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Abstract: Let W ⊂ Rn be a pointed and generating cone and denote by S(W )

the semigroup of matrices with positive determinant leaving W invariant. The purpose

of this paper is to prove that S(W ) is path connected. This result has the following

consequence: Semigroups with nonempty interior in the group Sl(n, R) are classified into

types, each type being labelled by a flag manifold. The semigroups whose type is given by

the projective space Pn−1 form one of the classes. It is proved here that the semigroups in

Sl(n, R) leaving invariant a pointed and generating cone are the only maximal connected

in the class of Pn−1.

1 – Introduction

LetW be a convex cone in Rn and form its compression semigroup of matrices

S(W ) =
{

g ∈ Gl+(n,R) : gW ⊂W
}

,

where Gl+(n,R) stands for the group of real matrices having positive determinant.

The purpose of this paper is to prove that S(W ) is connected if mild conditions

on W are assumed. Precisely, recall that W is said to a be pointed cone in case

±v ∈W implies v = 0. Also, W is generating if Rn=W +(−W ), or equivalently,

if intW 6= ∅, where int stands for the interior of a set with respect to the standard

topology of Rn.

Received : October 17, 2001; Revised : April 23, 2002.
AMS Subject Classification: 20M20, 11C20.
Keywords: semigroups; convex cones; positive matrices; maximal connected semigroups.
*Research partially supported by CAPES/PROCAD, grant n◦ 0186/00-7.
◦ Partially supported by CNPq grant n◦ 301060/94-0.
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Theorem 1. If W is pointed and generating then S(W ) is path connected.

Clearly, S(W ) is a closed subsemigroup of Gl+(n,R). Moreover, it is known

— and easy to prove — that in case W is pointed and generating, S(W ) has

nonempty interior in Gl+(n,R), taken with its standard topology (cf. Proposition

4 below).

Apart from being fruitful examples of semigroups in Lie groups the interest

in the semigroups S(W ) stays in the fact that they form (in essence) a class of

maximal semigroups in the special linear group Sl(n,R). In order to discuss this

we note first that the identity matrix 1 as well as the scalar matrices λ · 1, λ > 0,

are in S(W ). Analogously, a matrix g ∈ S(W ) if and only if (det g)1/ng ∈ S(W ).

Therefore if we consider the compression semigroup

SW = S(W ) ∩ Sl(n,R) =
{

g ∈ Sl(n,R) : gW ⊂W
}

,

it follows that S(W ) = R+·SW and SW is the image of S(W ) under the continuous

map g 7→ (det g)1/ng. Hence if one of the semigroups S(W ) or SW is connected,

the same happens to the other. In what follows we take advantage of the theory

of semigroups in semi-simple Lie groups and work within Sl(n,R). The proof of

Theorem 1 will be accomplished by showing that SW is connected.

To see the connection between SW and maximal semigroups in Sl(n,R) let

[W ] be the subset of the projective space Pn−1 underlying W , that is, [W ] is the

subset of lines in Rn contained in W∪ −W . Put

S[W ] =
{

g ∈ Sl(n,R) : g[W ] ⊂ [W ]
}

.

It was proved in [11], Theorem 6.12, that S[W ] is a maximal semigroup of Sl(n,R)

(see also [9], for more details about maximal semigroups). Clearly g ∈ S[W ]

if and only if g ∈ SW or gW ⊂−W . It is rather easy to prove the existence

of g∈S[W ] such that gW ⊂ −W (see Lemma 11, below), so that SW is not

a maximal semigroup. However, by proceeding like in the proof that S[W ] is

connected we get that SW is a maximal connected semigroup in the sense that

if SW ⊂ T with T a connected subsemigroup of Sl(n,R) then either T = SW or

T = Sl(n,R).

Corollary 2. SW is maximal connected in Sl(n,R).

There is a converse to this corollary, ensuring that a semigroup in a cer-

tain class of maximal connected subsemigroups of Sl(n,R) must be SW for some

pointed and generating cone W . This is the class of semigroups whose type is
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the projective space Pn−1. We refer the reader to [8] and [9] for the definition

of the type of a semigroup and in particular of the type of SW (see also [7] for

a discussion specific to semigroups in Sl(n,R)). It was observed in [8], Example

4.10, that if a semigroup is connected and of type Pn−1 then it is contained in

SW for some pointed generating cone W ⊂ Rn. Therefore we get from the fact

that SW is connected the following characterization of the maximal connected

semigroups of the projective space type:

Corollary 3. Let C stand for the class of semigroups S ⊂ Sl(n,R), with

intS 6= ∅, which are maximal connected of type Pn−1. Then

C =
{

SW : W ⊂ Rn is a pointed generating cone
}

.

Finally we mention that the semigroup of all matrices leaving invariant a

cone W — without any determinantal restriction — is trivially a convex cone in

the space of matrices, and hence connected. Our results, however, refer to the

semigroups S(W ) and SW which are far from being convex cones. In fact, it was

proved in [10] that the topology of these semigroups is rather rich, since they

have the same homotopy groups as the orthogonal group SO(n− 1).

2 – SW is connected

In this section we prove the main result of this paper, namely Theorem 1.

From now on we let W ⊂ Rn stand for a pointed generating convex cone.

As before denote by SW the semigroup of matrices in Sl(n,R) leaving W

invariant.

We refer the reader to Hilgert, Hofmann and Lawson [2] for the general theory

of semigroups. In particular, the concept of Lie wedge L(S) of a semigroup

S ⊂ Sl(n,R) is defined by

L(S) =
{

X ∈ sl(n,R) : exp(tX) ∈ clS for all t ≥ 0
}

where sl(n,R) is the Lie algebra of trace zero n×n-matrices. In what follows we

denote by Sinf the semigroup generated by L(SW ), namely

Sinf = 〈exp(L(SW ))〉 .

Since SW is closed, it follows that Sinf is a subsemigroup of SW . Furthermore,

being generated by one-parameter semigroups Sinf contains the identity and is
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path connected. It is a consequence of the next statement that L(S) is a gener-

ating cone in sl(n,R), implying that Sinf has nonempty interior in Sl(n,R) and

that the interior of SW is dense in SW , i.e., SW = cl(intSW ).

Proposition 4. Suppose that V ⊂ Rn is a codimension one subspace with

V ∩W = {0}. Take a basis

β = {f1, . . . , fn}

of Rn such that f1 ∈W and {f2, . . . , fn} ⊂ V . Let H ∈ sl(n,R) be such that its

matrix with respect to β is

H = diag{n−1,−1, . . . ,−1} .

Then H ∈ L(SW ). Moreover, if f1 ∈ intW then H ∈ intL(SW ) so that

exp(tH) ⊂ intSW for all t > 0.

Proof: Take x ∈ W , x 6= 0. Since V ∩ W = {0}, it follows that B =

(f1 + V ) ∩W is a cone basis of W in the affine subspace f1 + V . Hence up to

multiplication by a positive scalar we have

x = f1 + a2f2 + · · ·+ anfn .

Therefore,

Hx = (n− 1)f1 − (a2f2 + · · ·+ anfn)

= n f1 − x ,

that is, x+Hx = nf1 ∈W . By the invariance theorem for cones (see [2], Theorem

I.5.27), it follows that exp tH ∈ SW for all t ≥ 0, which means that H ∈ L(SW ).

Now, assume that f1 ∈ intW . Note that the cone basis B is compact since

W is a pointed cone. Also, the map

(A, x) ∈ sl(n,R)×Rn 7−→ x+Ax ∈ Rn

is continuous. Hence, given x ∈ B and a neighborhood U of nf1 in W , there are

neighborhoods Ox of H and Cx of x such that for A ∈ Ox and y ∈ Cx, it holds

y + Ay ∈ U ⊂ W . By compactness of B there exists a neighborhood O of H

such that x + Ax ∈ U for all x ∈ B and A ∈ O. It follows that the open set O

is contained in L(SW ), implying that H ∈ int(L(SW )). Clearly, this implies that

tH ∈ int(L(SW )) for all t > 0. Hence, using the fact that the exponential mapping

is a diffeomorphism around the identity we conclude that exp(tH) ∈ intSW for
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small values of t > 0. Therefore the formula exp(tH) = exp((t/n)H)n implies

that exp(tH) ∈ intSW for all t > 0.

Taking H as in this proposition with f1∈ intW we have that exp(tH)∈ intSW
if t > 0, hence for all g ∈ SW , exp(tH)g and g exp(tH) belong to intSW if t > 0.

Therefore, any g ∈ SW can be linked to intSW by a continuous path inside SW .

Since this fact is used in the proof that SW is connected we emphasize it.

Corollary 5. Let H be as in the previous proposition with f1 ∈ intW . Take

g ∈ SW . Then exp(tH)g and g exp(tH) belong to intSW if t > 0.

Before proceeding we note the following simple, but useful, fact about matrices

in intSW :

Lemma 6. If g ∈ intSW then gW ⊂ intW ∪ {0}.

Proof: If x 6= 0, the assignment h ∈ Sl(n,R) 7→ hx ∈ Rn is an open

mapping because Sl(n,R) acts transitively on Rn\{0}. Hence (intSW )x= {hx :

h ∈ intSW } is open if x 6= 0. Since (intSW )x ⊂ W , it follows that gx ∈ intW

for all x ∈W , x 6= 0.

The following statement is central in the proof that SW is connected, it con-

cerns the Jordan decomposition of the matrices in intSW .

Lemma 7. Let g ∈ intSW be given. Then there exists a basis β = {f1, . . . , fn}

of Rn with f1 ∈ intW and

span{f2, . . . , fn} ∩W = 0 ,

such that the matrix of g with respect to β is written in blocks as

g =

(

λ 0
0 h

)

where λ > 0 and h is an (n− 1)× (n− 1)-matrix with deth > 0. Furthermore λ

is a principal eigenvalue, i.e., |µ| < λ if µ is an eigenvalue of h.

This lemma is well known in the theory of matrices (see Berman and Plem-

mons [1]). Below we offer another proof of it, having a Lie theoretic flavor.
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2.1. Proof of Theorem 1

In view of Corollary 5, in order to prove that SW is path connected it is

enough to show that intSW is path connected. We prove this by exhibiting, for

any g ∈ intSW , a path in SW joining it to Sinf . Since Sinf is path connected, this

implies that intSW is path connected as well.

Fix g ∈ intSW , and let β = {f1, . . . , fn} be a basis given by Lemma 7,

providing a block decomposition of g.

Let P ⊂ Sl(n,R) be the subgroup of those linear maps whose matrices with

respect to β have the same block structure as g:

P =

{(

µ 0
0 Q

)

: µ > 0, Q ∈ Gl+(n− 1,R), µ detQ = 1

}

.

Clearly, P is a closed and connected subgroup of Sl(n,R). By construction,

g ∈ (intSW ) ∩ P . Let H ∈ sl(n,R) be such that its matrix with respect to β is

H = diag{n− 1,−1, . . . ,−1} .(1)

By Proposition 4, H ∈ intL(SW ) and exp(tH) ∈ (intSinf) ∩ P for all t > 0. Put

Γ = (intSinf) ∩ P .

Then Γ is a semigroup with nonempty interior in P (with respect to the topology

of P ).

Define the map φ : P → Sl(n−1,R) by

φ

(

µ 0
0 Q

)

= (detQ)−1/n−1Q = µ1/n−1Q .

It is checked immediately that φ is a surjective homomorphism. Hence it is an

open mapping, so that φ(Γ) is a semigroup with nonempty interior in Sl(n−1,R).

Now, exp(tH) ∈ Γ, for all t > 0. Since

exp(tH) = diag{et(n−1), e−t, . . . , e−t} ,

it follows that φ(exp(tH))=1. Therefore, 1∈φ(Γ) implying that φ(Γ)=Sl(n−1,R)

because Sl(n−1,R) is connected. Combining this fact together with the definition

of φ we get the

Lemma 8. For all h′ ∈ Sl(n− 1,R) there exists a > 0 such that

g′ =

(

a 0

0 a−1/n−1h′

)

∈ Γ = (intSinf) ∩ P ⊂ intSinf .(2)
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Let us show now that there is a path linking the given g ∈ intSW to Sinf . We

can write

g =

(

λ 0
0 h

)

=

(

λ 0

0 (deth)1/n−1h′

)

=

(

λ 0

0 λ−1/n−1h′

)

where h′ = (deth)−1/n−1h ∈ Sl(n − 1,R). For this h′, the above lemma ensures

the existence of a > 0 such that the corresponding g′ as in (2) belongs to Γ.

There are the following possibilities:

1. λ ≤ a. Then e(n−1)Tλ = a for some T ≥ 0. Hence if H is given by (1)

then

exp(TH)g =

(

e(n−1)Tλ 0

0 (e(n−1)Tλ)−1/n−1h′

)

.

Substituting in this equality e(n−1)Tλ = a we get from (2) that

exp(TH)g = g′ ∈ Sinf .

Since exp(tH)g ∈ intSW for all t ≥ 0, the path t 7→ exp(tH)g, t ∈ [0, T ],

joins g to g′ ∈ Sinf , without leaving intSW .

2. λ > a. In this case we reverse the roles of g and g′ to get T > 0 such that

exp(TH)g′= g, providing the path t 7→ exp(tH)g′, t ∈ [0, T ], linking g′ to

g inside intSW .

Therefore for arbitrary g ∈ intSW there exists a path inside intSW joining g

to Sinf concluding the proof of Theorem 1.

2.2. Proof of Lemma 7

We start with the following lemma which holds for an arbitrary semigroup S

contained in Sl(n,R) and having nonempty interior.

Lemma 9. Given h ∈ intS let V ⊂ Rn be an h-invariant subspace with

dimV ≥ 2 and such that |µ| is constant as µ runs through the eigenvalues of

the restriction h̄ of h to V . Then S is transitive on the rays of V . Precisely, let

PV be the subgroup

PV =
{

h ∈ Sl(n,R) : hV = V
}

.

Then Γ = S ∩ PV is a semigroup with nonempty interior in PV and for two rays

r1 and r2 in V , starting at the origin, there exists h′ ∈ Γ such that h′r1= r2.
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Proof: The first step in the proof consists in projecting Γ to the group Sl(V ),

of unimodular linear maps of V . This need to be done only if V is a proper

subspace. In this case the restriction of PV to V is the whole linear group Gl(V ),

which has two connected components, say Gl±(V ), with 1 ∈ Gl+(V ). Clearly

h ∈ Γ so that Γ is a semigroup with nonempty interior in PV . Denote also by Γ

its restriction to V . It follows that Γ+= Γ ∩Gl+(V ) also has nonempty interior,

because Q2 ∈ Gl+(V ) if Q ∈ Gl(V ).

Consider the onto homomorphism ψ : Gl+(V )→ Sl(V ) given by

Q ∈ Gl+(V ) 7−→ (detQ)1/kQ , k = dimV .

The image Γ1 = ψ(Γ+) is a semigroup with nonempty interior in Sl(V ).

Now, the restriction h̄ of h to V belongs to int Γ. By assumption the eigen-

values of h̄ are of the form

ea(cos θ1 + i sin θ1), . . . , e
a(cos θs + i sin θs) ,

with fixed a. So that h̄ decomposes in Jordan blocks of the types

ea







1 ∗
. . .

0 1






ea

















cos θj − sin θj
sin θj cos θj

∗

. . .

0
cos θj − sin θj
sin θj cos θj

















.

In case θj = 2π qj , j = 1, . . . , s, with qj rational, a quick glance at these blocks

show that some power of h̄ has real eigenvalues so that there exists h1 ∈ int Γ

whose restriction h̄1 to V has the form

h̄1 = λ







1 ∗
. . .

0 1






(3)

with λ > 0. The existence of such h̄1, coming from the semigroup, can be ensured

without the restrictive assumption that the eigenvalues of h̄ are rational multiples

of π. In fact, since h ∈ int Γ, there exists h2 ∈ int Γ having the same block

structure as h and such that the arguments of the eigenvalues of the restriction

of h2 to V are rational multiples of 2π. Thus we can argue with h2 in place of h

to get the desired element h̄1 like in (3).
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Now,

ψ(h̄1) =







1 ∗
. . .

1






.

This implies that Γ1= Sl(V ). In fact, ψ(h̄1) ∈ int Γ1 and ψ(h̄1) can be approx-

imated by a matrix of the form exp(X) with X having purely imaginary eigen-

values. This permits to show that 1 ∈ int Γ1 concluding that Γ1 = Sl(V ) (see [6],

Lemma 4.1, for details).

From Γ1= Sl(V ) and dimV ≥ 2 it follows at once that Γ1 is transitive on the

rays of V . The lemma is then a direct consequence of the definition of ψ.

An application of the above lemma to g yields the

Corollary 10. Fix g ∈ intSW . Let V ⊂ Rn be a g-invariant subspace such

that |µ| is constant as µ runs through the eigenvalues of the restriction of g to V.

Then dimV = 1 if V ∩W 6= 0.

Proof: If V ∩W 6= 0 there exists a ray of V contained in W . On the other

hand the lemma implies that SW is transitive on the rays of V if dimV ≥ 2.

Hence V ⊂W if dimV ≥ 2 contradicting the assumption that W is a pointed

cone.

In order to continue we put

ρ = max
{

|λ| : λ is an eigenvalue of g
}

for a fixed g ∈ intSW . Let V + be the direct sum of the generalized eigenspaces

Vλ= ker(g − λ)n, with |λ| = ρ. Also, let V − be the sum of the remaining gen-

eralized eigenspaces of g. We claim that V + ∩W 6= {0}. To see this write for

u ∈ Rn, u = u+ +u− with u± ∈ V ±. Then as k → +∞, (1/ρ)kgku− converges to

zero. Furthermore, the fact that the eigenvalues of g in V + have constant mod-

ulus ρ, implies that there exists a subsequence kl such that lim(1/ρ)klgklu+ = v,

as l→ +∞. This limit is not zero if u+ 6= 0. Thus when u+ 6= 0, (1/ρ)klgklu con-

verges to v ∈ V +. In particular take u ∈ W such that u+ 6= 0. The existence of

such u follows from the assumption that W is generating. Then 0 6= v ∈ V + ∩W

because (1/ρ)klgklu ∈W and W is closed, showing the claim.

By Corollary 10 we conclude that dimV + = 1. Hence there exists just one

eigenvalue, say λmax, with |λmax| = ρ, which is by force real. Furthermore the
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eigenspace V + is contained in W ∪ (−W ) and since gW ⊂W , it follows that

λmax > 0.

Take an eigenvector f1 ∈ V
+ ∩W . Then λmaxf1 = gf1 ∈ intW by Lemma 6.

Hence f1 ∈ intW . Therefore, the proof of Lemma 7 follows as soon as we show

that V − ∩W = {0}.

To check that V −∩W ={0} we note first that V − ∩ intW ={0}, since other-

wiseW would meet both half-spaces determined by the codimension one subspace

V −. But this would contradict the fact that W is a pointed cone. In fact, for v1

and v2 in different sides of V − the ray defined by gkv1 approaches, say, the ray

spanned by f1, as k → +∞, whereas the ray gkv2 approaches the ray spanned by

−f1. Since g
kv, v ∈W , does not leave W , we would have ±f1 ∈W . Finally,

g(V − ∩W ) = gV − ∩ gW ⊂ V − ∩ (intW ∪ {0})

because gW ⊂ intW ∪ {0} by Lemma 6. Hence g(V − ∩W ) = {0} so that

V − ∩W = {0}, concluding the proof of Lemma 7.

3 – Complements

This section is devoted to the proof of some facts related to the main result.

We start with the

Proof of Corollary 2: Let T be a connected semigroup with nonempty

interior containing SW properly. Note first that T is not contained in S[W ].

To see this suppose to the contrary that T ⊂ S[W ]. Then Tx ⊂ W ∪ (−W )

for all x ∈ W . However, T is connected so that if 0 6= x ∈ W then Tx is

contained in a connected component of (W ∪ (−W ))\{0}, which is by force W

because Tx is connected and contains x, as 1 ∈ T . Therefore, T ⊂ SW contra-

dicting the assumption on T . Now, the proof that T = Sl(n,R) follows the same

steps as the proof that S[W ] is maximal (see [11], Theorem 6.12). We sketch it:

By Proposition 4, any line outside [W ] is spanned by an eigenvector of some

h ∈ intSW . This implies that [W ] and Pn−1\[W ] are the two control sets

of SW in Pn−1. Therefore SW is transitive in int[W ] as well as in Pn−1\[W ].

Since T is not contained in S[W ], there exists g ∈ T such that gx ∈ Pn−1\[W ] for

some x ∈ int[W ]. Also for any y ∈ Pn−1 there exists g1 ∈ SW with g1y ∈ int[W ]

(because [W ] is the invariant control set of SW in Pn−1). It follows that T acts

transitively in Pn−1. Thus T = Sl(n,R), by [11], Theorem 6.2.
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Now, we discuss the relation between SW and S[W ]. By definition S[W ] =

SW ∪ S
||
W , where

S
||
W =

{

g ∈ Sl(n,R) : gW ⊂−W
}

.

The following lemma shows that S
||

W is not empty.

Lemma 11. SW is properly contained in S[W ].

Proof: We must show that there exists g ∈ Sl(n,R) such that gW ⊂−W .

For this purpose take H = diag{n−1,−1, . . . ,−1} with respect to a basis β =

{f1, . . . , fn} satisfying the requirements of Proposition 4, namely f1 ∈ intW

and span{f2, . . . , fn} ∩W = {0}. Since Sl(n,R) acts transitively on Rn, there

exists g1 ∈ Sl(n,R) such that g1f1 = −f1. By continuity U = g−1
1 (int(−W )) is

a neighborhood of f1. Now, by construction of H there exists a large enough

t > 0 such that if h = exp tH then hW ⊂ U . Hence g1hW ⊂−W so that g = g1h

belongs to S[W ] but not to SW .

Clearly, there are the inclusions SWS
||
W ⊂ S

||

W and (S
||
W )2 ⊂ SW . The former

shows in particular that S
||
W has nonempty interior. In case n is even,

−1∈Sl(n,R), hence −1∈S
||
W for any W. Actually, −1 maps W exactly onto −W

hence the following statement implies that in even dimensions, S
||
W = −SW .

Proposition 12. Suppose that there exists k∈Sl(n,R) satisfying kW =−W .

Then S
||
W = kSW = SWk.

Proof: Clearly, kSW and SWk are contained in S
||
W . For the reverse

inclusions note that k−1W = −W . Pick g ∈ S
||
W . Then gW ⊂ −W , so that

gk−1W ⊂W and k−1gW ⊂W , that is, gk−1 and k−1g are in SW .

Under the assumption of this proposition it follows at once that S
||

W is con-

nected. Since the existence of k mapping W onto −W depends on the geometry

of the specific W , we prove next that in general

Proposition 13. S
||
W is connected. Hence SW and S

||
W are the connected

components of S[W ].

Proof: Take g, h ∈ S
||
W . Both gW and hW are pointed generating cones

contained in −W . Take H and β like in Proposition 4 with the first element f1
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of β contained in int(hW ). Like in that proposition H ∈ L(SW ) and for large

enough t0, exp(t0H)(−W ) ⊂ hW . In particular,

exp(t0H)(gW ) ⊂ hW .

Hence h−1 exp(t0H)g ∈ SW , that is, exp(t0H)g ∈ hSW . Since SW is path con-

nected, this implies the existence of a path in S[W ] linking exp(t0H)g to h.

However, H ∈ L(SW ), so that exp(t0H)g and g are in the same path component

of S
||
W , concluding the proof of that S

||
W is connected.

In general Sinf = 〈exp(L(SW ))〉 is a proper subsemigroup of SW . As observed

by K.-H. Neeb (personal communication) the inclusion Sinf ⊂ SW is proper for

the semigroup Sl+(n,R) = SW of positive matrices, where W is the orthant

W = O+(n) =
{

(x1, . . . , xn) ∈ Rn : xi ≥ 0
}

.

To see this note that in case n ≥ 3 the unit group of SW , H(SW ) = SW ∩ S−1
W is

not connected. In fact, it easy to check that g must permutes the basic vectors

if g ∈ H(SW ) so that H(SW ) = Π×A where A is the group of diagonal matrices

with positive entries and Π is the group of permutation matrices with det = 1.

In case n ≥ 3, Π — and hence H(SW ) — is not connected. On the other hand,

it is a general fact that the unit group of an infinitesimally generated semigroup

like Sinf must be connected (see [2], Theorem V.2.8).

Finally, we observe that Corollary 3 completely determines the maximal con-

nected semigroups of Sl(n,R) for n = 2, 3. In fact, for n = 2, any semigroup

is of the projective type so that any maximal connected semigroup is SW for

some pointed and generating cone W ⊂ R2. It should be remarked here that

for any such cone W there exists g ∈ Sl(2,R) such that W = gO+(2). Since

SgW = g SW g−1, it follows that up to conjugation Sl+(2,R) is the only maximal

connected semigroup of Sl(2,R). For n = 3, there are two types of maximal

semigroups, namely a semigroup is of type P2 or Gr2(3), the Grassmannian of

two-dimensional subspaces of R3. However, if a semigroup is of type Gr2(3) then

its inverse S−1 is of projective type (see [9], Proposition 6.3). Therefore there is

the following characterization of the maximal connected semigroups in Sl(3,R):

Proposition 14. A semigroup S ⊂ Sl(3,R), with intS 6= ∅, is maximal

connected if and only if there exists a pointed and generating cone W ⊂ R3

such that either S = SW or S = S−1
W .



THE COMPRESSION SEMIGROUP OF A CONE IS CONNECTED 317

REFERENCES

[1] Berman, A. and Plemmons, R.J. – Nonnegative matrices in the mathematical
sciences, SIAM Classics in Appl. Math., 9 (1994).

[2] Hilgert, J.; Hofmann, K.H. and Lawson, J. – Lie Groups, Convex Cones and

Semigroups, Oxford University Press, 1989.
[3] Hilgert, J. and Neeb, K.-H. – Lie semigroups and their applications, Lecture

Notes in Math., 1552, Springer-Verlag (1993).
[4] Jurdjevic, V. and Sussmann, H. – Control systems on Lie groups, J. Diff. Eq.,

12 (1972), 313–329.
[5] Ruppert, W.A.F. – On open subsemigroups of connected groups, Semigroup

Forum, 39 (1989), 347–362.
[6] San Martin, L.A.B. – Invariant control sets on flag manifolds, Math. Control,

Signals and Systems, 6 (1993), 41–61.
[7] San Martin, L.A.B. – On global controllability of discrete-time control systems,

Math. Control Signals Systems, 8 (1995), 279–297.
[8] San Martin, L.A.B. – Control sets and semigroups in semisimple Lie groups,

in “Semigroups in Algebra, Geometry and Analysis” (K.H. Hofmann, J.D. Lawson
and E.B. Vinberg, Eds.), de Gruyter Expositions in Mathematics, 20 (1995),
275–291.

[9] San Martin, L.A.B. – Maximal semigroups in semi-simple Lie groups, Trans.
Amer. Math. Soc., 353 (2001), 5165–5184.

[10] San Martin, L.A.B. and Santana, A.J. – The homotopy type of Lie semigroups
in semi-simple Lie groups, Monatsh. Math., to appear.

[11] San Martin, L.A.B. and Tonelli, P.A. – Semigroup actions on homogeneous
spaces, Semigroup Forum, 50 (1995), 59–88.

João Ribeiro Gonçalves Filho,
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