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A NEW CLASS OF SEMI-PARAMETRIC ESTIMATORS
OF THE SECOND ORDER PARAMETER *

M.I. Fraga Alves, M. Ivette Gomes and Laurens de Haan

Abstract: The main goal of this paper is to develop, under a semi-parametric

context, asymptotically normal estimators of the second order parameter ρ, a parameter

related to the rate of convergence of maximum values, linearly normalized, towards its

limit. Asymptotic normality of such estimators is achieved under a third order condition

on the tail 1 − F of the underlying model F , and for suitably large intermediate ranks.

The class of estimators introduced is dependent on some control or tuning parameters

and has the advantage of providing estimators with stable sample paths, as functions

of the number k of top order statistics to be considered, for large values of k; such a

behaviour makes obviously less important the choice of an optimal k. The practical

validation of asymptotic results for small finite samples is done by means of simulation

techniques in Fréchet and Burr models.

1 – Introduction

In Statistical Extreme Value Theory we are essentially interested in the es-

timation of parameters of rare events like high quantiles and return periods of

high levels. Those parameters depend on the tail index γ = γ(F ), of the un-

derlying model F (.), which is the shape parameter in the Extreme Value (EV )

distribution function (d.f.),

G(x) ≡ Gγ(x) :=





exp
{
−(1 + γ x)−1/γ

}
, 1 + γ x > 0 if γ 6= 0 ,

exp
(
− exp(−x)

)
, x ∈ R if γ = 0 .

(1.1)
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This d.f. appears as the non-degenerate limiting d.f. of the sequence of maximum

values, {Xn:n = max(X1, X2, . . . , Xn)}n≥1, linearly normalized, with {Xi}i≥1 a

sequence of independent, identically distributed (i.i.d.), or possibly weakly depen-

dent random variables (r.v.’s) (Galambos [9]; Leadbetter and Nandagopalan [21]).

Whenever there is such a non-degenerate limit we say that F is in the domain of

attraction of Gγ , and write F ∈ D(Gγ). Putting U(t) :=F←(1 − 1/t) for t > 1,

where F←(t) = inf{x : F (x) ≥ t} denotes the generalized inverse function of F ,

we have, for heavy tails, i.e., for γ > 0,

F ∈ D(Gγ) iff 1− F ∈ RV−1/γ iff U ∈ RVγ ,(1.2)

where RVβ stands for the class of regularly varying functions at infinity with index

of regular variation equal to β, i.e., functions g(.) with infinite right endpoint,

and such that limt→∞ g(t x)/g(t) = xβ , for all x > 0. The conditions in (1.2)

characterize completely the first order behaviour of F (·) (Gnedenko [10]; de Haan

[17]).

The second order theory has been worked out in full generality by de Haan

and Stadtmüller [18]. Indeed, for a large class of heavy tail models there exists a

function A(t)→ 0 of constant sign for large values of t, such that

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=

xρ − 1

ρ
(1.3)

for every x > 0, where ρ (≤ 0) is a second order parameter, which also needs to

be properly estimated from the original sample. The limit function in (1.3) must

be of the stated form, and |A(t)| ∈ RVρ (Geluk and de Haan [11]). Notice that

as |ρ| increases, the rate of convergence in the first order approximation increases

as well, and this is important for approximations in real problems.

Here, for part of our results, we shall assume the validity of a third order

framework, i.e., we shall assume there is a function B(t) → 0, also of constant

sign for large values of t, and

lim
t→∞

lnU(t x)−lnU(t)−γ lnx
A(t) − xρ−1

ρ

B(t)
=

1

β

{
xρ+β − 1

ρ+ β
− xρ − 1

ρ

}
.(1.4)

Then |B(t)| ∈ RVβ , β ≤ 0.

Under the validity of (1.3) and (1.4) we have, for every x > 0, and as t→∞,

lnU(t x)− lnU(t) = γ lnx+A(t)
xρ − 1

ρ
+A(t)B(t)H(x; ρ, β)

(
1 + o(1)

)
,
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where

H(x; ρ, β) =
1

β

{
xρ+β − 1

ρ+ β
− xρ − 1

ρ

}
.

For heavy tails, estimation of the tail index γ may be based on the statistics

M (α)
n (k) :=

1

k

k∑

i=1

[
lnXn−i+1:n − lnXn−k:n

]α
, α ∈ R+ ,(1.5)

where Xi:n, 1≤ i≤n, is the sample of ascending order statistics (o.s.) associated

to our original sample (X1, X2, . . . , Xn). These statistics were introduced and

studied under a second order framework by Dekkers et al. [5]. For more details

on these statistics, and the way they may be used to build alternatives to the

Hill estimator given by (1.5) and α = 1 (Hill [20]), see Gomes and Martins [12].

In this paper we are interested in the estimation of the second order parameter

ρ in (1.3). The second order parameter ρ is of primordial importance in the

adaptive choice of the best threshold to be considered in the estimation of the

tail index γ, like may be seen in the papers by Hall and Welsh [19], Beirlant et al.

([1], [2]), Drees and Kaufmann [7], Danielsson et al. [4], Draisma et al. [6], Guillou

and Hall [16], among others. Also, most of the recent research devised to improve

the classical estimators of the tail index, try to reduce the main component of

their asymptotic bias, which also depends strongly on ρ. So, an a priori estimation

of ρ is needed, or at least desirable, for the adequate reduction of bias. Some of

the papers in this area are the ones by Beirlant et al. [3], Feuerverger and Hall

[8], Gomes and Martins ([12], [13]) and Gomes et al. [15].

All over the paper, and in order to simplify the proof of theoretical results, we

shall only assume the situation ρ, β < 0. We shall also assume everywhere that

k is an intermediate rank, i.e.

k = kn →∞, k/n→ 0, as n→∞ .(1.6)

The starting point to obtain the class of estimators we are going to consider,

is a well-known expansion of M
(α)
n (k) for any real α > 0, valid for intermediate

k,

M (α)
n (k) = γαµ(1)

α + γασ(1)
α

1√
k
P (α)
n + αγα−1µ(2)

α (ρ)A(Yn−k:n) + op(A(n/k)) ,

where P
(α)
n is asymptotically a standard normal r.v. (cf. section 2 below where

the notation is explained). The reasoning is then similar to the one in Gomes et

al. [14]: first, for sequences k = k(n) → ∞ with
√
k A(n/k) = O(1), as n → ∞,
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this gives an asymptotically normal estimator of a simple function of γ; but by

taking sequences k(n) of greater order than the previous ones, i.e. such that

√
k A(n/k)→∞, as n→∞ ,(1.7)

we can emphasize other parts of this equation as follows.

First we get rid of the first term on the right by composing a linear combination

of powers of two different M
(α)
n (k)’s (i.e., for two different α), suitably normalized.

We have here considered, for positive real τ and θ1 6= 1,

(
M

(α)
n (k)

µ
(1)
α

)τ
−
(

M
(αθ1)
n (k)

µ
(1)
αθ1

)τ/θ1

A(Yn−k:n)
−→ α τ γατ−1

(
µ

(2)
α (ρ)

µ
(1)
α

−
µ

(2)
αθ1

(ρ)

µ
(1)
αθ1

)
,

which is a function of both parameters of the model, γ and ρ. We then get rid of

the unknown A(Yn−k:n) and of γ, by composing, for positive real values θ1 6= θ2,

both different from 1, a quotient of the type

T (α,θ1,θ2,τ)
n (k) :=

(
M

(α)
n (k)

µ
(1)
α

)τ
−
(

M
(αθ1)
n (k)

µ
(1)
αθ1

)τ/θ1

(
M

(αθ1)
n (k)

µ
(1)
αθ1

)τ/θ1
−
(

M
(αθ2)
n (k)

µ
(1)
αθ2

)τ/θ2 ,(1.8)

which, under conditions (1.6) and (1.7), converges in probability towards

tα,θ1,θ2(ρ) :=

µ
(2)
α (ρ)

µ
(1)
α

− µ
(2)
αθ1

(ρ)

µ
(1)
αθ1

µ
(2)
αθ1

(ρ)

µ
(1)
αθ1

− µ
(2)
αθ2

(ρ)

µ
(1)
αθ2

,

and where the admissible values of the tuning parameters are α, θ1, θ2, τ ∈ R+,

θ1 6= 1, and θ1 6= θ2.

We thus obtain a consistent estimator of a function of ρ which leads to a

consistent estimator of ρ, as developed in section 2. In section 3 a somewhat

more refined analysis again on the lines of Gomes et al. [14], using third order

regular variation, brings the terms γασ
(1)
α

1√
k
P

(α)
n back into play, and this will

lead to a proof of the asymptotic normality of our estimators. We shall pay

particular attention to the statistic obtained for α = 1, θ1= 2 and θ2 = 3, which

involves only the first three moment statistics M
(i)
n (k), i = 1, 2, 3, also handled in

Draisma et al. [6], under a different general framework and for the estimation of
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γ ∈ R. We shall also advance with some indication on a possible way to choose

the control parameters, in order to get estimators with stable sample paths and

flat Mean Square Error (MSE) patterns, for large values of k, the number of

top order statistics used in their construction. Finally, the practical validation

of asymptotic results for small finite samples is done in section 4, by means of

simulation techniques in Fréchet and Burr models.

2 – A class of semi-parametric estimators of the second order

parameter

Let W denote an exponential r.v., with d.f. FW (x) = 1 − exp(−x), x > 0,

and, with the same notation as in Gomes et al. [14], let us put

µ(1)
α := E[Wα] = Γ(α+ 1) ,(2.1)

σ(1)
α :=

√
Var[Wα] =

√
Γ(2α+ 1)− Γ2(α+ 1) ,(2.2)

µ(2)
α (ρ) := E

[
Wα−1

(
eρW− 1

ρ

)]
=

Γ(α)

ρ

1− (1−ρ)α

(1− ρ)α
,(2.3)

σ(2)
α (ρ) :=

√

Var

[
Wα−1

(
eρW− 1

ρ

)]
=

√
µ

(3)
2α (ρ)−

(
µ

(2)
α (ρ)

)2
,(2.4)

with

µ(3)
α (ρ) := E

[
Wα−2

(
eρW− 1

ρ

)2
]

(2.5)

=





1

ρ2
ln

(1− ρ)2

1− 2 ρ
if α = 1,

Γ(α)

ρ2(α− 1)

{
1

(1−2ρ)α−1
− 2

(1−ρ)α−1
+ 1

}
if α 6= 1 ,

and

µ(4)
α (ρ, β) := E

[
1

β
Wα−1

(
e(ρ+β)W−1

ρ+ β
− eρW− 1

ρ

)]
(2.6)

=
1

β

(
µ(2)
α (ρ+ β)− µ(2)

α (ρ)
)
.

Then, under the third order condition in (1.4), assuming that (1.6) holds,

and using the same arguments as in Dekkers et al. [5], in lemma 2 of Draisma
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et al. [6] and more recently in Gomes et al. [14], we may write the distributional

representation

(
M

(αθ)
n (k)

µ
(1)
αθ γ

αθ

)τ/θ
= 1 +

τ

θ
σ

(1)
αθ

1√
k
P (αθ)
n

+
ατ

γ
µ

(2)
αθ (ρ)A(n/k) +

ατ

γ
σ

(2)
αθ (ρ)

A(n/k)√
k

P
(αθ)
n

+
ατ

2γ2
A2(n/k)

(
(αθ−1)µ

(3)
αθ (ρ) + α(τ−θ) (µ

(2)
αθ (ρ))

2
)
(1+op(1))(2.7)

+
ατ

γ
µ

(4)
αθ (ρ, β)A(n/k)B(n/k) (1+op(1)) ,

where P
(αθ)
n and P

(αθ)
n are asymptotically standard Normal r.v.’s, and

µ
(j)
α (ρ) =

µ
(j)
α (ρ)

µ
(1)
α

, j = 2, 3 , µ
(4)
α (ρ, β) =

µ
(4)
α (ρ, β)

µ
(1)
α

,

σ
(1)
α =

σ
(1)
α

µ
(1)
α

, σ
(2)
α (ρ) =

σ
(2)
α (ρ)

µ
(1)
α

.

If we now take the difference between two such expressions, we get a r.v.

converging towards 0:

D(α,θ1,θ2,τ)
n (k) :=

(
M

(αθ1)
n (k)

µ
(1)
αθ1

γαθ1

)τ/θ1
−
(
M

(αθ2)
n (k)

µ
(1)
αθ2

γαθ2

)τ/θ2

=
τ√
k

(
σ

(1)
αθ1

θ1
P (αθ1)
n −

σ
(1)
αθ2

θ2
P (αθ2)
n

)

+
ατ

γ

(
µ

(2)
αθ1

(ρ)− µ
(2)
αθ2

(ρ)
)
A(n/k)

+
ατ

γ

(
σ

(2)
αθ1

(ρ)P
(αθ1)
n − σ

(2)
αθ2

(ρ)P
(αθ2)
n

) A(n/k)√
k

(2.8)

+
ατ

2 γ2

(
(αθ1−1)µ

(3)
αθ1

(ρ) + α(τ−θ1) (µ
(2)
αθ1

(ρ))2

− (αθ2−1)µ
(3)
αθ2

(ρ)− α(τ−θ2) (µ
(2)
αθ2

(ρ))2
)
A2(n/k) (1+op(1))

+
ατ

γ

(
µ

(4)
αθ1

(ρ, β)− µ
(4)
αθ2

(ρ, β)
)
A(n/k)B(n/k) (1+op(1)) .



SEMI-PARAMETRIC ESTIMATORS 199

If we assume that (1.7) holds, the second term in the right hand side of (2.8)

is the dominant one, and

D
(α,θ1,θ2,τ)
n (k)

A(n/k)
=

ατ

γ

(
µ

(2)
αθ1

(ρ)− µ
(2)
αθ2

(ρ)
)

+
τ√

k A(n/k)

(
σ

(1)
αθ1

θ1
P (αθ1)
n −

σ
(1)
αθ2

θ2
P (αθ2)
n

)

+
ατ

2 γ2

(
(αθ1−1)µ

(3)
αθ1

(ρ) + α(τ−θ1) (µ
(2)
αθ1

(ρ))2

− (αθ2−1)µ
(3)
αθ2

(ρ)− α(τ−θ2) (µ
(2)
αθ2

(ρ))2
)
A(n/k) (1+op(1))

+
ατ

γ

(
µ

(4)
αθ1

(ρ, β)− µ
(4)
αθ2

(ρ, β)
)
B(n/k) (1+op(1)) .(2.9)

Consequently, for θ1 6= θ2, the statistic in (1.8), which may be written as

T (α,θ1,θ2,τ)
n (k) =

D
(α,1,θ1,τ)
n (k)

D
(α,θ1,θ2,τ)
n (k)

,(2.10)

converges in probability, as n→∞, towards

tα,θ1,θ2(ρ) :=
µ

(2)
α (ρ)− µ

(2)
αθ1

(ρ)

µ
(2)
αθ1

(ρ)− µ
(2)
αθ2

(ρ)
=

dα,1,θ1(ρ)

dα,θ1,θ2(ρ)
,(2.11)

independently of τ , where

dα,θ1,θ2(ρ) := µ
(2)
αθ1

(ρ)− µ
(2)
αθ2

(ρ) .(2.12)

Straightforward computations lead us to the expression

tα,θ1,θ2(ρ) = θ2
(θ1−1) (1−ρ)αθ2 − θ1(1−ρ)α(θ2−1) + (1−ρ)α(θ2−θ1)

(θ2−θ1) (1−ρ)αθ2 − θ2(1−ρ)α(θ2−θ1) + θ1
.(2.13)

We have

lim
ρ→0−

tα,θ1,θ2(ρ) =
θ1 − 1

θ2 − θ1
; lim

ρ→−∞
tα,θ1,θ2(ρ) =

θ2(θ1 − 1)

θ2 − θ1
,(2.14)

and for negative values of ρ and α>0, tα;θ1,θ2(ρ) is always a decreasing (increas-

ing) function of ρ, provided that 1<θ1<θ2 (θ1>θ2>1).
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We have thus got a consistent estimator of a function of ρ, which needs to be

inverted, i.e., the estimator of ρ to be studied in the following section is

ρ̂
(α,θ1,θ2,τ)
n|T (k) := t←α,θ1,θ2(T

(α,θ1,θ2,τ)
n (k)), provided that(2.15)

θ1 − 1

|θ2 − θ1|
≤
∣∣∣T (α,θ1,θ2,τ)

n (k)
∣∣∣ <

θ2(θ1 − 1)

|θ2 − θ1|
,

in order to get the right sign for the ρ-estimator.

The easiest situation is the one associated to values (θ1, θ2) such that

θ2 − θ1 = 1 and θ2 − 1 = 2 (look at expression (2.11)), i.e. to the values

(θ1 = 2, θ2 = 3), for which we get

tα(ρ) = tα,2,3(ρ) = 3(1−ρ)α
(1−ρ)2α − 2(1−ρ)α + 1

(1−ρ)3α − 3(1−ρ)α + 2
=

3(1−ρ)α

(1−ρ)α + 2
,(2.16)

which, for any α > 0, must be between 1 and 3 to provide, by inversion, negative

values of ρ. We then get an explicit analytic expression for the estimator of ρ.

More specifically, we get

ρ̂
(α,2,3,τ)
n|T (k) := 1−

(
2T

(α,2,3,τ)
n (k)

3− T
(α,2,3,τ)
n (k)

)1/α
,(2.17)

provided that 1 ≤ T (α,2,3,τ)
n (k) < 3 .

For the particular case α = 1, we have

ρ̂
(1,2,3,τ)
n|T (k) :=

3
(
T

(1,2,3,τ)
n (k)− 1

)

T
(1,2,3,τ)
n (k)− 3

,(2.18)

provided that 1 ≤ T (1,2,3,τ)
n (k) < 3 .

We have thus proved the following

Theorem 2.1. Suppose that the second order condition (1.3) holds,

with ρ < 0. For sequences of integers k = k(n) satisfying k(n) = o(n) and√
k A(n/k)→∞, as n→∞, we have

lim
n→∞ ρ̂

(α,θ1,θ2,τ)
n|T (k) = ρ

in probability for any α, τ > 0 ∈ R+, and θ1, θ2 ∈ R+\{1}, θ1 6= θ2, with

ρ̂
(α,θ1,θ2,τ)
n|T (k) defined in (2.15), and with an explicit analytic expression given

by (2.17) for (θ1, θ2) = (2, 3).
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3 – The asymptotic normality of the estimators of the second order

parameter

From (2.9), and under the validity of (1.7),

D
(α,θ1,θ2,τ)
n (k)

α τ γ−1A(n/k)
= dα,θ1,θ2(ρ) +

γ

α
√
k A(n/k)

W (α,θ1,θ2)
n

+
{
uα,θ1,θ2,τ (ρ)A(n/k) + vα,θ1,θ2(ρ, β)B(n/k)

}
(1+op(1)) ,(3.1)

where

W (α,θ1,θ2)
n :=

σ
(1)
αθ1

θ1
P (αθ1)
n −

σ
(1)
αθ2

θ2
P (αθ2)
n ,(3.2)

uα,θ1,θ2,τ (ρ) :=
1

2 γ

{
(αθ1−1)µ

(3)
αθ1

(ρ) + α(τ−θ1) (µ
(2)
αθ1

(ρ))2(3.3)

− (αθ2−1)µ
(3)
αθ2

(ρ)− α(τ−θ2) (µ
(2)
αθ2

(ρ))2
}

and

vα,θ1,θ2(ρ, β) := µ
(4)
αθ1

(ρ, β)− µ
(4)
αθ2

(ρ, β) .(3.4)

Then, since T
(α,θ1,θ2,τ)
n (k) = D

(α,1,θ1,τ)
n (k)/D

(α,θ1,θ2,τ)
n (k), we have whenever

k = kn →∞ , k/n→ 0 ,
√
k A(n/k)→∞, as n→∞ ,(3.5)

T (α,θ1,θ2,τ)
n (k) = tα,θ1,θ2(ρ)

+
γ

α
√
k A(n/k)

1

dα,θ1,θ2(ρ)

{
W (α,1,θ1)

n − tα,θ1,θ2(ρ)W
(α,θ1,θ2)
n

}

+

{
uα,1,θ1,τ (ρ)− tα,θ1,θ2(ρ)uα,θ1,θ2,τ (ρ)

dα,θ1,θ2(ρ)
A(n/k)(3.6)

+
vα,1,θ1(ρ, β)− tα,θ1,θ2(ρ) vα,θ1,θ2(ρ, β)

dα,θ1,θ2(ρ)
B(n/k)

}
(1+op(1)) .

From the asymptotic covariance between σ
(1)
αθ1

P
(αθ1)
n and σ

(1)
αθ2

P
(αθ2)
n (see

Gomes and Martins [12]), given by

α(θ1+ θ2) Γ
(
α(θ1+ θ2)

)

α2 θ1 θ2 Γ(αθ1) Γ(αθ2)
− 1 ,
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we easily derive the asymptotic covariance between W
(α,1,θ1)
n and W

(α,θ1,θ2)
n , given

by

σW |α,1,θ1,θ2 =
1

α



(θ1+1)Γ

(
α(θ1+1)

)

θ2
1 Γ(α) Γ(αθ1)

−
(θ2+1)Γ

(
α(θ2+1)

)

θ2
2 Γ(α) Γ(αθ2)

− 2Γ(2αθ1)

θ3
1 Γ

2(αθ1)

+
(θ1+θ2) Γ

(
α(θ1+θ2)

)

θ2
1 θ2

2 Γ(αθ1) Γ(αθ2)


−

(
1− 1

θ1

)(
1

θ1
− 1

θ2

)
.(3.7)

The asymptotic variance of W
(α,θ1,θ2)
n is

σ2
W |α,θ1,θ2 =

2

α


 Γ(2αθ1)

θ3
1 Γ

2(αθ1)
+

Γ(2αθ2)

θ3
2 Γ

2(αθ2)
−

(θ1+θ2) Γ
(
α(θ1+θ2)

)

θ2
1 θ2

2 Γ(αθ1) Γ(αθ2)


(3.8)

−
(
1

θ1
− 1

θ2

)2

.

Consequently, if apart from the previous conditions in (3.5), we also have

lim
n→∞

√
k A2(n/k) = 0 and lim

n→∞

√
k A(n/k)B(n/k) = 0 ,(3.9)

there is a null asymptotic bias, and

√
k A(n/k)

(
T (α,θ1,θ2,τ)
n (k)− tα,θ1,θ2

)
d−→ Zα ,(3.10)

where Zα is a Normal r.v. with null mean and variance given by

σ2
T |α,θ1,θ2

=
γ2
(
σ2
W |α,1,θ1+ t2α,θ1,θ2(ρ)σ

2
W |α,θ1,θ2− 2 tα,θ1,θ2(ρ)σW |α,1,θ1,θ2

)

α2 d2
α,θ1,θ2

(ρ)
,(3.11)

with tα,θ1,θ2 , dα,θ1,θ2(ρ), σW |α,1,θ1,θ2 and σ2
W |α,θ1,θ2 given in (2.11), (2.12), (3.7)

and (3.8), respectively.

In the more general case

lim
n→∞

√
k A2(n/k) = λ1 and lim

n→∞

√
k A(n/k)B(n/k) = λ2 ,(3.12)

we have to take into account a non-null asymptotic bias, i.e.

√
k A(n/k)

{
T (α,θ1,θ2,τ)
n (k)− tα,θ1,θ2

}
,

is asymptotically Normal with mean value equal to

µ
T |α,θ1,θ2,τ

= λ1 uT |α,θ1,θ2,τ
+ λ2 vT |α,θ1,θ2 ,(3.13)
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where

u
T |α,θ1,θ2,τ

≡ u
T |α,θ1,θ2,τ

(ρ) =
uα,1,θ1,τ (ρ)− tα,θ1,θ2(ρ)uα,θ1,θ2,τ (ρ)

dα,θ1,θ2(ρ)
,(3.14)

v
T |α,θ1,θ2

≡ v
T |α,θ1,θ2

(ρ, β) =
vα,1,θ1(ρ, β)− tα,θ1,θ2(ρ) vα,θ1,θ2(ρ, β)

dα,θ1,θ2(ρ)
(3.15)

and variance given by (3.11), as well as before.

Figure 1 illustrates, for θ1 = 2 and θ2 = 3, the behaviour of σT |α,θ1,θ2/γ,
γ u

T |α,θ1,θ2,τ
(ρ) and v

T |α,θ1,θ2
(ρ, β) as functions of α, for τ = −ρ = −β = 1.

Fig. 1 : σT |α,θ1,θ2/γ, γuT |α,θ1,θ2,τ
(ρ) and v

T |α,θ1,θ2
(ρ, β) as functions of α, for θ1 = 2,

θ2= 3, τ = 1 and assuming ρ = β = −1.

Then, it follows that for the ρ-estimator, ρ̂
(α,θ1,θ2,τ)
n|T (k), defined in (2.15), we

have that, under (3.12),

√
k A(n/k)

{
ρ̂
(α,θ1,θ2,τ)
n|T (k)− ρ

}
,

is asymptotically Normal with mean value equal to

µ(α,θ1,θ2,τ)
ρ|T

= µ
T |α,θ1,θ2,τ

/t
′

α,θ1,θ2(ρ) =: λ1 u
(α,θ1,θ2,τ)
ρ|T

+ λ2 v
(α,θ1,θ2)
ρ|T

,(3.16)

and with variance given by

σ2
ρ|T,α,θ1,θ2 =

(
σ
T |α,θ1,θ2

t
′

α,θ1,θ2
(ρ)

)2

,(3.17)
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where t
′

α,θ1,θ2
(ρ) is such that

t
′

α,θ1,θ2(ρ) (1−ρ)
(
(θ2−θ1) (1−ρ)αθ2− θ2(1−ρ)α(θ2−θ1) + θ1

)2
=

= α θ1θ2

{
θ1(θ2−1) (1−ρ)α(θ2−1)

(
1 + (1−ρ)α(θ2−θ1+1)

)

− (θ2−θ1) (1−ρ)α(θ2−θ1)
(
1 + (1−ρ)α(θ2+θ1−1)

)

− θ2(θ1−1) (1−ρ)αθ2
(
1 + (1−ρ)α(θ2−θ1−1)

)}
.

For the particular, but interesting case α = 1, θ1= 2, θ2 = 3 and under the same

conditions as before, we have that, with ρ̂
(1,2,3,τ)
n|T (k) given in (2.18),

√
k A(n/k)

{
ρ̂

(1,2,3,τ)
n|T (k)− ρ

}

is asymptotically Normal, with variance given by

σ2
ρ|T,1,2,3 =

(
γ(1−ρ)3

ρ

)2 (
2 ρ2 − 2 ρ+ 1

)
.(3.18)

The asymptotic bias is either null or given by (3.16) according as (3.9) or (3.12)

hold, respectively.

In Figure 2 we present asymptotic characteristics of ρ̂
(α,θ1,θ2,τ)
n|T (k) for the same

particular values of the control parameters, namely θ1= 2, θ2 = 3, and τ = −ρ =

−β = 1.

Fig. 2 : σρ|T (α,θ1,θ2)/γ, γu
(α,θ1,θ2,τ)
ρ|T

(ρ), and v(α,θ1,θ2)
ρ|T

(ρ, β) as functions of α, for θ1 = 2,
θ2 = 3, τ = 1 and assuming ρ = β = −1.



SEMI-PARAMETRIC ESTIMATORS 205

We have thus proved the following

Theorem 3.1. Suppose that third order condition (1.4) holds with ρ < 0.

For intermediate sequences of integers k = k(n) satisfying

limn→∞
√
k A(n/k) =∞ ,

limn→∞
√
k A2(n/k) = λ1, finite ,

limn→∞
√
k A(n/k)B(n/k) = λ2, finite ,

(3.19)

we have that for every positive real numbers θ1 6= θ2, both different from 1, and

α, τ > 0
√
k A(n/k)

{
ρ̂
(α,θ1,θ2,τ)
n|T (k)− ρ

}
(3.20)

is asymptotically normal with mean given in (3.16) and with variance given in

(3.17). Note that the variance does not depend on λ1 or λ2.

Remarks:

1. We again enhance the fact that, for any τ > 0, the statistic T
(α,θ1,θ2,τ)
n (k) in

(1.8) converges in probability to the same limit. This leads to an adequate

control management about the parameter τ , which can be useful in the

study of the exact distributional patterns of this class of estimators.

2. If we let τ → 0, we get the statistic

T (α,θ1,θ2,0)
n (k) :=

ln

(
Mα

n (k)

µ
(1)
α

)
− ln

(
M

αθ1
n (k)

µ
(1)
αθ1

)/
θ1

ln

(
M

αθ1
n (k)

µ
(1)
αθ1

)/
θ1 − ln

(
M

αθ2
n (k)

µ
(1)
αθ2

)/
θ2

,(3.21)

and Theorems 2.1 and 3.1 hold true, with τ replaced by 0 everywhere.

4 – An illustration of distributional and sample path properties of the

estimators

We shall present in Figures 3 and 4 the simulated mean values and root mean

square errors of the estimators ρ̂
(1,2,3,τ)
n|T (k) in (2.18), τ = 0, 0.5, 1, 2, for a sample

of size n = 5000 from a Fréchet model, F (x) = exp(−x−1/γ), x ≥ 0, with γ = 1

(ρ = −1) and a Burr model, F (x) = 1− (1 + x−ρ/γ)1/ρ, x ≥ 0, also with ρ = −1
and γ = 1, respectively. Simulations have been carried out with 5000 runs.
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Notice that we consider, in both pictures, values of k ≥ 4000. For smaller val-

ues of k we get high volatility of the estimators characteristics, and admissibility

probabilities, associated to (2.18), slightly smaller than one. Those probabilities

are equal to one whenever k ≥ 4216 in the Fréchet model, and k ≥ 2986 in the

Burr model.

Fig. 3 : Simulated mean values (left) and mean square errors (right) of ρ̂
(1,2,3,τ)

n|T (k) in

(2.18), for τ = 0, 0.5, 1, 2, and for a sample of size n = 5000 from a Fréchet(1)
model (ρ = −1).

Fig. 4 : Simulated mean values (left) and mean square errors (right) of ρ̂
(1,2,3,τ)

n|T (k) in (2.18),
for τ = 0, 0.5, 1, 2, and for a sample of size n = 5000 from a Burr model with ρ = −1
and γ = 1.

In Figure 5 we picture, for k≥2000 the simulated mean values and root mean

square errors of the same estimators, for the same sample size but for a Burr
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model with γ = 1 and ρ = −0.5. Here we get admissibility probabilities equal to

one for k ≥ 1681.

Fig. 5 : Simulated mean values (left) and mean square errors (right) of ρ̂
(1,2,3,τ)

n|T (k) in (2.18),
for τ = 0, 0.5, 1, 2, and for a sample of size n = 5000 from a Burr model with ρ = −0.5
and γ = 1.

The previous pictures seem to suggest the choice τ = 0 for the tuning param-

eter τ . Notice however that such a choice is not always the best one, as may be

seen from Figure 6, which is equivalent to Figure 5, but for a Burr model with

γ = 1 and ρ = −2. This graph is represented for k ≥ 4000, since the admissibil-

ity probabilities of the estimators under play are all equal to one provided that

k ≥ 4301. However, since values of ρ with such magnitude are not common in

practice, the choice τ = 0 seems to be a sensible one.

Fig. 6 : Simulated mean values (left) and mean square errors (right) of ρ̂
(1,2,3,τ)

n|T (k) in (2.18),
for τ = 0, 0.5, 1, 2, and for a sample of size n = 5000 from a Burr model with ρ = −2
and γ = 1.
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We anyway advise the plot of sample paths of ρ̂
(1,2,3,τ)
n|T (k), for a few values of

τ , like for instance the ones mentioned before, τ = 0, 0.5, 1 and 2, and the choice

of the value of τ which provides the highest stability in the region of large k

values for which we get admissible estimates of ρ.

Finally, in Figure 7, we picture, for the values of k which provide admissible

estimates of ρ, a sample path of the same estimators, for the same sample size

n = 5000 and for two generated samples, one from a Fréchet model with γ = 1

(ρ = −1) and another from a Burr model with ρ = −0.5 and γ = 1.

Fig. 7 : Sample path of the estimators ρ̂
(1,2,3,τ)

n|T (k) in (2.18), τ = 0, 0.5, 1, 2, for one sample

of size n = 5000 from a Fréchet model with γ = 1 (ρ = −1) (left) and another
sample from a Burr model with ρ = −0.5 and γ = 1 (right).

We have also carried out a large scale simulation, based on a multi-sample

simulation of size 5000× 10 (10 replicates with 5000 runs each), for the esti-

mators associated to the control parameters (α, θ1, θ2) = (1, 2, 3) (which provide

the explicit expression in (2.18)), and for τ = 0, 0.5, 1, 2 and 6. The estimators

ρ̂
(1,2,3,τ)
n|T (k), τ = 0, 0.5, 1, 2 and 6, will be here denoted by ρ̂

(j)
n (k), 1 ≤ j ≤ 5,

respectively.

In Tables 1 and 2 we present for a Fréchet parent with γ = 1 (for which

ρ = −1), the simulated distributional properties of the five estimators computed

at the optimal level, i.e. of ρ̂
(j)
n,0:= ρ̂

(j)
n (k̂

(j)
0 (n)), k̂

(j)
0 (n):= argmink MSE[ρ̂n(j)],

1≤j≤5. The standard error associated to each simulated characteristic is placed

close to it and between parenthesis.
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Table 1 : Simulated mean values of ρ̂
(j)
n,0, 1 ≤ j ≤ 5, for a Fréchet parent.

n E[ρ̂
(1)
n,0

] E[ρ̂
(2)
n,0

] E[ρ̂
(3)
n,0

] E[ρ̂
(4)
n,0

] E[ρ̂
(5)
n,0

]

100 -1.4287 (.0198) -1.7371 (.0453) -2.1752 (.0933) -1.9417 (.0454) -7.8318 (.1513)

200 -1.3118 (.0083) -1.7966 (.0224) -2.4823 (.0153) -2.1936 (.2305) -4.4530 (.0765)

500 -1.2237 (.0021) -1.7372 (.0009) -2.4216 (.0088) -4.1152 (.1625) -2.8365 (.0496)

1000 -1.1989 (.0006) -1.7268 (.0007) -2.1727 (.0199) -3.4344 (.0673) -2.5314 (.0673)

2000 -1.1812 (.0009) -1.6226 (.0115) -1.8841 (.0190) -2.4138 (.1431) -1.8778 (.0691)

5000 -1.1607 (.0006) -1.4911 (.0047) -1.6978 (.0102) -2.1341 (.0252) -1.6361 (.0575)

10000 -1.1467 (.0003) -1.4184 (.0042) -1.5763 (.0064) -1.9418 (.0149) -1.5647 (.0426)

20000 -1.1331 (.0002) -1.3560 (.0038) -1.4815 (.0057) -1.7397 (.0131) -2.9302 (.1668)

Table 2 : Simulated Mean Square Errors of ρ̂
(j)
n,0, 1 ≤ j ≤ 5, for a Fréchet parent.

n MSE[ρ̂
(1)
n,0

] MSE[ρ̂
(2)
n,0

] MSE[ρ̂
(3)
n,0

] MSE[ρ̂
(4)
n,0

] MSE[ρ̂
(5)
n,0

]

100 17.9556 (2.2790) 19.1709 (2.5617) 26.1292 (2.4915) 37.2158 (2.1936) 1256.9121 (98.8912)

200 2.2329 (.2858) 7.0139 (1.4370) 12.1975 (1.8059) 34.7150 (1.8443) 243.8227 (21.1588)

500 0.1247 (.0054) 0.6818 (.0142) 2.3807 (.0288) 17.1601 (.6100) 69.8044 (3.4082)

1000 0.0594 (.0004) 0.5597 (.0012) 1.7576 (.0233) 8.3825 (.1762) 71.8353 (5.1633)

2000 0.0409 (.0004) 0.4844 (.0110) 1.1234 (.0373) 3.7547 (.1133) 12.4722 (1.0556)

5000 0.0287 (.0002) 0.3283 (.0048) 0.6721 (.0097) 1.9210 (.0355) 9.5079 (.7900)

10000 0.0230 (.0001) 0.2414 (.0028) 0.4678 (.0075) 1.2322 (.0291) 8.8681 (.4593)

20000 0.0186 (.0001) 0.1803 (.0025) 0.3315 (.0054) 0.7822 (.0175) 7.5882 (.2331)

In the Tables 3 and 4 we present the distributional behaviour of the above

mentioned estimators for a Burr model with γ = 1, and for values ρ = −2,−1,
−0.5,−0.25.

Some final remarks:

1. The choice of the tuning parameters (θ1, θ2) seems to be uncontroversial:

the pair (θ1, θ2) = (2, 3) seems to be the most convenient. The tuning

parameter α can be any real positive number, but the value α = 1 is the

easiest choice, mainly due to the fact that the computation of an estimate

for a given (perhaps large) data set is much less time-consuming whenever

we work with M
(α)
n , for positive integer α. The choice of τ is more open,

and depends obviously on the model. This gives a higher flexibility to

the choice of the adequate estimator of ρ, within the class of estimators

herewith studied.

2. Indeed, the most interesting feature of this class of estimators is the fact

that the consideration of the sample paths ρ̂
(1,2,3,τ)
n (k), as a function of k,

for large k, and for a few values of τ , like τ =0, 0.5, 1 and 2, enables us to

identify easily the most stable sample path, and to get an estimate of ρ.
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Table 3 : Simulated Mean Values of ρ̂
(j)
n,0, 1 ≤ j ≤ 5, for a Burr parent.

n E[ρ̂
(1)
n,0

] E[ρ̂
(2)
n,0

] E[ρ̂
(3)
n,0

] E[ρ̂
(4)
n,0

] E[ρ̂
(5)
n,0

]

ρ = −0.25

100 -0.5900 (.0018) -0.8222 (.0031) -1.0847 (.0078) -1.7716 (.0255) -21.4311 (2.7554)

200 -0.5648 (.0012) -0.7612 (.0027) -0.9793 (.0088) -1.5626 (.0156) -14.2221 (.1938)

500 -0.5330 (.0014) -0.6929 (.0027) -0.8635 (.0051) -1.3154 (.0116) -8.0533 (.1004)

1000 -0.5104 (.0014) -0.6474 (.0026) -0.8007 (.0053) -1.1684 (.0114) -4.9106 (.1604)

2000 -0.4845 (.0018) -0.6065 (.0029) -0.7313 (.0054) -1.0365 (.0085) -3.7967 (.0930)

5000 -0.4615 (.0015) -0.5598 (.0024) -0.6666 (.0031) -0.8994 (.0061) -2.7274 (.0537)

10000 -0.4426 (.0010) -0.5294 (.0019) -0.6213 (.0026) -0.8279 (.0058) -2.2065 (.0315)

20000 -0.4254 (.0013) -0.5019 (.0015) -0.5838 (.0012) -0.7547 (.0053) -1.7996 (.0162)

50000 -0.4044 (.0008) -0.4712 (.0006) -0.5381 (.0025) -0.6837 (.0028) -1.4920 (.0128)

ρ = −.5

100 -0.7288 (.0008) -1.0197 (.0040) -1.3469 (.0149) -2.2467 (.0326) -15.2665 (.2814)

200 -0.7132 (.0009) -0.9628 (.0042) -1.2580 (.0086) -2.0360 (.0242) -10.7777 (.2224)

500 -0.6913 (.0009) -0.9018 (.0025) -1.1282 (.0074) -1.7361 (.0144) -5.2840 (.0763)

1000 -0.6742 (.0009) -0.8517 (.0037) -1.0399 (.0066) -1.5447 (.0207) -4.1265 (.2068)

2000 -0.6595 (.0016) -0.8145 (.0021) -0.9806 (.0060) -1.3444 (.0120) -3.8262 (.3132)

5000 -0.6405 (.0007) -0.7635 (.0027) -0.8945 (.0038) -1.1838 (.0056) -3.3592 (.0650)

10000 -0.6268 (.0006) -0.7384 (.0028) -0.8467 (.0045) -1.0907 (.0064) -2.5872 (.0545)

20000 -0.6139 (.0005) -0.7096 (.0012) -0.8037 (.0030) -1.0051 (.0054) -2.1792 (.0219)

50000 -0.5986 (.0005) -0.6770 (.0011) -0.7528 (.0012) -0.9073 (.0027) -1.7432 (.0176)

ρ = −1

100 -0.8203 (.0003) -1.3360 (.0011) -1.9292 (.0161) -3.6100 (.0959) -11.1357 (.2070)

200 -0.8460 (.0007) -1.3202 (.0018) -1.8284 (.0072) -3.3258 (.0547) -6.7476 (.1156)

500 -0.8673 (.0005) -1.2840 (.0013) -1.6813 (.0074) -2.7863 (.0344) -3.4806 (.0529)

1000 -0.8812 (.0004) -1.2545 (.0018) -1.5912 (.0074) -2.4848 (.0292) -2.8536 (.0796)

2000 -0.8931 (.0005) -1.2274 (.0022) -1.5066 (.0041) -2.1151 (.0185) -2.3803 (.0336)

5000 -0.9078 (.0004) -1.1959 (.0020) -1.4055 (.0054) -1.8632 (.0134) -3.7971 (.5144)

10000 -0.9183 (.0003) -1.1716 (.0011) -1.3506 (.0044) -1.7248 (.0068) -4.2253 (.0636)

20000 -0.9275 (.0003) -1.1494 (.0007) -1.2949 (.0022) -1.5900 (.0068) -3.3916 (.0742)

50000 -0.9377 (.0003) -1.1244 (.0006) -1.2410 (.0011) -1.4553 (.0034) -2.5589 (.0286)

ρ = −2

100 -1.1666 (.0287) -1.7567 (.0280) -2.5088 (.0126) -2.9460 (.3943) -7.4078 (.2161)

200 -1.0819 (.0082) -1.5870 (.0072) -2.4282 (.0027) -6.0270 (.3222) -4.0766 (.0774)

500 -1.2270 (.0074) -1.6332 (.0025) -2.4098 (.0005) -5.3965 (.0564) -2.7471 (.0392)

1000 -1.3423 (.0112) -1.6906 (.0028) -2.4025 (.0003) -4.7159 (.0490) -2.4740 (.0511)

2000 -1.4403 (.0095) -1.7355 (.0021) -2.3945 (.0002) -4.0446 (.0422) -2.338 (.0476)4

5000 -1.5421(.0079) -1.7831 (.0027) -2.3833 (.0001) -3.4533 (.0303) -2.3393 (.0717)

10000 -1.6000 (.0051) -1.8136 (.0008) -2.3752 (.0001) -3.2113 (.0117) -2.2954 (.0409)

20000 -1.6603 (.0016) -1.8411 (.0006) -2.2938 (.0014) -2.9380 (.0096) -2.3372 (.0350)

50000 -1.7231 (.0007) -1.8705 (.0005) -2.2427 (.0009) -2.6915 (.0039) -5.4448 (.0711)

In Gomes and Martins [13], the choice of the level k̂1:=min(n−1, [2n/ ln lnn])

led to quite nice results, not a long way from the ones got for the optimal k̂0,

which is presently still ideal, in the sense that we do not have yet a practical

adequate way of estimating the optimal sample fraction to be taken in the

estimation of ρ, made through the semi-parametric estimators we have been

discussing.
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Table 4 : Simulated Mean Square Errors of ρ̂
(j)
n,0, 1 ≤ j ≤ 5, for a Burr parent.

n MSE[ρ̂
(1)
n,0

] MSE[ρ̂
(2)
n,0

] MSE[ρ̂
(3)
n,0

] MSE[ρ̂
(4)
n,0

] MSE[ρ̂
(5)
n,0

]

ρ = −0.25

100 0.1481 (.0005) 0.4060 (.0025) 0.8942 (.0076) 3.3215 (.0387) 9374.8958 (654.8213)

200 0.1260 (.0005) 0.3259 (.0018) 0.6848 (.0056) 2.3115 (.0287) 4913.0523(386.7304)

500 0.1013(.0005) 0.2461 (.0013) 0.4843 (.0029) 1.4618 (.0167) 1002.7483 (67.6996)

1000 0.0856 (.0005) 0.1986 (.0016) 0.3796 (.0040) 1.0545 (.0134) 121.6084 (6.6267)

2000 0.0715 (.0005) 0.1611 (.0013) 0.2980 (.0032) 0.7748 (.0072) 23.6176 (.6346)

5000 0.0570 (.0004) 0.1231 (.0008) 0.2192 (.0021) 0.5358 (.0038) 8.5425 (.1823)

10000 0.0473 (.0003) 0.1000 (.0007) 0.1746 (.0010) 0.4148 (.0037) 5.0895 (.0929)

20000 0.0393 (.0002) 0.0812 (.0006) 0.1400 (.0009) 0.3236 (.0027) 3.1931 (.0423)

50000 0.0309 (.0002) 0.0623 (.0004) 0.1052 (.0007) 0.2328 (.0022) 1.9021 (.0303)

ρ = −.5

100 0.0626 (.0002) 0.3349 (.0023) 0.9437 (.0095) 4.6875 (.1036) 6276.5771 (618.7948)

200 0.0561 (.0002) 0.2718 (.0019) 0.7272 (.0083) 3.1831 (.0518) 2456.0292 (178.0512)

500 0.0465 (.0002) 0.2034 (.0016) 0.5079 (.0042) 1.9673 (.0257) 308.1235 (21.5135)

1000 0.0396 (.0002) 0.1612 (.0019) 0.3863 (.0042) 1.3773 (.0278) 80.6911 (6.8881)

2000 0.0332 (.0003) 0.1278 (.0010) 0.2951 (.0034) 0.9443 (.0127) 35.0274 (1.4872)

5000 0.0262 (.0002) 0.0951 (.0009) 0.2063 (.0022) 0.6051 (.0056) 12.3445 (.5075)

10000 0.0215 (.0001) 0.0754 (.0008) 0.1599 (.0021) 0.4464 (.0052) 6.3303 (.1515)

20000 0.0175 (.0001) 0.0586 (.0004) 0.1212 (.0012) 0.3247 (.0047) 3.6238 (.0577)

50000 0.0133 (.0001) 0.0427 (.0003) 0.0856 (.0006) 0.2165 (.0019) 1.9328 (.0301)

ρ = −1

100 0.0414 (.0010) 0.1283 (.0015) 1.0560 (.0139) 11.6701 (.4114) 2906.6778 (194.3627)

200 0.0312 (.0001) 0.1178 (.0004) 0.8249 (.0083) 7.5619 (.1788) 718.3368 (45.3380)

500 0.0237 (.0001) 0.0992 (.0005) 0.5891 (.0058) 4.2446 (.0733) 118.5709 (7.1232)

1000 0.0194 (.0001) 0.0834 (.0007) 0.4447 (.0071) 2.7866 (.0821) 77.6078 (4.1954)

2000 0.0159 (.0001) 0.0685 (.0006) 0.3320 (.0039) 1.7492 (.0359) 52.1321 (4.3634)

5000 0.0120 (.0000) 0.0522 (.0006) 0.2276 (.0026) 1.0084 (.0136) 46.4450 (3.0347)

10000 0.0098 (.0000) 0.0411 (.0002) 0.1699 (.0017) 0.6957 (.0105) 16.7723 (.5231)

20000 0.0078 (.0000) 0.0320 (.0002) 0.1240 (.0010) 0.4733 (.0052) 7.8969 (.3094)

50000 0.0058 (.0000) 0.0231 (.0001) 0.0842 (.0004) 0.2913 (.0022) 3.3347 (.0527)

ρ = −2

100 3.3284 (.6156) 6.5954 (1.4812) 9.2325 (1.6795) 46.6354 (4.1232) 988.7566 (91.1488)

200 0.9969 (.0134) 0.3587 (.0287) 0.5581 (.0911) 32.1181 (2.9150) 208.8464 (16.7336)

500 0.7151 (.0065) 0.1823 (.0011) 0.1878 (.0010) 15.2818 (.2952) 75.3674 (5.2986)

1000 0.5595 (.0053) 0.1388 (.0010) 0.1675 (.0003) 9.6053 (.1834) 63.0611 (4.3781)

2000 0.4387 (.0026) 0.1071 (.0006) 0.1575 (.0002) 5.7564 (.1165) 51.8075 (2.4815)

5000 0.3146 (.0033) 0.0759 (.0006) 0.1475 (.0001) 3.0080 (.0522) 52.0707 (4.3049)

10000 0.2442 (.0019) 0.0575 (.0003) 0.1410 (.0000) 1.9853 (.0399) 50.2123 (3.0299)

20000 0.1851 (.0008) 0.0434 (.0001) 0.1178 (.0008) 1.2528 (.0188) 47.4506 (2.2278)

50000 0.1296 (.0003) 0.0297 (.0001) 0.0855 (.0003) 0.7138 (.0045) 18.8070 (.5143)

3. So, the simulated behaviour of the estimators at the optimal level, herewith

presented, has not yet any application in practice. These results merely

exhibit the optimal MSE we may obtain, should we be able to choose k

in an optimal way.
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