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Dedicated to John Isbell

Abstract: Exponentiable maps in the category Top of topological spaces are char-

acterized by an easy ultrafilter-interpolation property, in generalization of a recent result

by Pisani for spaces. From this characterization we deduce that perfect (= proper and

separated) maps are exponentiable, generalizing the classical result for compact Haus-

dorff spaces. Furthermore, in generalization of the Whitehead–Michael characterization

of locally compact Hausdorff spaces, we characterize exponentiable maps of Top between

Hausdorff spaces as restrictions of perfect maps to open subspaces.

1 – Introduction

That compact Hausdorff spaces are exponentiable in the category Top of

topological spaces has been known since at least the 1940s (see Fox [17] and Arens

[1]). Our original motivation for writing this paper was to establish the fibred

version of this fact which, despite the extensive literature on exponentiability,

does not seem to have been treated conclusively in previous articles.

Recall that a space X is exponentiable if it allows for the natural formation

of function spaces Y X for every other space Y; more precisely, if the functor

(−)×X : Top→ Top has a right adjoint, which turns out to be equivalent to

Received : January 29, 2001; Revised : November 29, 2001.
AMS Subject Classification: 54C10, 54C35, 54B30, 18D15.
Keywords: exponentiable map; proper map; separated map; perfect map; partial product;

ultrarelational structure; grizzly space; pseudo-topological space.
*The first two authors acknowledge partial financial assistance by Centro de Matemática da
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the preservation of quotient maps by (−)×X. Exponentiable spaces were char-

acterized topologically by Day and Kelly [13]. As Isbell [22] observed, their

characterization amounts to saying that the lattice of open sets must be con-

tinuous; equivalently, these are the core-compact spaces, in the sense that every

neighbourhood of a point contains a smaller one with the property that every

open cover of the given neighbourhood contains a finite subcover of the smaller

one. Generalizing Whitehead’s result [41] for Hausdorff spaces, Brown [5] already

in 1964 showed that locally compact spaces (in which every point has a base of

compact neighbourhoods) are exponentiable. For Hausdorff spaces the two no-

tions become equivalent (Michael [29]), even for sober spaces (Hofmann–Lawson

[21]). There is no known constructive example of an exponentiable space that is

not locally compact (Isbell [22]). For an elementary account of these results, see

[16].

Trading now Top for the category Top/Y of spaces X over the fixed base

space Y , given by continuous maps f : X → Y , Niefield [31], [32] gave an ele-

gant but, when put in standard topological terminology, generally complicated

topological characterization of exponentiable maps in Top, which entails the

Day-Kelly result in case Y = 1 is a one-point space. Niefield’s result becomes

very tractable though when f is a subspace embedding, in which case exponen-

tiability of f means local closedness of X in Y (so that X is open in its closure

X in Y ), and even when f is just an injective map, as was shown by Richter

[37]. Under suitable restrictions on X and Y it becomes very applicable as well;

for instance, it shows that every map from a locally compact space to a locally

Hausdorff space is exponentiable (Niefield [33]). However, it seems to be very

cumbersome to derive from it the statement we are aiming for, namely:

Theorem A. Every perfect map of topological spaces is exponentiable in

Top.

Here we call a continuous map f : X→ Y perfect if it is both

– stably closed, so that every pullback of f is a closed map, which is equiva-

lent to f being proper in the sense of Bourbaki [4], so that f×1Z : X×Z →

Y × Z is closed for every space Z;

and

– separated, so that the diagonal ∆X is closed in the fibred product X×Y X,

which means that any distinct points x, y in X with f(x) = f(y) may be

separated by disjoint open neighbourhoods in X.
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Thanks to the Kuratowski–Mrowka Theorem, stable closedness of X → Y

for Y = 1 means compactness of X , while separatedness obviously amounts to

Hausdorffness of X in this case. Categorically it is clear that Theorem A is the

“right” map generalization of the space result of the 1940s (see [8]).

Pisani’s characterization of exponentiable spaces X in Top is based on Barr’s

presentation [2] of topological spaces as relational algebras (which recently has

led to much more general studies of so-called lax algebras, see [10] and [12]), and

it reads as follows. Let UX be the set of ultrafilters on X, and for U ∈ UUX, let

µX(U) =
⋃

A∈U

⋂

a∈A

a

be the sum of the ultrafilters a (a ∈ A ⊆ UX, A ∈ U); see [19]. Now X is expo-

nentiable if and only if X has the ultrafilter interpolation property : whenever

µX(U)→ x in X, then there is a ∈ UX with U → a and a → x (with a naturally

defined notion of convergence in UX). For simplicity we often write

U ⇒ x

instead of µX(U)→ x.

It turns out that Pisani’s characterization allows for a natural generalization

from spaces to maps, which occured to us after seeing the Janelidze–Sobral crite-

rion (see [24] and [7]) for triquotient maps of finite topological spaces in the sense

of Michael [30]. Hence, we first looked at the category PrSet of preordered sets

(= reflexive transitive graphs = sets with a reflexive, transitive binary relation→)

and monotone maps; here every object is exponentiable, while a map f : X→ Y

is exponentiable in PrSet if and only if it has the following interpolation

(or convexity) property:

whenever u→ x in X and f(u)→ b→ f(x) in Y ,
then there is a in X with f(a) = b and u→ a→ x in X;

f(u) b f(x)

u x

a

- -

X X X Xz » » » »:
-

Y

X

?

f

(1)

see the recent papers [34] and [39] which draw on the more general result of

Giraud [18] in Cat. Writing now
•
u → x instead of u → x we obtain also a
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characterization of exponential maps in the (isomorphic) category of Alexandroff

topological spaces (where every point has a least open neighbourhood). Now, the

characterization in Top comes about by just appropriately replacing principal

ultrafilters by arbitrary ones:

Theorem B. A continuous map f : X→ Y is exponentiable in Top if and

only if f has the ultrafilter interpolation property:

whenever U ⇒ x in X and f(U)→ b in UY and b → f(x) in Y ,
then there is a ∈ UX with f(a) = b, U → a in UX, and a → x in X.

f(U) b f(x)

U x

a

-

X X X Xz » » » »:

-

>

Y

X

?

f

(2)

The first purpose of this paper is to prove Theorem B and derive Theorem A

from it.

While the derivation of Theorem A from B is easy, the proof of Theorem

B is quite involved. We employ the approach first developed in [10] and work

within the category URS whose objects are simply sets provided with an ultra-

relational structure, i.e., any (“convergence”) relation between ultrafilters on X

and points in X — no further condition. Within this category, topological spaces

are characterized by a reflexivity and transitivity property, just like preordered

sets amongst graphs.

In Section 2 we give a summary of the main categorical and filter-theoretic no-

tions and tools used in Section 3, which contains the proofs of Theorems A and B.

Section 4 is devoted to a discussion of some of the immediate consequences of

these theorems. In particular, we give refined versions and generalizations of the

invariance and inverse invariance theorems of local compactness under perfect

mappings, as first established by [26] and [40] and recorded in [15].

Finally, coming back to our discussion of exponentiable spaces, we study in

Section 5 the map-version of the Whitehead–Michael characterization of expo-

nentiable spaces as locally compact spaces, within the realm of Hausdorff spaces.

Since the locally compact Hausdorff spaces are precisely the open subspaces of

compact Hausdorff spaces, at the map level one would expect exponentiable sepa-

rated maps to be characterized as restrictions of perfect maps to open subspaces.

We succeeded proving this for maps with Hausdorff codomain:
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Theorem C. For Y a Hausdorff space, the exponentiable, separated maps

f : X→ Y in Top are precisely the composites

X Z Y-i¤£ -p

with an open embedding i and a perfect map p.

We conjecture, however, that the assumption on Y may be dropped.

In this paper we neither discuss any of the many localic or topos-theoretic

aspects of the theme of this paper, nor do we elaborate here on the presentation

of exponentiable spaces as lax Eilenberg-Moore algebras, but refer the Reader to

[32], [34] and to [35], respectively.

2 – Preparations

2.1 (The ultrafilter monad). The assignment X 7→ UX defines a functor

U : Set→ Set; for a mapping f : X→ Y in Set, Uf : UX → UY assigns to

a ∈ UX the (ultra)filter f(a), generated by {f(A) | A ∈ a}. This functor pre-

serves coproducts (disjoint unions), and it is terminal with this property: for any

coproduct-preserving functor F : Set → Set there is a unique natural transfor-

mation F → U (see [3]). Therefore U carries a unique monad structure (which

was first discussed in [27]; its Eilenberg–Moore algebras are precisely the compact

Hausdorff spaces — see also [28]). Hence, there are natural maps

ηX : X → UX , µX : UUX → UX

satisfying the monad conditions

µX · ηUX = 1X = µX · UηX , µX · µUX = µX · UµX .

ηX(x) =
•
x and µX defined as in the Introduction. Hence, for U ∈ UUX, a typical

set in µX(U) ∈ UX has the form

⋃

a∈A

Aa

for some A ∈ U and with all Aa ∈ a; alternatively, a subset A ⊆ X lies in µX(U)

precisely when the set

A] =
{

a ∈ UX | A ∈ a
}

lies in U.
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2.2 (Extension of U to Rel(Set), see [35]). Let Rel(Set) be the category

whose objects are sets, while a morphism ρ : X −→+ Y is a relation ρ ⊆ X×Y

from X to Y and composition is as usual:

σ · ρ =
{

(x, z) | ∃y : (x, y) ∈ ρ and (y, z) ∈ σ
}

.

Hence, Set is a non-full subcategory of Rel(Set). Now U can be extended to a

functor U : Rel(Set)→ Rel(Set) when for ρ : X−→+ Y we define Uρ : UX−→+ UY

by

(a, b) ∈ Uρ iff ρop(B) ∈ a for all B ∈ b .

(For A ⊆ X we write ρ(A) = {y | ∃x ∈ A : (x, y) ∈ ρ} , and ρop ⊆ Y×X is the

relation opposite to ρ). Furthermore, if ρ ⊆ σ : X−→+ Y , then also Uρ ⊆ Uσ.

2.3 (Ultrarelational structures, grizzly spaces). By an ultrarelational struc-

ture on a set X we mean a relation ρ : UX−→+ X; we write

a
ρ
−→ x or a → x if (a, x) ∈ ρ .

A map f : (X, ρ)→ (Y, σ) of such (very general) structures is continuous if

a
ρ
−→ x in X implies f(a)

σ
−→ f(x) in Y .

This defines the category URS, the objects of which are also called grizzly spaces.

The relational extension of U yields for a grizzly space (X, ρ) a grizzly space

(UX,Uρ); hence, there is a functor

U : URS→ URS

(since f · ρ ⊆ σ ·Uf implies Uf · Uρ ⊆ Uσ · UUf , by 2.2).

Explicitly, the ultrarelational structure of UX is given by

U → a ⇔ ↓A ∈ U for all A ∈ a ,

where ↓A = ρop(A) = {c ∈ UX | ∃x ∈ A : c → x}. One easily shows:

U → a ⇔ ↑A ∈ a for all A ∈ U ,

where ↑A = ρ(A) = {x ∈ X | ∃ c ∈ A : c → x}.

2.4 (Topological spaces amongst grizzly spaces). Via the usual notion of

(ultra)filter convergence, the category Top is fully embedded into URS, and it
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is essentially known how to recognize topological spaces inside URS: a grizzly

space X is topological if and only if

(1) ηX(x)→ x for all x ∈ X,

(2) whenever U → a in UX and a → x in X, then U ⇒ x in X (that is:

µX(U)→ x in X).

Proofs of this fact are normally given within the realm of pseudo-topological

spaces (those X ∈ URS satisfying (1), see [36]) or of pretopological spaces, i.e.,

those X ∈ URS satisfying (1) and

(11
2) a → x whenever

⋂

b→x

b ⊆ a (see [35]).

For a categorical analysis of the first two in the chain of bireflective embeddings

Top → PrTop → PsTop → URS ,

see also [20].

2.5 (Prime Filter Theorem, see [25]). Recall that a filter of a 0-1-lattice is an

up-closed subset F ⊆ L which is a sub-semilattice of (L,∧, 1); it is prime if 0 6∈ F ,

and if a∨b ∈ F implies either a ∈ F or b ∈ F ; the lattice-dual notion is (prime)

ideal. Now, if I is an ideal of L and F a filter disjoint from I, then there is a

filter U of L which is maximal amongst those containing F and disjoint from I.

Moreover, if L is distributive, any such filter U is prime.

2.6 (Extension Lemma, see [35]). Let U be an ultrafilter on UX and f a filter

on a grizzly space X such that ↓F ∈ U for all F ∈ f. Then there is an ultrafilter

a on X containing f with ↓A ∈ U for all A ∈ a, hence U → a in UX.

The proof is an application of the Prime Filter Theorem to the ideal

i = {B ⊆ X | ↓B 6∈ U} in the lattice PX of all subsets of X.

2.7 (Exponentiability of maps via partial products, see [14]). By definition,

a morphism f : X→ Y in a finitely-complete category X is exponentiable if the

functor “pulling back along f”

−×Y X : X/Y −→ X/Y

has a right adjoint. This is equivalent to the existence of the partial products

P = P (f, Z), for each object Z in X, which are universally defined by a diagram
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P Y

Z P×Y X X

-
p

-
π2

?

π1

?

f

¾
e

(3)

such that every diagram

Q Y

Z Q×Y X X

-
q

-π̃2

?

π̃1

?

f

¾ d

(4)

factors as p · t = q and e · (t×1X) = d, by a unique morphism t : Q→ P .

Considering Q = 1 the terminal object one sees that, in X = URS, P should

have underlying set

P =
{

(y, α) | y ∈ Y, α : f−1y → Z continuous
}

with projection p : P → Y ,

so that the pullback with f has underlying set

P ×Y X =
{

(α, x) | x ∈ X, α : f−1f(x)→ Z continuous
}

with evaluation map e : P ×Y X→ Z .

2.8 (Canonical structures in URS). URS is a topological category over Set.

Hence, given any morphisms p : P → Y , f : X→ Y in URS, their pullback is

formed by providing the set P ×Y X with the ultrarelational structure given by

c → (u, x) :⇔ π1(c)→ u and π2(c)→ x , (∗)

for all u ∈ P , x ∈ X with p(u) = f(x), and c ∈ U(P ×Y X).

Suppose now that we are given f : X→ Y and Z in URS and p : P → Y

and e : P ×Y X→ Z in Set. We shall call an ultrarelational structure ρ on P

admissible if it makes both p and e continuous, where of course the structure of

P ×Y X is induced by ρ via (∗). The point is that there always exists a largest

(w.r.t. ⊆) admissible ultrarelational structure on P , given by

b → u :⇔











p(b)→ p(u) and e(c)→ e(u, x)
whenever c ∈ U(P ×Y X) and x ∈ X
with π1(c) = b, f(x) = p(u) and π2(c)→ x ,

(∗∗)

for all u ∈ P and b ∈ UP .
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2.9 (Generation of ultrafilters on pullbacks). Consider the pullback diagram

of (3) in Set and b ∈ UP , a ∈ UX with p(b) = f(a). Then there is an ultrafilter

c on P ×YX with π1(c) = b and π2(c) = a. Indeed, for all B ∈ b and A ∈ a there

is B′∈ b with p(B′) ⊆ f(A) and then A′∈ a with f(A∩A′) ⊆ f(A′) ⊆ p(B ∩B′),

which shows B ×Y A = (B×A) ∩ (P ×Y X) 6= ∅. Hence, there is an ultrafilter c

containing the filterbase

b×Y a =
{

B ×Y A | B ∈ b, A ∈ a
}

and therefore π−1
1 (b)∪π−1

2 (a), and any such ultrafilter has the desired properties.

2.10 (Local cartesian closedness of PsTop). For f : X→ Y and Z in PsTop,

one forms the partial product P = P (f, Z) as in 2.7 and provides it with the

largest admissible ultrarelational structure as in 2.8. First we make sure that P

is a pseudotopological space and show that for (y, α) ∈ P , e := ηP (y, α) converges

to (y, α). By naturality of η, clearly p(e) → y since Y ∈ PsTop. According to

(∗∗) we must show e(f)→ α(x) whenever x ∈ f−1y and f ∈ U(P ×Y X) satisfies

π1(f) = e and π2(f)→ x. But π2(f) defines an ultrafilter x on f−1y since

f(π2(f)) = p(π1(f)) = p(e)→ y ,

and we obtain α(x) = e(f). Indeed, for every A ∈ x and F ∈ f, the hypotheses on

f give

F ∩ π−1
1 (y, α) ∩ π−1

2 (A) 6= ∅ ,

so that there is a ∈ A with (a, α) ∈ F , hence

e(a, α) ∈ e(F ) ∩ α(A) 6= ∅ .

Now, with the continuity of α we readily conclude from x → x

e(f) = α(x)→ α(x) = e(α, x) .

This concludes the proof of e → (y, α), hence of P ∈ PsTop.

Given diagram (4) in PsTop, it remains to be shown that the unique Set-map

t : Q→ P with p · t = q and e · (t× 1X) = d is continuous(1). For that it suffices

to see that the final structure ρ on P with respect to the map t is admissible.

(1) Note that, in order for t to take values in P , one really needs pseudo-topological spaces,
and not just grizzly spaces. In fact, URS fails to be locally cartesian closed, as erroneously
claimed in an early version of this paper.
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Hence, let b
ρ
→ u in P , which means d → v in Q for some d, v with t(d) = b,

t(v) = u. We must verify b→ u in the sense of (∗∗). Since q is continuous,

p(b) = p · t(d) = q(d)→ q(v) = p(u). Let c ∈ U(P ×y X), x ∈ X with π1(c) = b,

f(x) = p(u) and π2(c)→ x, and consider the pullback diagram

PQ

Q×Y X P ×Y X

-t

-t× 1X

?

π1

?

π̃1

(5)

Once we have found e ∈ U(Q×YX) with π̃1(e) = d and (t×1X)(e) = c, we conclude

e → (v, x) in Q (since π̃1(e) = d → v and π̃2(e) = π̃2((t × 1X)(e)) = π2(c) → x),

which implies

e(c) = e
(

(t× 1X)(e)
)

= d(e)→ d(v, x) = e(u, x) ,

by continuity of d. For the existence of e, since π1(c) = t(d), one can just use the

pullback (5) in Set and apply 2.9.

Hence, every morphism in PsTop is exponentiable, i.e., PsTop is locally

cartesian closed.

2.11 (Coincidence of partial products in Top and in PsTop, see [6]).

For f : X→ Y and Z in Top, f exponentiable in Top, one may on the one

hand form the partial product PTop(f, Z) in Top, and on the other hand, like

for any morphism in PsTop, the partial product PPsTop = P (f, Z) in PsTop.

But there is no need to distinguish between these two objects: see Theorem 2.1

of [6].

2.12 (Perfect and open maps in URS). We call a map f : X→ Y in URS

– proper if for all a ∈ UX and y ∈ Y with f(a) → y there is x ∈ X with

a → x and f(x) = y,

Y f(a) y

X a x

-

-

?

f

(6)
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– separated if for all a ∈ UX and x1, x2 ∈ X with a → x1, a → x2 and

f(x1) = f(x2) one has x1 = x2,

– perfect if it is proper and separated,

and

– open if for all b ∈ UY and x ∈ X with b → f(x) there is a ∈ UX with

a → x and f(a) = b.

For f : X→ Y in Top, these notions characterize the corresponding properties

mentioned in the Introduction in terms of ultrafilter convergence (see [4] and [10]).

3 – The proofs of Theorems A and B

3.1 (The ultrafilter interpolation property is sufficient for exponentiability

in Top). Let f : X→ Y and Z be in Top and construct their partial product

diagram (3) in URS as in 2.10. It then suffices to show P ∈ Top, via 2.4. Hence,

we consider u ∈ P , b ∈ UP , and V ∈ UUP with V → b and b → u and must

verify V ⇒ u, that is: µP (V)→ u, using (∗∗) of 2.8.

First, by continuity of p and of Up one has p(V) → p(b) and p(b) → p(u),

hence

p(µP (V)) = µX(p(V))→ p(u)

by naturality of µ and topologicity of Y .

Next, we consider c ∈ U(P×Y X) and x ∈ X with π1(c) = µP (V), f(x) = p(u)

and π2(c)→ x and must show e(c)→ e(u, x), which we shall do in three steps.

Step 1: We construct W ∈ UU(P ×YX) with π1(W)=V and µP×Y X(W)=c.

For that, for each C ∈ c, let

C∗ :=
{

d ∈ U(P ×Y X) | C ∈ d
}

,

and observe that {C∗ | C ∈ c} is a filterbase in U(P ×Y X). This system may

be enlarged by the elements of (Uπ1)
−1(V). Indeed, for every C ∈ c and V ∈ V,

the definition of µP (V) = π1(c) gives V ′ ∈ V with π1(C) ∈ v′ for all v′ ∈ V ′.

Hence, for any chosen v′ ∈ V ∩ V ′ we have π1(C) ∈ v′ and find an ultrafilter

d ⊇ {C} ∪ π−1
1 (v′). Then d ∈ C∗ ∩ (Uπ1)

−1(V) 6= ∅. Now any ultrafilter

W ⊇ {C∗| C ∈ c} ∪ (Uπ1)
−1(V)

has the desired properties.
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Step 2: We put U := π2(W) and obtain U ⇒ x since

µX(U) = µX(π2(W)) = π2(µP×Y X(W)) = π2(c)→ x .

Furthermore, since p(V)→ p(b)→ p(u) with

f(U) = f(π2(W)) = p(π1(W)) = p(V) and f(x) = p(u) ,

the ultrafilter interpolation property of f gives a ∈ UX with f(a) = p(b) and

U → a → x.

Step 3: We construct d ∈ U(P ×Y X) with W → d and π1(d) = b, π2(d) = a.

Indeed, since V → b and U → a, with π1(W) = V and π2(W) = U one obtains

↓
(

π−1
1 (B) ∩ π−1

2 (A)
)

= π−1
1 (↓B) ∩ π−1

2 (↓A)) ∈ W

for all B ∈ b and A ∈ a. Hence, an application of the Extension Lemma 2.6 to

the filter generated by the sets π−1
1 (B) ∩ π−1

2 (A) gives an ultrafilter d with the

desired properties.

Finally, since b → u and a → x, we have d → (u, x), hence e(W) → e(d) →

e(u, x) and e(W)⇒ e(u, x) in the topological space Z. Consequently,

e(c) = e(µP×Y X(W)) = µZ(e(W))→ e(u, x) ,

which finishes the proof of the “if” part of Theorem B.

3.2 Proposition (Preservation of properness by U). For every proper map

f : X→ Y in URS, also Uf : UX→ UY is proper.

Proof: For U ∈ UUX and b ∈ UY with f(U) → b we must find a ∈ UX

with U → a and f(a) = b. By the Extension Lemma it would suffice to show

↓f−1(B) ∈ U for all B ∈ b. In fact, the set ↓f−1(B) intersects each U ∈ U: since

f(U)→ b we have ↓B ∩ f(U) 6= ∅, so that there are a ∈ U , y ∈ B with f(a)→ y ;

by hypothesis, then there is x ∈ f−1y with a → x, hence a ∈ U∩ ↓f−1(B).

3.3 (Perfect maps in Top satisfy the ultrafilter interpolation property).

Let f : X→ Y in URS with X in Top be perfect, and consider U ∈ UUX,

b ∈ UY , x ∈ X with U ⇒ x and f(U) → b → f(x). Since Uf is proper by 3.2,

there is a ∈ UX with U → a and f(a) = b, and since f is proper, there is x′∈X

with a→x′ and f(x′)=f(x). Topologicity of X shows U ⇒ x′, hence µX(U)→x′

and, by hypothesis, µX(U)→ x. Since f is separated, x = x′ follows.

Hence, Theorem A follows from (the “if” part of) Theorem B.
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3.4 (The ultrafilter interpolation property is necessary for exponentiability in

Top). Let f : X→ Y be exponentiable in Top, and consider U ∈ UUX, v ∈ UY ,

x0 ∈ X with U ⇒ x0 and f(U)→ v → f(x0)=: y0. We must find a0 ∈ UX with

f(a0) = v and U → a0 → x0.

Step 1: With Z= IS = {0→1} the Sierpiński space, we form the partial

product P = P (f, IS) in URS as in 2.10. Since f is exponentiable in Top, by 2.11

we have P ∈ Top.

Step 2: Our first goal is now to find b ∈ UP and α0 such that b → (y0, α0)

in P with p(b) = v. To this end, for all A ∈ U and V ∈ v, let

B(V,A) :=
{

(y, α) ∈ P | y ∈ V ∧ ∀x ∈ f−1y :
(

α(x)=1 ⇒ x ∈ ↑A
)}

.

These sets form a filterbase on P , since

B(V,A) ∩B(V ′,A′) ⊇ B(V ∩ V ′,A ∩A′) .

Hence, we can choose an ultrafilter b containing them, which necessarily must

satisfy p(b) = v.

Having any such b we may define α0 : f
−1y0 → IS by

α0(x) = 1 :⇔ ∃ a ∈ UX : a → x, f(a) = v, e(b×Y a) ⊆
•

1 ,

where b ×Y a is as in 2.9, and
•

1 = ηS(1). In other words, α0(x) = 1 holds true

precisely when x ∈ f−1y0 is an adherence point in X of the filter generated by

f−1(v) ∪ π2

(

π−1
1 (b) ∪ e−1(

•

1 )
)

.

Since this is a closed set in X, α0 is continuous. Hence, (y0, α0) ∈ P .

We must show b → (y0, α0), using (∗∗) of 2.8. Since p(b) = v → y0 by

hypothesis, we consider c ∈ U(P ×Y X), x ∈ X with π1(c) = b, f(x) = y0 and

a := π2(c) → x, hence f(a) = p(b) = v. If e(b ×Y a) ⊆
•

1 , then α0(x) = 1, and

trivially e(c) → 1; if e(b×Y a) ⊆
•

0 , then e(c) =
•

0 and e(c) → 0 and e(c) → 1.

Hence, always e(c)→ e(α0, x).

Step 3: For any a ∈ UX such that there is x ∈ f−1y0 with a → x, f(a) = v

and e(b ×Y a) ⊆
•

1 , we shall show that U → a. For that is suffices to verify that

each A ∈ a intersects all sets ↑A, A ∈ U (see 2.3). Indeed, by hypothesis one has

1 ∈ e
(

B(Y,A)×Y A
)

,
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so that there is x ∈ A and (y, α) ∈ B(Y,A) with f(y) = x, α(x) = 1, where the

latter equation means x ∈ ↑A by definition of B(Y,A). Hence, A ∩ ↑A 6= ∅.

To complete the proof of Theorem B, it would now suffice to show α0(x0) = 1,

by definition of α0. This would be accomplished once we have found V ∈ UUP

with

(¦) p(V) = f(U) , V → b and e(µP (V)×Y µX(U)) ⊆
•

1 .

Indeed, since p(µP (V)) = f(µX(U)) one would then have an ultrafilter d ⊇

µP (V) ×Y µX(U) with d → (α0, x0) in P ×Y X, since π1(d) = µP (V) → (y0, α0)

by topologicity of P , and since π2(d) = µX(U)→ x0 by hypothesis. Hence

e(d)→ α0(x0); but e(d)=
•

1 , hence α0(x0) 6= 0.

Step 4: In order to obtain V as in (¦) we construct W ∈ UU(P ×Y X) with

(¦¦)
π2(W) = U , π−1

1 (↓B(V,A)) ∈ W for all V ∈ v and A ∈ U ,

and
{

d ∈ U(P ×Y X) | e−11 ∈ d
}

∈ W .

One can then put V := π1(W) and has p(V) = f(π2(W)) = f(U). Since

↓B(V,A) ∈ V for all V ∈ v, A ∈ U, by 2.6 we can modify our choice of b

in Step 2 such that ↓B ∈ V for all B ∈ b, hence V → b. Finally, since

µP×Y X(W) ⊇ µP (V)×Y µX(U), and since C ∈ W with C := {d | e−11 ∈ d} gives

e−11 ∈ µP×Y X(W), also e(µP (V)×Y µX(U)) ⊆
•

1 holds true.

Hence we are left with having to find W satisfying the conditions (¦¦).

For that, it suffices to show that for all A,B ∈ U and V ∈ v the intersection

π−1
2 (B) ∩ π−1

1 (↓B(V,A)) ∩ C

is not empty; hence, we must find d ∈ U(P ×Y X) with π2(d) ∈ B, π1(d)→(y, α)

for some (y, α) ∈ B(V,A), and e−11 ∈ d.

To this end, we first note that, since f(U)→ v we have ↓V ∈ f(U) and

therefore f(B ∩ A)∩ ↓V 6= ∅, which means that there are a ∈ B ∩ A and y ∈ V

with f(a)→ y. Let now a∗ be the filter on P generated by the sets A∗ =

{(f(a), χa) | a ∈ A}, with χa(x)=1 if and only if x ∈ cl{a}. Then p(a∗)= f(a).

We claim that

a∗ → (y, γa) ∈ B(V,A) ,

with γa(x) = 1 being defined by (γa(x) = 1 if and only if a → x).

To prove that a∗ → (y, γa) we use condition (∗∗) of 2.8: p(a∗) = f(a)→ y

holds true; for c ∈ U(P ×Y X), x ∈ X with π1(c) = a∗, f(x) = p(y, γa) and
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π2(c)→ x, we need to check that e(c)→ e(γa, x). If e(c) =
•

0 then trivially

e(c) → e(γa, x), since
•

0 converges to both 0 and 1. Assume now that e(c) =
•

1 .

Since π2(c)→ x (hence π2(c) contains the filter of neighbourhoods Ω(x) of x),

π1(c) = a∗ and c ⊇ π1(c) ×Y π2(c), then, for all O ∈ Ω(x) and for all A ∈ a,

O ×Y A
∗ ∈ c. Therefore 1 ∈ e(O ×Y A

∗), which means that there exist x′ ∈ O

and a ∈ A such that χa(x
′) = 1, i.e. x′ ∈ cl{a}, which implies that a ∈ O and,

consequently, O ∩A 6= ∅. This means that a → x, hence e(c)→ e(γa, x) = 1.

Now we can finish the proof by noting that (a∗×Y a)∪e−11 is a filterbase, since

for all A,B ∈ a and a ∈ A∩B, one has (χa, a) ∈ A
∗×YB with e(χa, a)=χa(a)=1.

Any ultrafilter d containing this base has the desired properties.

4 – Invariance of local compactness under perfect maps

It is well known that, for a perfect surjective map f : X→ Y withX Hausdorff,

also Y is Hausdorff, and that in this case X is locally compact if and only if Y

is locally compact (see [15]). Here we show that the separation conditions on X

and Y can be relaxed considerably:

4.1 Proposition. Let f : X→ Y in Top be proper.

(1) If X is locally compact, Y sober, and f surjective, then Y is locally

compact.

(2) If Y is locally compact, X sober, and f separated, then X is locally

compact.

In fact, in conjunction with Theorem A and the Hofmann–Lawson result [21],

these assertions follow from statements (1), (2) of the following Proposition, which

in turn follow from statements (3), (4):

4.2 Proposition. Let f : X→ Y and g : Y → Z be in Top.

(1) If X is exponentiable and if f is proper and surjective, then also Y is

exponentiable.

(2) If Y and f are exponentiable, so is X.

(3) If g ·f is exponentiable and if f is proper and surjective, then g is expo-

nentiable.

(4) If f and g are exponentiable, so is g · f .
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Proof: (3) We use Theorem B and 2.12, and consider V ∈ UUY, c ∈ UZ

and y ∈ Y with V ⇒ y and g(V)→ c → g(y). Since f is surjective, there is an

ultrafilter U∈UUX with f(U)=V, and since f is proper and f(µX(U))=µY (V),

there is x ∈ X with µX(U)→ x and f(x) = y. Now exponentiability of g ·f gives

a ∈ UX with g(f(a)) = c and U → a → x, which implies V → f(a)→ y.

(4) is well known (and trivial), see [31].

Remark. Proper surjective maps are biquotient maps, i.e., pullback-stable

quotient maps (see [29]). As was noted by the anonymous referee (as well as in the

recent paper [9]), statements (1) and (3) of 4.2 can be generalized considerably by

trading “proper and surjective” for “biquotient”. The proof of this generalization

is in fact purely categorical if one uses the well-known fact (see [31]) that a map

f : X→ Y is exponentiable in Top if and only if the pullback X×Y Z → X along

f of any quotient map Z → Y is again a quotient map.

For the sake of completeness, we list here some further rules which, unlike

4.2 (1), (3), can be obtained purely categorically, just using the fact that the

class of exponentiable morphisms contains all isomorphisms, is closed under com-

position and stable under pullback. Recall that a space X is locally Hausdorff

(cf. [33]) if the diagonal ∆X is locally closed in X×X; more generally, a map

f : X→ Y is locally separated if the diagonal ∆X is locally closed in X×Y X,

which simply means that every point in X has a neighbourhood U such that

f|U is separated. Equivalently: the diagonal map X → X×Y X is exponentiable.

Note that local Hausdorffness implies soberness.

4.3 Proposition. Let f : X→ Y , g : Y → Z and p : P → Y be in Top.

(1) If X is exponentiable and Y is locally Hausdorff, then f is exponentiable

(see [33]).

(2) If g ·f is exponentiable and g locally separated, then f is exponentiable.

(3) If f and P are exponentiable, so is P ×Y X; in particular, the fibres f
−1y

(y ∈ Y ) of the exponentiable map f are exponentiable spaces.

(4) The full subcategory of exponentiable and locally Hausdorff spaces in

Top is closed under finite limits. It is contained in the full subcategory

of sober locally compact spaces.
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Proof: (1) Factor f (in any finitely-complete category) as

X X×Y Y-〈1X , f〉 -pY

where both factors are exponentiable (see [8], [38]).

(2) Apply the categorical version of (1) to Top/Z in lieu of Top.

(3), (4) follow from [38], Corollary 3.4(3) and Proposition 3.6, respectively.

We also mention that Theorem B as well as Proposition 4.3(1) make it easy

to provide:

4.4 (Example of an exponentiable map which is not proper). While every

finite space is compact, locally compact and exponentiable, exponentiable maps

between finite spaces have obviously (locally) compact fibres, but may fail to be

closed, hence they may fail to be proper: simply consider X = {a → b, a → b′,

b′→ c}, Y = {0→ 1→ 2}, and f : X→ Y with f(a) = 0, f(b) = f(b′) = 1, and

f(c) = 2. Then f is exponentiable but not proper.

5 – Characterization of separated exponentiable maps

5.1 In what follows, we freely restrict and extend ultrafilters along subsets

without change of notation, just forming inverse images and images along inclu-

sion maps. Hence, for a subset Z ⊆ X and a ∈ UX with Z ∈ a, we regard a also

as an ultrafilter on Z; and any b ∈ UZ is also regarded as an ultrafilter on X.

We will also use the idempotent hull cl∞ of the natural closure cl in URS

defined by

clA =
{

x ∈ X | x ∈ A or ∃ a ∈ UX : (A∈a ∧ a→x)
}

,

for every subset A of X. Thus cl∞(A) is the least subset of X containing A as

well as every limit point of an ultrafilter to which it belongs.

5.2 (Factorization in URS). Let f : X→ Y be a continuous map of grizzly

spaces, and let

Y0 :=
{

y ∈ Y | ∃ a ∈ UX :
(

f(a)→y ∧ @x ∈ f−1y : a→x
)}

.
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With X∗ the (disjoint) union of X and Y1 := cl∞Y0, one obtains a factorization

X X∗

Y

Z
Z
Z~f

½
½
½= p

-
i¤£

(7)

where p maps points of Y1 identically. The maps i and p become continuous if we

make X∗ a grizzly space by declaring a → z in X∗ whenever one of the following

cases applies:

1. X ∈ a, z ∈ X, and a → z in X;

2. X ∈ a, z ∈ Y1, f(a)→ z in Y , and @x ∈ f−1z with a → x in X;

3. Y1 ∈ a, z ∈ Y1, and a → z in Y1 (as a subspace of Y ).

5.3 Proposition.

(1) i is an open cl∞-dense embedding.

(2) p is proper.

(3) With f also p is separated.

Proof: (1) If a → x in X∗ with x ∈ X, then necessarily X∈ a, and we have

a → x in X. Moreover, in X∗, cl(X)=X∪ Y0, hence cl∞(X) = X∗.

(2) For a ∈ UX∗, suppose p(a) → y in Y , and let first X ∈ a. If there is no

x ∈ f−1y with a → x in X, then y ∈ Y0 (since f(a) = p(a)), and one has a → y

in X∗. In case Y1 ∈ a we have a → y in Y (since p maps Y1 identically), hence

y ∈ clY1= Y1; by definition, this means a → y in X∗.

(3) Consider a → z, a → z′ in X∗ with p(z) = p(z′), and let first X ∈ a.

If both z, z′∈X, then z = z′ follows from separatedness of f , and if both z, z′∈Y1,

then trivially z = z′; the case z ∈ X and z′ ∈ Y1 cannot occur, according to the

definition of the structure of X∗. For Y1 ∈ a we necessarily have the trivial case

z, z′ ∈ Y1 again.

We point out that, since cl is idempotent when restricted to Top, if Y is a

topological space then X∗ is simply X ∪ cl(Y0).

5.4 Proposition. For f : X→ Y exponentiable in Top, each of the following

conditions implies the next:

(i) X and Y are Hausdorff spaces;

(ii) whenever U → a and U → a′ in UX∗ with p(a) = p(a′), then ↑a = ↑a′;

(iii) X∗ is a topological space.
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Proof: (ii)⇒(iii): For U → a → z in X∗ we must show µX∗(U)→ z.

Continuity of p gives p(U)→ p(a)→ p(z) in Y , hence µY (p(U))→ p(z) in the

topological space Y .

Case 1: X ∈ a. Then the set

↓X =
{

c ∈ UX∗ | ∃x ∈ X : c → x
}

lies in U and consists entirely of ultrafilters on X. Hence,

X] =
{

c ∈ UX∗ | X ∈ c
}

lies in U, so that U can be considered as an ultrafilter on UX, and we have

X ∈ µX∗(U), and µX(U) is the restriction of µX∗(U).

Now, if z ∈ X, topologicity of X gives µX(U)→ z and therefore µX∗(U)→ z.

If z ∈ Y1, since p(µX∗(U)) = µY (p(U))→ p(z) = z, in order to have µX∗(U)→ z

it suffices to show that there is no x ∈ f−1z with µX∗(U) → x. Assuming the

contrary, we may apply the ultrafilter interpolation property of f to obtain an

ultrafilter a′ on X (and therefore on X∗) with U → a′ → x and f(a′) = p(a),

hence p(a′) = p(a). From (ii) we then have a → x, which contradicts a → z ∈ Y1.

Case 2: Y1 ∈ a, hence necessarily z ∈ Y1. If (Y1)
] ∈ U, then µX∗(U) → z by

topologicity of Y1 (just as in Case 1 for z∈X). If (Y1)
] 6∈ U, UX∗\(Y1)

]=X]∈ U,

so that X ∈ µX∗(U) as above, and we can conclude the proof precisely as in the

second half of Case 1.

(i)⇒(ii): Consider U → a, U → a′ in X∗ with p(a) = p(a′). We first claim

that X ∈ a if and only if X ∈ a′. Indeed, if X ∈ a, then ↓X ∈ U from U → a and

↑↓X ∈ a′ from U → a′; but ↑↓X⊆ X, since for z ∈ ↑↓X one has c ∈ UX∗ with

c → z in X∗ and c → x for some x ∈ X, whence p(z) = p(x) = f(x) when Y is

Hausdorff, which makes z ∈ Y1 impossible. Consequently, X∈ a′.

Now, let z ∈ ↑a. If X ∈ a, z ∈ X, then z ∈ ↑a′, as follows: for every A ∈ Ω(x)

one has A ∈ a, hence ↓A ∈ U and then ↑↓A ∈ a′; but as above one has ↑↓A ⊆ A

since X and Y are Hausdorff. If X ∈ a, z ∈ Y , then p(a) = f(a) → z in Y ,

hence p(a′) = f(a′)→ z; if there were x ∈ f−1z with a′→ x in X, then also a→x

in X as above, in contradiction to z ∈↑ a. Hence z ∈↑ a′. If Y1 ∈ a, z ∈ Y1,

Hausdorffness of Y implies z ∈↑a′ as above.

5.5 (Proof of Theorem C). Let first f : X→ Y be exponentiable and sepa-

rated, with Y Hausdorff. Then also X is Hausdorff, and from 5.4 we obtain the

factorization
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f = (X X∗ Y )-i¤£ -p

in Top which, by 5.3, has the desired properties. Conversely, open embeddings

are trivially separated and locally closed and therefore exponentiable (see [31]),

and so are perfect maps, by Theorem A. Furthermore, exponentiable and sepa-

rated maps are closed under composition.

5.6 Remark. James ([23], p. 58) gives the construction of the fibrewise

Alexandroff compactification, which provides for every continuous map f : X→ Y

a factorization

f = (X X+ Y )-j¤£ -q

with an open embedding j and a proper map q. However, even for X and Y

Hausdorff, q need not be separated; it is so, if X is also locally compact.
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