0$.

Lemma 2.2.

$$
\begin{aligned}
& H^{k}\left(Y, b l^{*} T_{Q}(-D)\right)=0, \quad \text { for } k=0,2 \\
& H^{1}\left(Y, b l^{*} T_{Q}(-D)\right) \cong \mathbb{C}^{8}
\end{aligned}
$$

Proof: One has

$$
\begin{gathered}
H^{k}\left(Y, b l^{*} T_{Q}(-D)\right)= \\
=H^{k}\left(Y, \mathcal{O}_{Y}\left(-3 \bar{\Gamma}_{1}-5 \bar{\Gamma}_{2}-3 E\right)\right) \oplus H^{k}\left(Y, \mathcal{O}_{Y}\left(-5 \bar{\Gamma}_{1}-3 \bar{\Gamma}_{2}-3 E\right)\right)
\end{gathered}
$$

In fact $T_{Q}=\mathcal{O}_{Q}\left(2 \Gamma_{1}\right) \oplus \mathcal{O}_{Q}\left(2 \Gamma_{2}\right)$. The rest follows from Riemann-Roch formula.

Proposition 2.3. $h^{1}\left(S, T_{S}\right) \leq 38$.

Proof: Since $h^{0}\left(S, T_{S}\right)=0$, being S of general type, then $h^{1}\left(S, T_{S}\right)=$ $h^{2}\left(S, T_{S}\right)-\chi\left(T_{S}\right)=34+h^{2}\left(S, T_{S}\right)$, by (1). The proposition follows once we prove that $h^{2}\left(S, T_{S}\right) \leq 4$. It is sufficient to verify that $h^{2}\left(\tilde{S}, T_{\tilde{S}}\right) \leq 4$. In fact, it is $h^{2}\left(S, T_{S}\right)=h^{2}\left(\widetilde{S}, T_{\widetilde{S}}\right)$, see for instance [5].

Consider now the exact sequence

$$
\begin{equation*}
0 \rightarrow T_{Y}(-D) \rightarrow b l^{*} T_{Q}(-D) \rightarrow N_{E / Y}^{*}(-D) \rightarrow 0 \tag{5}
\end{equation*}
$$

Since $N_{E / Y}^{*}(-D)=\mathcal{O}_{\mathbb{P}^{1}}(-2)^{\oplus 4}$, we get

$$
H^{0}\left(Y, N_{E / Y}^{*}(-D)\right)=0 \quad \text { and } \quad H^{1}\left(Y, N_{E / Y}^{*}(-D)\right)=\mathbb{C}^{4}
$$

From (5) and lemma 2.2 one has the following exact sequence:

$$
0 \rightarrow H^{1}\left(Y, T_{Y}(-D)\right) \rightarrow \mathbb{C}^{8} \rightarrow \mathbb{C}^{4} \rightarrow H^{2}\left(Y, T_{Y}(-D)\right) \rightarrow 0
$$

In particular, $h^{2}\left(Y, T_{Y}(-D)\right) \leq 4$. From (3) and proposition 2.1 one finally has:

$$
h^{2}\left(\tilde{S}, T_{\tilde{S}}\right)=h^{2}\left(Y, T_{Y}\left(-\log B_{Y}\right)\right)+h^{2}\left(Y, T_{Y}(-D)\right) \leq 4
$$

2.1. Proof of Theorem 1.3

The irreducibility has been proved in [2].
Consider the family \mathcal{F} of surfaces as in theorem 1.1. It is sufficient to show that $\operatorname{dim} \mathcal{F}=h^{1}\left(S, T_{S}\right)=38$. Since the general surface S of \mathcal{F} is the double cover of a nonsingular quadric Q of \mathbb{P}^{3} branched on a divisor B, we can compute the dimension $\operatorname{dim} \mathcal{F}$ by computing the dimension of the linear system $\Sigma(B)$ of the divisors B. We recall that $B=\eta_{1}+\eta_{2}+\eta_{1}^{\prime}+\eta_{2}^{\prime}+B^{\prime}$, where $\eta_{1}+\eta_{1}^{\prime}$ and $\eta_{2}+\eta_{2}^{\prime}$ are lines of the same pencil on the quadric, B^{\prime} belongs to the sublinear system $\Sigma\left(B^{\prime}\right)$ cut on Q by the surfaces of degree 8 , having quadruple points at the 4 intersection points of the 4 lines. Thus $\operatorname{dim} \Sigma(B)=4+\left(\operatorname{dim} \Sigma\left(B^{\prime}\right)\right)$. Since each of the quadruple points gives 10 conditions then

$$
\operatorname{dim} \Sigma\left(B^{\prime}\right)=h^{0}\left(Q, \mathcal{O}_{Q}(8)\right)-40-1=40
$$

Hence

$$
\operatorname{dim} \mathcal{F}=\operatorname{dim} \Sigma(B)-\operatorname{dim} \operatorname{Aut}(Q)=40+4-6=38
$$

Therefore $h^{1}\left(S, T_{S}\right) \geq \operatorname{dim} \mathcal{F}=38$. By proposition 2.3, the equality holds.

ACKNOWLEDGEMENT - The author thanks the referee whose suggestions helped to make the paper sensibly shorter.

REFERENCES

[1] Bombieri, E. - Canonical models of surfaces of general type, Publ. Math. I.H.E.S., Paris, 42 (1973), 171-219.
[2] Ciliberto, C.; Francia, P. and Lopes, M.M. - Remarks on the bicanonical map for surfaces of general type, Math. Z., 224 (1997), 137-166.
[3] Du Val, P. - On surfaces whose canonical system is hyperelliptic, Canadian J. of Math., 4 (1952), 204-221.
[4] Horikawa, E. - Algebraic surfaces of general type with small c_{1}^{2} III, Invent. Math., 47 (1978), 209-248; IV, Invent. Math., 37 (1976), 121-155.
[5] Manetti, M. - Degenerations of algebraic surfaces and applications to moduli spaces, Thesis, Scuola Normale Superiore, Pisa, 1995.
[6] Pardini, R. - Abelian covers of algebraic varieties, J. Reine Angew. Math., 417 (1991), 191-213.

Paola Supino,

Dipartimento di Matematica, Univ. di Ancona, via Brecce Bianche, 60131 Ancona - ITALY

E-mail: Supino@dipmat.unian.it

[^0]: Received: December 1, 2001; Revised: May 17, 2002.

