PORTUGALIAE MATHEMATICA Vol. 60 Fasc. 3 – 2003 Nova Série

A NOTE ON THE HOLOMORPHIC INVARIANTS OF TIAN–ZHU*

Zhiqin Lu

In this short note, we compute the holomorphic invariants defined by Tian and Zhu [4] on smooth hypersurfaces of \mathbb{CP}^n . The holomorphic invariants, which generalize the famous Futaki invariants [1], are obstructions towards the existence of Kähler–Ricci solitons.

For a Kähler manifold with the first positive Chern class, the existence of the Kähler–Ricci soliton can be reduced to the existence of the solution of a nonlinear equation of Monge–Ampere type. In general, solving such an equation is highly nontrivial. Similarly to the Futaki invariants, the Tian–Zhu invariants give the obstruction *before* one needs to solve the equation. It is thus very important to compute it concretely. In this paper, in the case of hypersurfaces, we give an explicit formula.

Let $M \subset CP^n$ be a smooth hypersurface defined by a homogeneous polynomial F = 0 of degree d. Let v and X be two holomorphic vector fields on CP^n . For the sake of simplicity, we assume that

$$v = \sum_{i=0}^{n} v^{i} Z_{i} \frac{\partial}{\partial Z_{i}}$$
 and $X = \sum_{i=0}^{n} X^{i} Z_{i} \frac{\partial}{\partial Z_{i}}$,

where $[Z_0, ..., Z_n]$ is the homogeneous coordinate of CP^n , $(v^0, ..., v^n) \in C^{n+1}$, $(X^0, ..., X^n) \in C^{n+1}$. We further assume that

(1)
$$\sum_{i=0}^{n} v^{i} = 0, \qquad \sum_{i=0}^{n} X^{i} = 0.$$

Received: December 18, 2001; Revised: March 13, 2002.

AMS Subject Classification: Primary 53A30; Secondary 32C16.

Keywords and Phrases: Kähler-Ricci soliton; Futaki invariants; Kähler-Einstein metric.

^{*} Research supported by NSF grant DMS 0196086.

ZHIQIN LU

If v and X are tangent vector fields of M, then there are complex numbers λ and κ such that

(2)
$$vF = \kappa F$$
, $XF = \lambda F$.

Let ω be the Kähler form of the Fubini–Study metric of \mathbb{CP}^n . Then $(n-d+1)\omega$ restricts to a representative of the first Chern class $c_1(M)$ of M. Thus there is a smooth function ξ on M such that

$$\operatorname{Ric}((n-d+1)\omega|_M) - (n-d+1)\omega|_M = \partial\overline{\partial}\xi$$
.

For fixed holomorphic vectors X and v, the holomorphic invariant defined by Tian–Zhu [4], in our context, is

(3)
$$F_X(v) = (n-d+1)^{n-1} \int_M v \left(\xi - (n-d+1)\theta_X\right) e^{(n-d+1)\theta_X} \omega^{n-1}$$

where θ_X is defined as

(4)
$$\begin{cases} i(X)\omega = \frac{\sqrt{-1}}{2\pi} \overline{\partial}\theta_X ,\\ \int_M e^{(n-d+1)\theta_X} \omega^{n-1} = d . \end{cases}$$

The main property of the Tian–Zhu invariants is the following (cf. [4]):

Theorem 1. Let $F_X(v)$ be the Tian–Zhu invariant. Then we have

1. If the Kähler-Ricci soliton exists, that is, we have

$$\operatorname{Ric}(\omega) - \omega = L_X \omega$$

for some Kähler metric ω . Then $F_X(v) \equiv 0$.

2. $F_X(v)$ is independent of the choice of the Kähler metric ω within the first Chern class.

In this note, we give a "computable" expression of $F_X(v)$. Our main result is as follows:

Theorem 2. Using the notations as above, defined the function

(5)
$$\varphi(X) = \sum_{k=0}^{\infty} \frac{n! (n-d+1)^k}{(n+k)!} \sum_{\alpha_0 + \dots + \alpha_n = k} X_0^{\alpha_0} \cdots X_n^{\alpha_n}$$

264

A NOTE ON THE HOLOMORPHIC INVARIANTS OF TIAN–ZHU 265

where $\alpha_0, ..., \alpha_n \in \mathbb{Z}^{n+1}$ are nonnegative integers. Let

(6)
$$\sigma(X) = \left(-\frac{\lambda(n-d+1)}{n} + d\right)\varphi(X) + \frac{d}{n}\sum_{i=0}^{n} X^{i} \frac{\partial\varphi(X)}{\partial X^{i}}$$

Then the invariants defined by Tian–Zhu can be explicitly expressed as

(7)
$$F_X(v) = -(n-d+1)^{n-1} d\left(\kappa + \sum_{i=0}^n v^i \frac{\partial \log \sigma(X)}{\partial X^i}\right).$$

Corollary 1. The Futaki invariant for the hypersurface M is

$$F(v) = -(n-d+1)^{n-1} \frac{(n+1)(d-1)}{n} \kappa . \bullet$$

The rest of this note is devoted to the proof Theorem 2. We define

(8)
$$\tilde{\theta}_X = \frac{\lambda_0 |Z_0|^2 + \dots + \lambda_n |Z_n|^2}{|Z_0|^2 + \dots + |Z_n|^2} .$$

Then we have

(9)
$$i(X)\omega = \overline{\partial}\tilde{\theta}_X$$

By comparing the above equation with (4), we have

(10)
$$\theta_X = \tilde{\theta}_X + c_X$$

for a constant c_X . First, we have the following lemma

Lemma 1.

$$\int_{CP^n} e^{(n-d+1)\tilde{\theta}_X} \,\omega^n \,=\, \varphi(X) \;,$$

where $\varphi(X)$ is defined in (5).

Proof: This follows from the expansion

$$e^{(n-d+1)\tilde{\theta}_X} = \sum_{k=0}^{\infty} \frac{(n-d+1)^k}{k!} \,\tilde{\theta}_X^k \;,$$

and the elementary Calculus. \blacksquare

ZHIQIN LU

Lemma 2. Using the same notation as above, we have

$$F_X(v) = (n-d+1)^{n-1} \left(-\kappa d - \int_M (n-d+1) \theta_v e^{(n-d+1)\theta_X} \omega^{n-1} \right) \,.$$

Proof: By [3, Theorem 4.1], we have

$$\operatorname{div} v + v(\xi) + (n - d + 1)\theta_v = -\kappa ,$$

where θ_v is the function on CP^n defined by

$$\theta_v = \frac{v_0 |Z_0|^2 + \dots + v_n |Z_n|^2}{|Z_0|^2 + \dots + |Z_n|^2} ,$$

and κ is defined in (2). Then (3) becomes

(11)

$$F_X(v) = (n-d+1)^{n-1} \\
\cdot \left(\int_M \left(-\kappa - \operatorname{div} v - (n-d+1)\theta_v - (n-d+1)v(\theta_X) \right) e^{(n-d+1)\theta_X} \omega^{n-1} \right).$$

We also have

(12)
$$\operatorname{div} \left(e^{(n-d+1)\theta_X} v \right) = e^{(n-d+1)\theta_X} \left(\operatorname{div} v + (n-d+1) v(\theta_X) \right) \,.$$

The lemma follows from (4), (11), (12) and the divergence theorem. \blacksquare

The following key lemma transfers the integration on M to the integrations on $\mathbb{C}P^n$.

Lemma 3.

(13)
$$(n-d+1) \int_M \theta_v \, e^{(n-d+1)\theta_X} \omega^{n-1} = d \sum_{i=0}^n v^i \, \frac{\partial \log \sigma}{\partial X^i} ,$$

where $\sigma(X)$ is defined in (6).

Proof: Let

(14)
$$\eta = \log \frac{|F|^2}{\left(|Z_0|^2 + \dots + |Z_n|^2\right)^d}.$$

Then η is a smooth function on $\mathbb{C}P^n$ outside M. We have the following identity:

(15)
$$\overline{\partial} \Big(e^{(n-d+1)\theta_X} \partial \eta \wedge \omega^{n-1} \Big) - \frac{n-d+1}{n} i(X) \left(e^{(n-d+1)\theta_X} \partial \eta \wedge \omega^n \right) = \\= -e^{(n-d+1)\theta_X} \partial \overline{\partial} \eta \wedge \omega^{n-1} - \frac{n-d+1}{n} e^{(n-d+1)\theta_X} (\lambda - d\tilde{\theta}_X) \omega^n$$

266

A NOTE ON THE HOLOMORPHIC INVARIANTS OF TIAN–ZHU 267

Since on CP^n , there are no (2n+1) forms, the left hand side of the above equation is the divergence of some vector field. Integrate the equation on both side and use the divergence theorem, we have

(16)
$$\int_{CP^n} e^{(n-d+1)\theta_X} \partial \overline{\partial} \eta \wedge \omega^{n-1} = -\frac{n-d+1}{n} \int_{CP^n} (\lambda - d\tilde{\theta}_X) e^{(n-d+1)\theta_X} \omega^n .$$

By [2, page 388], in the sense of currents, we have

(17)
$$\partial \overline{\partial} \eta = [M] - d\omega$$
.

Thus from (16),

(18)
$$\int_{M} e^{(n-d+1)\theta_{X}} \omega^{n-1} = \left(-\frac{\lambda(n-d+1)}{n} + d\right) \int_{CP^{n}} e^{(n-d+1)\theta_{X}} \omega^{n} + \frac{d(n-d+1)}{n} \int_{CP^{n}} \tilde{\theta}_{X} e^{(n-d+1)\theta_{X}} \omega^{n} .$$

From Lemma 1, we have

(19)
$$\sum_{i=0}^{n} X^{i} \frac{\partial \varphi(X)}{\partial X^{i}} = (n-d+1) \int_{CP^{n}} \tilde{\theta}_{X} e^{(n-d+1)\tilde{\theta}_{X}} \omega^{n} .$$

By (10), (18) and (19)

(20)
$$\int_M e^{(n-d+1)\theta_X} \omega^{n-1} = \sigma(X) e^{c_X} .$$

From the above equation, we have

(21)
$$(n-d+1) \int_M \theta_v e^{(n-d+1)\theta_X} \omega^{n-1} = \sum_{i=0}^n v^i \frac{\partial \sigma(X)}{\partial X^i} e^{c_X} .$$

On the other hand, from (20), we have

(22)
$$d = \sigma(X) e^{c_X} ,$$

by (4). Lemma 3 follows from (21) and (22). \blacksquare

Theorem 2 follows from Lemma 2 and Lemma 3.

ZHIQIN LU

REFERENCES

- FUTAKI, A. An obstruction to the existence problem of positive Kähler Einstein metrics, *Invent. Math.*, 73 (1983), 437–443.
- [2] GRIFFITHS, P. and HARRIS, J. *Principle of Algebraic Geometry*, John Wiley & Sons, 1978.
- [3] LU, Z. On the Futaki invariants of complete intersections, Duke Math. J., 100(2) (1999), 359–372.
- [4] TIAN, G. and ZHU, X. Uniqueness of Kähler–Ricci solitions, Acta Math., 184 (2000), 271–305.

Zhiqin Lu, Department of Mathematics, University of California, Irvine, Irvine, CA 92697 – U.S.A. E-mail: zlu@math.uci.edu

268