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WITH HIGHLY NONLINEAR LOCALIZED DISSIPATION *
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Recommended by E. Zuazua

Abstract: We show that the solutions of a system in elasticity theory with a
nonlinear localized dissipation decay in an algebraic rate to zero, that is, denoting by
E(t) the total energy associated to the system, there exist positive constants C and γ
satisfying:

E(t) ≤ C E(0) (1 + t)−γ .

1 – Introduction

In this work we study decay properties of the solutions for the following initial-

boundary value problem related with the system of elastic waves with a localized

nonlinear dissipative term:

utt − b2∆u− (a2− b2)∇div u+ αu+ ρ(x, ut) = 0, in Ω× R ,(1.1)

u(x, 0) = uo(x), ut(x, 0) = u1(x) in Ω ,(1.2)

u(x, t) = 0 in Γ× R ,(1.3)

where the medium Ω is a bounded domain in R3 with C2 boundary Γ.

The function u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the vector displacement,

∆u = (∆u1(x, t),∆u2(x, t),∆u3(x, t)) is the Laplacian operator, div u is the

usual divergent of u and ∇ is the gradient operator. The coefficients a and b

are related with Lamé coefficients of Elasticity Theory, a2>b2>0, (see [1]), and

α ≥ 0 is a constant. We can found applications for this system in geophysics and

seismic waves propagation.
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In the case that a2 = b2 we have a vector wave equation. Many results related

to wave equation can be generalized for the system (1.1). We observe that the

solutions of the free system of elastic waves are a superposition of two waves

which propagate with different fase velocities a and b (see [3]).

Our goal in this work is to show the uniform stabilization of the total energy

for system (1.1)–(1.3). We observe that the vector function ρ, which appear in

(1.1), represents a dissipative term which is localized in a neighborhood of part of

the boundary of Ω. To prove this result we use some energy identities associated

with localized multipliers in order to construct special difference inequalities for

the energy of the system (1.1). These ideas come from Control Theory (see

J.-L. Lions [16], V. Komornik [12], A. Haraux [8] and V. Komornik – E. Zuazua

[15]). The main estimates in this work are obtained using Holmgren’s Uniqueness

Theorem and Nakao’s Lemma.

About the stabilization of the local energy for the nondissipative system of lin-

ear elasticity in unbounded domains we refer B. Kapitonov [11] and R.C. Charão

[2]. B. Kapitonov works in an exterior domain with geometrical condition on

the boundary. There are some results related to stabilization of the total energy

associated with systems of elasticity in bounded domains with localized dissipa-

tions. For the system (1.1) when the dissipative term ρ(x, ut) is linear and the

localizing function a(x) is unbounded, the stabilization of the energy is proved

by M.A. Astaburuaga and R.C. Charão [4]. In the case of wave equation, stabi-

lization results can be found in M. Nakao [19], [20], E. Zuazua [22], P. Martinez

[17], [18] and L.R.T. Tébou [21] and the references therein.

The system (1.1) with ρ ≡ 0 damped by a linear boundary feedback is studied

by F. Alabau and V. Komornik [13] and uniform stabilization is obtained. In [14]

F. Alabau and Komornik have considered an anisotropic system of elasticity and

have established uniform decay rates when feedback control is acting via natural

and physically implementable boundary conditions. Their results require even

more stringent geometric conditions. In fact, they must assume that the domain

is a sphere.

A. Guesmia in [5] studied the stabilization of the energy for the system

of elasticity in anisotropic domains in Rn with localized non linear dissipation

given by an additional term ρ(x, ut) = (b1(x) g1(u
1
t ), ..., bn(x) gn(u

n
t )) where u =

(u1, ..., un) is the solution of the system. The system considered by Guesmia is

not coupled in the dissipative term. The dissipation is localized by functions bi(x)

and they are effective only in a neighborhood of part of the boundary. For the

non degenerate case bi(x) > b0 > 0, i = 1, ..., n in such neighborhood, Guesmia
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assumes the following conditions on the functions gi(s)

C1|s|r ≤ gi(s) ≤ C2|s|1/r , |s| ≤ 1, s ∈ R ,

C1|s| ≤ gi(s) ≤ C2|s| , |s| > 1, s ∈ R ,

for positive constants C1, C2 and r, with r ≥ 1. Thus, the class of functions

gi(s) = |s|ps for positive constant p are not included in Guesmia’s results.

In this work we consider the system of elasticity in a homogeneous isotropic

medium in R3 with a dissipative localized term given by ρ(x, ut) = f(x, |ut|)ut,
where f is a positive function. Our hypotheses include the case ρ(x, s) = a(x) |s|ps
for p ∈ (−1, 2]. The function a(x) is also effective only on a neighborhood of

part of the boundary of the domain.The system (1.1) can or not be coupled

in the dissipative term. We obtain precise algebraic decay rates for the energy

depending only on the growing rates r and p of the function f near zero and the

infinity, respectively. So, in this sense our result generalizes the Guesmia’s result

for the system of elasticity in homogeneous isotropic domais. We note that our

results can be extended for domains in Rn, n ≥ 1.

In [6] A. Guesmia consider the stabilization for the anisotropic system of

elasticity with a nonlinear boundary feedback and the dissipation is effective only

on a part of the boundary given by the same geometrical condition which we have

used. The framework is based on integral inequalities and Nakao’s Lemma. The

conditions on the dissipative functions gi(s) are more restrictive then ours. For

instance, to obtain the following estimate for the energy

E(t) ≤M1(1 + t)−
r

1−r , t > 0 ,

where M1 is a constant independent of the solution u, A. Guesmia used the

following hypothesis on the functions gi(s)

C3|s| ≤ |gi(s)| ≤ C4|s| , |s| > 1, s ∈ R .

With the following condition on the functions gi(s)

|gi(s)| ≤ C5|s|λ , |s| > 1 ,

with a very special λ, A. Guesmia obtain the same rate, but M1 depends on the

function u. We also observe that our results in this work extend for isotropic

elasticity the result obtained by A. Guesmia in [7].

Now, we want mention two works of Mary A. Horn. In [9] M. Horn works with

the uniform stabilization for the system of isotropic linear elasticity (1.1) (with



102 E. BISOGNIN, V. BISOGNIN and R.C. CHARÃO

ρ(x, s) ≡ 0) using a nonlinear boundary feedback in the same sense of A.Guesmia

[6]. The proof uses multipliers estimates and is based on trace regularity results

and uniqueness (Holmgren) argument. The damping is effective only on a part of

the boundary and is given by a continuously differentiable function g(s), s ∈ Rn,

such that

g(0) = 0 , g(s) · s > 0, s ∈ Rn − {0} ,

m|s| ≤ |g(s)| ≤M |s| , |s| > 1 ,

with m and M positive constants. The decay rate is given by a function S(t)

which is the solution of a differential equation of type

dS(t)

dt
+ q(S(t)) = 0 , S(0) = 0 ,

where q(x), x > 0, is a special nonlinear function which is constructed using the

function g(s). M. Horn shows that S(t)→ 0, t→∞.

Finally, in [10] M. Horn studied the same problem for the non isotropic system

of elasticity but the system is considered containing an additional light internal

damping given by a term ρ(x, ut) = b(x)ut with b(x) a function such that b(x) > 0

for all x ∈ Ω. The other dissipative function g(s) on part of the boundary

has the same properties assumed in M. Horn [9]. The coefficients aijkl of the

elasticity tensor are assumed by M. Horn to be independent of both time and

space. The decay rate for the stabilization of the energy is the same that in

[9]. The framework also is the same but of course using Korn’s Inequality. If the

control function g(s) = s then M. Horn observe that the decay rate is exponential.

To conclude, we observe that the dissipation function ρ(x, s) which we have

used in this paper, is more strongly non linear then the functions g(s) or gi(s)

which appear in the references.

2 – Hypotheses and results

Through this work the dot · will represent the usual inner product between

two vectors in R3. Let us consider the following hypotheses on the function

ρ(x, s).

Let xo ∈ R3 be a fixed vector and

Γ(x0) =
{
x ∈ Γ; (x− xo) · η(x) ≥ 0

}



STABILIZATION FOR ELASTIC WAVES 103

where η = η(x) is the outward unit normal at x ∈ Γ = ∂Ω. Let ω ⊂ Ω be a

neighborhood of Γ(xo) and

a : Ω→ R+

a bounded function satisfying

a(x) ≥ 0 in Ω , a(x) ≥ ao > 0 in ω .(2.1)

We suppose that the function ρ : Ω×R3 → R3 is given by ρ(x, s) = f(x, |s|)s,
s ∈ R3, x ∈ Ω where

f : Ω× R+→ R+

is a differentiable function which satisfies the following conditions:

a(x)|s|r ≤ f(x, |s|) ≤ Ko a(x) (|s|r + 1), if |s| ≤ 1 ,(2.2)

a(x)|s|p ≤ f(x, |s|) ≤ K1a(x) (|s|p + 1), if |s| ≥ 1 ,(2.3)

with r ∈ (−1,+∞), p ∈ [−1, 2] and K0, K1 are positive constants.

Hence, the dissipative term ρ(x, ut) is effective only on a part of Ω that includes

Γ(xo).

We also suppose that
∂f

∂s
(x, s) ≥ 0

for all s ∈ R+ and x ∈ Ω.

About the existence and uniqueness of solution for the problem (1.1) we have

the following result.

Theorem 2.1 (Existence and Uniqueness). We assume that Γ is C2 class

and the initial data uo ∈ (H1
o (Ω) ∩H2(Ω))3, u1 ∈ (H1

o (Ω))
3. Then, under above

hypotheses on function ρ, the initial boundary value problem (1.1) has a unique

solution u = u(x, t) in the class

u ∈ C
(
[0,∞[, (H1

o (Ω)∩H2(Ω))3
)
∩C1

(
[0,∞[, (H1

o (Ω))
3
)
∩C2

(
[0,∞[, (L2(Ω))3

)
.

Proof: The prof of this theorem is standard, for example, using semigroups

theory.

We want in this work prove the uniform stabilization of the total energy E(t),

E(t) = 1/2

∫

Ω

(
|ut|2 + b2|∇u|2 + (a2− b2) (div u)2 + α |u|2

)
dx .
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In fact, this is possible because the energy E(t) satisfies the identity

E(t)− E(t+T ) =

∫ t+T

t

∫

Ω
ρ(x, ut) · ut dx ds , t ≥ 0, T > 0 .(2.4)

Then, the energy is a nonincreasing function of t because ρ(x, ut) · ut ≥ 0

always.

The identity (2.4) is obtained taking inner product between equation (1.1)

and ut and integrating over [t, t+ T ]× Ω.

Our result is the following

Theorem 2.2 (Stabilization). Under the hypotheses of Theorem 2.1, the to-

tal energy for the solution u = u(x, t) of the problem (1.1)–(1.3) has the following

asymptotic behavior in time

E(t) = E(u(x, t)) ≤ C E(0) (1 + t)−γi , i = 1, 2, 3, 4 .(2.5)

where C is a positive constant and the decay rates γi are given according to the

cases:

Case 1: If r ≥ 0 and 0 ≤ p ≤ 2 then

γ1 = min

{
2

r
,
4(p+ 1)

p

}
;

Case 2: If r ≥ 0 and −1 ≤ p < 0 then

γ2 = min

{
2

r
,
−4
p

}
;

Case 3: If −1 < r < 0 and 0 ≤ p ≤ 2 then

γ3 = min

{−2(r + 1)

r
,
4(p+ 1)

p

}
;

Case 4: If −1 < r < 0 and −1 ≤ p < 0 then

γ4 = min

{−2(r + 1)

r
,
−4
p

}
.

In order to prove this theorem we need some Lemmas and special estimates

about the solution u(x, t).
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3 – Technical lemmas

We are going to prove for the energy of system (1.1) an estimate like

E(t)εi ≤ Ci [E(t)− E(t+ T )] , t ≥ 0 ,(3.1)

where Ci is a positive constant, T > 0 is fixed and εi > 0 is related with γi (given

in Theorem 2.2), i = 1, 2, 3, 4.

Then, to show the decay property (2.5) we will use the following Nakao’s

Lemma(See Nakao [19]).

Lemma 3.1 (Nakao). Let Φ(t) be a nonnegative function on R+ satisfying

sup
t≤s≤t+T

Φ(s)1+δ ≤ g(t) {Φ(t)− Φ(t+ T )}

with T > 0, δ ≥ 0 and g(t) a nondecreasing continuous function. If δ > 0 then

Φ(t) has the decay property

Φ(t) ≤
{
Φ(0)−δ +

∫ t

T
g(s)−1 ds

}−1/δ
, t ≥ T .

If δ = 0, instead of the above inequality, Φ(t) is such that

Φ(t) ≤ C Φ(0) eλ t , t ≥ 0 ,

for some λ > 0.

Now, to prove (3.1) we will need the Gagliardo–Niremberg Lemma.

Lemma 3.2 (Gagliardo–Niremberg). Let 1 ≤ r < p < ∞, 1 ≤ q ≤ p and

0 ≤ m. Then we have the inequality

‖v‖W k,q ≤ C ‖v‖θWm,p ‖v‖1−θLr

for v ∈Wm,p(Ω) ∩ Lr(Ω), where C is a positive constant and

θ =

(
k

N
+

1

r
− 1

q

)(
m

N
+

1

r
− 1

p

)−1

provided that 0 < θ ≤ 1.
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In order to show (3.1) we have also developed some identities for the elastic

waves system (1.1).

We take h: Ω→ R3 a vector field C1 class such that

h(x) = η(x) on Γ(xo) ,(3.2)

h(x) · η(x) ≥ 0 on Γ ,(3.3)

h(x) = 0 in Ω\ω̂ ,(3.4)

where ω̂ is a open set in R3 with the property

Γ(xo) ⊂ ω̂ ∩ Ω ⊂ ω

and we consider the multiplier

M(u) = h ∗ ∇u ≡: (h · ∇u1, h · ∇u2, h · ∇u3)

where u(x, t) = (u1, u2, u3) is the solution of the problem (1.1)–(1.3).

We also take a function m ∈W 1,∞(Ω) such that |∇m|
2

m is bounded and

1 ≥ m ≥ 0 in Ω ,(3.5)

m = 1 in ω̃ ,(3.6)

m = 0 in Ω\ω ,(3.7)

where ω̃ ⊂ Ω is an open set in Ω with Γ(xo) ⊂ ω̃ ⊂ ω ⊂ Ω.

Then we have

Lemma 3.3 (Energy Identities). Let u be the solution of (1.1)–(1.3) and

T > 0 fixed. Then the following identities holds for all t ≥ 0.
∫ t+T

t

∫

Ω

[
−|ut|2 + b2|∇u|2 + (a2 − b2)(div u)2 − α |u|2

]
dx ds =

= −
∫

Ω
ut u dx

∣∣∣
t+T

t
−
∫ t+T

t

∫

Ω
ρ(x, ut) · u dx ds ,

(3.8)

∫ t+T

t

∫

Ω
m(x)

[
b2|∇u|2 + (a2 − b2)(div u)2 + α |u|2

]
dx ds =

= −
∫

Ω
m(x)u · ut dx

∣∣∣
t+T

t

+

∫ t+T

t

∫

Ω
m(x)u |ut|2 dx ds−

∫ t+T

t

∫

Ω
m(x)u · ρ(x, ut) dx ds

−
∫ t+T

t

∫

Ω

[
b2

3∑

i=1

ui∇ui · ∇m+ (a2 − b2)∇m · u div u

]
dx ds ,

(3.9)
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1

2

∫ t+T

t

∫

Γ
(h · η)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2 − b2)(div u)2
]
dΓ ds +

+

∫ t+T

t

∫

Γ

[
b2(h(x) ∗ ∇u) · ∂u

∂η
+ (a2− b2)div u(h(x)∗∇u) · η

]
dΓ ds =

= −
∫

Ω
(h(x) ∗ ∇u) · ut dx

∣∣∣
t+T

t
−
∫ t+T

t

∫

Ω
(h(x) ∗ ∇u) · ρ(x, ut) dx ds

+
1

2

∫ t+T

t

∫

Ω
div h

[
−|ut|2 + b2|∇u|2 + (a2 − b2)(div u)2 − α|u|2

]
dx ds

−
∫ t+T

t

∫

Ω

3∑

i,j,k=1

[
b2

∂hk

∂xj

∂ui

∂xj

∂ui

∂xk
+ (a2− b2)

∂hk

∂xi

∂uj

∂xj

∂ui

∂xk

]
dx ds ,

(3.10)

∫

Ω
(x− xo) ∗ ∇u · ut dx

∣∣∣
t+T

t
+

∫ t+T

t

∫

Ω
((x− xo) ∗ ∇u) · ρ(x, ut) dx ds +

+
3

2

∫ t+T

t

∫

Ω

[
|ut|2 − b2|∇u|2 − (a2 − b2)(div u)2 + α|u|2

]
dx ds

+
1

2

∫ t+T

t

∫

Γ
(x− xo) · η

[
b2|∇u|2 + (a2 − b2)(div u)2

]
dΓ ds

−
∫ t+T

t

∫

Γ

[
b2((x−xo)∗∇u)· ∂u

∂η
+ (a2− b2)div u((x−xo)∗∇u)·η

]
dΓ ds

+

∫ t+T

t

∫

Ω

[
b2|∇u|2 + (a2 − b2)(div u)2

]
dx ds = 0 ,

(3.11)

where we have used the notation |∇u|2 =
3∑

i=1

|∇ui|2, for u = (u1, u2, u3).

The vector η = η(x) is the usual normal at x ∈ Γ.

Proof: The identities (3.8), (3.9) and (3.10) are obtained in a standard

way taking the inner product between the equation (1.1) and the multipliers

M(u) = u, M(u) = m(x)u and M(u) = h ∗ ∇u respectively, integrating in

Ω × [t, t + T ] and using the fact that u = 0 on Γ× R. The identity (3.11) is

a particular case of (3.10) when h(x) = (x− xo). In (3.10) we do not have used

the properties (3.2)–(3.4) for the vector field h.

Because u = 0 on Γ× [0,∞[ we observe that

∇ui =
∂ui

∂η
η on Γ× [0,∞[, i = 1, 2, 3 .

Then we have

(h ∗ ∇u) · ∂u
∂η

=
3∑

i=1

(
h · ∂u

i

∂η
η

)
∂ui

∂η
= (h · η)

∣∣∣
∂u

∂η

∣∣∣
2

and
(div u)(h ∗ ∇u) · η = (h · η) (divu)2 ,
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where
∂u

∂η
=

(
∂u1

∂η
,
∂u2

∂η
,
∂u3

∂η

)
.

With this observation we obtain from identity (3.10) in Lemma 3.3 the fol-

lowing energy identity

1

2

∫ t+T

t

∫

Γ
(h·η)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds =

=

∫

Ω
(h(x) ∗ ∇u) · ut dx

∣∣∣
t+T

t
+

∫ t+T

t

∫

Ω
(h(x) ∗ ∇u) · ρ(x, ut) dx ds

+
1

2

∫ t+T

t

∫

Ω
(div h)

[
|ut|2 − b2|∇u|2 − (a2 − b2)(div u)2 + α|u|2

]
dx ds

+

∫ t+T

t

∫

Ω

3∑

i,j,k=1

[
b2

∂hk

∂xj

∂ui

∂xj

∂ui

∂xk
+ (a2 − b2)

∂hk

∂xi

∂uj

∂xj

∂ui

∂xk

]
dx ds .

(3.12)

In the same way we have from identity (3.11) in Lemma 3.3 that

3

2

∫ t+T

t

∫

Ω

[
|ut|2 − b2|∇u|2 − (a2− b2)(div u)2 + α|u|2

]
dx ds

+

∫ t+T

t

∫

Ω

[
b2|∇u|2 + (a2 − b2)(div u)2

]
dx ds =

= −
∫

Ω
((x− xo) ∗ ∇u) · ut dx

∣∣∣
t+T

t

+
1

2

∫ t+T

t

∫

Γ
((x− xo) · η)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds

−
∫ t+T

t

∫

Ω
((x− xo) ∗ ∇u) · ρ(x, ut) dx ds .

(3.13)

4 – Main estimates

Next, C will denote different positive constants.

Lemma 4.1. Let u = u(x, t) be the solution of the problem (1.1)–(1.3).

Then, the energy E(t) = E(u(x, t)) satisfies the estimate

E(t) ≤ C
{
E(t)− E(t+ T )

}
+ C

∫ t+T

t

∫

ω
(|ut|2 + |u|2) dx ds

+ C

∫ t+T

t

∫

Ω
|ρ(x, ut)|

[
|u|+ |∇u|

]
dx ds , t ≥ 0 .
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Proof: Adding identity (3.8) in Lemma 3.3 and identity (3.13) we obtain

1

2

∫ t+T

t

∫

Ω

[
|ut|2 + b2|∇u|2 + (a2 − b2)(div u)2 + α|u|2

]
dx ds =

= −
∫

Ω

[
(x− xo) ∗ ∇u+ u

]
· ut dx

∣∣∣
t+T

t

+
1

2

∫ t+T

t

∫

Γ
((x− xo) · η)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2 − b2)(div u)2
]
dΓ ds

−
∫ t+T

t

∫

Ω

[
((x− xo) ∗ ∇u) + u

]
· ρ(x, ut) dx ds .

(4.1)

Therefore
∫ t+T

t
E(s) ds ≤

∫

Ω

[
|(x− xo) ∗ ∇u|+ |u|

]
|ut| dx

∣∣∣
t+T

t

+

∫ t+T

t

∫

Ω

[
|(x− xo) ∗ ∇u|+ |u|

]
|ρ(x, ut)| dx ds

+
1

2

∫ t+T

t

∫

Γ(xo)
((x−xo)·η)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds

because (x− xo) · η ≤ 0 on Γ\Γ(xo).
Let Mo = sup

x∈Ω

|x− xo|, then we have

∫ t+T

t
E(s) ds ≤

∫

Ω

[
Mo|∇u|+ |u|

]
|ut| dx

∣∣∣
t+T

t

+

∫ t+T

t

∫

Ω

[
Mo|∇u|+ |u|

]
|ρ(x, ut)| dx ds

+
1

2

∫ t+T

t

∫

Γ(xo)
Mo

[
b2
∣∣∣
∂u

∂η

∣∣∣
2
+(a2− b2)(div u)2

]
dΓ ds ≤

≤ C1
[
‖ut(t+ T )‖

{
‖∇u(t+ T )‖+ ‖u(t+ T )‖

}
+ ‖ut‖

{
‖∇u‖+ ‖ut‖

}]

+

∫ t+T

t

∫

Ω

[
Mo|∇u|+ |u|

]
|ρ(x, ut)| dx ds

+
1

2

∫ t+T

t

∫

Γ(xo)
Mo

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2 − b2)(div u)2
]
dΓ ds

where ‖u‖ is the norm of u in [L2(Ω)]3 and ‖∇u‖2 =
3∑
i=1
‖∇ui‖2.

Using Poincare’s inequality it results
∫ t+T

t
E(s) ds ≤ C

[
‖ut(t+ T )‖ ‖∇u(t+ T )‖+ ‖ut‖ ‖∇u‖

]
+
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+

∫ t+T

t

∫

Ω

[
|∇u|+ |u|

]
|ρ(x, ut)| dx ds

+
1

2

∫ t+T

t

∫

Γ(xo)
Mo

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds .

Thus
∫ t+T

t
E(s) ds ≤ C

[
E(t) + E(t+ T )

]

+ C

∫ t+T

t

∫

Ω

[
|∇u|+ |u|

]
|ρ(x, ut)| dx ds

+ C

∫ t+T

t

∫

Γ(xo)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds .

(4.2)

We need estimate the last term in (4.2). We observe that

∫ t+T

t

∫

Ω

[
b2

3∑

i=1

ui∇ui · ∇m+ (a2− b2)∇m · u div u

]
dx ds ≤

≤
∫ t+T

t

∫

Ω

[
b2

2

3∑

i=1

(∣∣∣ui
∣∣∣
2 |∇m|2

m
+m

∣∣∣∇ui
∣∣∣
2
)

+
(a2 − b2)

2

{ |∇m|2
m

|u|2 +m(div u)2
}]

dx ds

where m is the function which appear in Lemma 3.3.

We also observe that m = 0 on Ω\ω and
|∇m|2

m
is bounded, by construction

of m.

Then we have

∫ t+T

t

∫

Ω

[
b2

3∑

i=1

ui∇ui · ∇m+ (a2− b2)∇m · u div u
]
dx ds ≤

≤ C

∫ t+T

t

∫

ω
|u|2 dx ds +

1

2

∫ t+T

t

∫

Ω
m
[
b2 |∇u|2 + (a2− b2)(div u)2

]
dx ds .

(4.3)

Using (4.3) we obtain, from identity (3.9) in Lemma 3.3, the following estimate

∫ t+T

t

∫

Ω
m
[
b2 |∇u|2 + (a2− b2)(div u)2 + α |u|2

]
dx ds ≤

≤ C
{∫ t+T

t

∫

ω

(
|ut|2 + |u|2

)
dx ds+ E(t) + E(t+ T )

}

+ C

∫ t+T

t

∫

Ω
|ρ(x, ut)| |u| dx ds

(4.4)
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where we have used that 0 ≤ m ≤ 1, m = 0 (see (3.5)–(3.7)) in Ω\ω and the

estimate
∣∣∣∣−
∫

Ω
mu · ut dx

∣∣∣
t+T

t

∣∣∣∣ ≤ C(Ω)
[
E(t) + E(t+ T )

]

due to Poincare’s inequality.

Because h(x) = η(x), x ∈ Γ(xo) and h·η ≥ 0 on Γ (see (3.2)–(3.4)) we have

from (3.12) the following estimate

∫ t+T

t

∫

Γ(xo)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds =

=

∫ t+T

t

∫

Γ(xo)
(h · η)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds

≤
∫ t+T

t

∫

Γ
(h · η)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds

= 2

∫

Ω
(h ∗ ∇u) · ut dx

∣∣∣
t+T

t

+

∫ t+T

t

∫

Ω
(div h)

[
|ut|2 − b2 |∇u|2 − (a2 − b2)(div u)2 − α |u|2

]
dx ds

+

∫ t+T

t

∫

Ω
ρ(x, ut) · (h ∗ ∇u) dx ds

+

∫ t+T

t

∫

Ω

3∑

i,j,k=1

[
b2

∂hk

∂xj

∂ui

∂xj

∂ui

∂xk
+ (a2− b2)

∂hk

∂xi

∂uj

∂xj

∂ui

∂xk

]
dx ds .

(4.5)

Because h ∈ C1(Ω) and h = 0 in Ω\ω̂ it implies that

∫

Ω
|(h ∗ ∇u) · ut| dx

∣∣∣
t+T

t
≤ C

[
E(t) + E(t+ T )

]
,(4.6)

∣∣∣∣∣

∫ t+T

t

∫

Ω
ρ(x, ut) · (h ∗ ∇u) dx ds

∣∣∣∣∣ ≤ C

∫ t+T

t

∫

Ω
|ρ(x, ut)| |∇u| dx ds(4.7)

and
∣∣∣∣∣

∫ t+T

t

∫

Ω
(div h)

[
|ut|2 − b2 |∇u|2 − (a2 − b2)(div u)2 + α |u|2

]
dx ds

∣∣∣∣∣ ≤

≤ C

∫ t+T

t

∫

ω̂∩Ω

[
|ut|2 + b2 |∇u|2 + (a2 − b2)(div u)2 + α |u|2

]
dx ds .

(4.8)
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Now, note that
∣∣∣∣∣∣

∫ t+T

t

∫

Ω

3∑

i,j,k=1

[
b2

∂hk

∂xj

∂ui

∂xj

∂ui

∂xk
+ (a2− b2)

∂hk

∂xi

∂uj

∂xj

∂ui

∂xk

]
dx ds

∣∣∣∣∣∣
≤

≤ C

∫ t+T

t

∫

ω̂∩Ω

3∑

i,j,k=1

[
b2
∣∣∣∣∣
∂ui

∂xj

∣∣∣∣∣

∣∣∣∣∣
∂ui

∂xk

∣∣∣∣∣+ (a2− b2)

∣∣∣∣∣
∂uj

∂xj

∣∣∣∣∣

∣∣∣∣∣
∂ui

∂xk

∣∣∣∣∣

]
dx ds

≤ C

∫ t+T

t

∫

ω̂∩Ω
b2 |∇u|2 dx ds .

(4.9)

Substituting (4.6)–(4.8) and (4.9) in (4.5) we have

∫ t+T

t

∫

Γ(xo)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds ≤

≤ C

{
E(t) + E(t+ T ) +

∫ t+T

t

∫

ω
|ut|2 dx ds

+

∫ t+T

t

∫

ω̂∩Ω

[
b2 |∇u|2 + (a2− b2)(div u)2 + α |u|2

]
dx ds

+

∫ t+T

t

∫

Ω
|ρ(x, ut)| |∇u| dx ds

}
.

(4.10)

Using that 0 ≤ m ≤ 1 and m(x) = 1 in ω̂ it results

∫ t+T

t

∫

ω̂∩Ω

[
b2 |∇u|2 + (a2− b2)(div u)2 + α|u|2

]
dx ds =

=

∫ t+T

t

∫

ω̂∩Ω
m(x)

[
b2 |∇u|2 + (a2− b2)(div u)2 + α|u|2

]
dx ds

≤
∫ t+T

t

∫

Ω
m(x)

[
b2 |∇u|2 + (a2− b2)(div u)2 + α|u|2

]
dx ds .

(4.11)

From estimates (4.10) in (4.11) we obtain

∫ t+T

t

∫

Γ(xo)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2 − b2)(div u)2
]
dΓ ds ≤

≤ C

{
E(t) + E(t+ T ) +

∫ t+T

t

∫

ω
|ut|2 dx ds

+

∫ t+T

t

∫

Ω
m(x)

[
b2 |∇u|2 + (a2 − b2)(div u)2 + α |u|2

]
dx ds

+

∫ t+T

t

∫

Ω
|ρ(x, ut)| |∇u| dx ds

}
.

(4.12)



STABILIZATION FOR ELASTIC WAVES 113

Substituting (4.4) in (4.12) we have
∫ t+T

t

∫

Γ(xo)

[
b2
∣∣∣∣
∂u

∂η

∣∣∣∣
2

+ (a2− b2)(div u)2
]
dΓ ds ≤

≤ C

{
E(t) + E(t+ T ) +

∫ t+T

t

∫

ω
(|ut|2 + |u|2) dx ds

+

∫ t+T

t

∫

Ω
|ρ(x, ut)| (|∇u|+ |u|) dx ds

}
.

(4.13)

From (4.13) and (4.2) and observing that E(t) is a nonincreasing function,

there exist a positive constant C1 such that

TE(t+ T ) ≤
∫ t+T

t
E(s) ds ≤ C1

{
E(t) + E(t+ T ) +

∫ t+T

t

∫

ω

[
|ut|2 + |u|2

]
dx ds

+

∫ t+T

t

∫

Ω
|ρ(x, ut)|

[
|∇u|+ |u|

]
dx ds

}
.

Now, we fix a large T > 0 such that T ≥ 2C1 + 1 to obtain the conclusion of

Lemma 4.1.

Lemma 4.2. Let u be the solution of problem (1.1)–(1.3). Then
∫ t+T

t

∫

Ω
|ρ(x, ut)|

[
|∇u|+ |u|

]
dx ds ≤ C

[
E(t)− E(t+ T )

] 1
r+2

√
E(t)

+ C
[
E(t)−E(t+T )

] p+1
p+2 E(t)

4−p
4(p+2)

(4.14)

for r ≥ 0 and 0 ≤ p ≤ 2.
∫ t+T

t

∫

Ω
|ρ(x, ut)|

[
|∇u|+ |u|

]
dx ds ≤ C

[
E(t)− E(t+ T )

] 1
r+2
√

E(t)

+ C
[
E(t)− E(t+T )

] 2
4−p
√

E(t)

(4.15)

for r ≥ 0 and −1 ≤ p < 0.
∫ t+T

t

∫

Ω
|ρ(x, ut)|

[
|∇u|+ |u|

]
dx ds ≤ C

[
E(t)− E(t+ T )

] r+1
r+2
√

E(t)

+ C
[
E(t)− E(t+T )

] p+1
p+2E(t)

4−p
4(p+2)

(4.16)

for −1 < r < 0 and 0 ≤ p ≤ 2.
∫ t+T

t

∫

Ω
|ρ(x, ut)|

[
|∇u|+ |u|

]
dx ds ≤ C

[
E(t)− E(t+ T )

] r+1
r+2
√

E(t)

+ C
[
E(t)− E(t+T )

] 2
4−p
√

E(t)

(4.17)

for −1 < r < 0 and −1 ≤ p < 0.
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Proof: Using the assumptions on function ρ we have:

∫ t+T

t

∫

Ω
|ρ(x, ut)| (|∇u|+ |u|) dx ds ≤

≤ C

{∫ t+T

t

∫

Ω1

Ko a(x)
(
|ut|r+1 + |ut|

)
(|∇u|+ |u|) dx ds

+

∫ t+T

t

∫

Ω2

K1 a(x)
(
|ut|p+1 + |ut|

)
(|∇u|+ |u|) dx ds

}

= C(I1 + I2) .

(4.18)

where we have considered for each t ≥ 0.

Ω1 = Ω1(t) =
{
x ∈ Ω, |ut(x, t)| ≤ 1

}
, Ω2 = Ω\Ω1 .

From the proof of Existence Theorem we obtain that ‖utt‖2L2(Ω), ‖∇ut‖2L2(Ω)

and ‖∆u‖2L2(Ω) are bounded. Then, to estimate I1 and I2 we consider the four

cases related in the Theorem about Stabilization:

For the case r ≥ 0 and 0 ≤ p ≤ 2, using Poincare’s inequality we obtain

I1 ≤ ‖
√
a‖L∞(Ω) 2Ko

∫ t+T

t

∫

Ω1

√
a(x) |ut| (|∇u|+ |u|) dx ds

≤ C

(∫ t+T

t

∫

Ω1

a(x) |ut|2 dx ds

)1/2(∫ t+T

t

∫

Ω1

(|∇u|+ |u|)2 dx ds

)1/2

≤ C

(∫ t+T

t

∫

Ω1

a(x) |ut|2 dx ds

)1/2(∫ t+T

t
E(s) ds

)1/2

≤ C

(∫ t+T

t

∫

Ω1

a(x) |ut|r+2 dx ds

) 1
r+2 √

E(t)

because
2

r+2
+

r

r+2
= 1, where C depends on |Ω|, ‖√a‖L∞(Ω) and the fixed T .

We have used the fact that E(t) is a nonincreasing function of t.

From the hypotheses (2.2) on the function ρ and using (2.4), we get

I1 ≤ C

(∫ t+T

t

∫

Ω1

ρ(x, ut)·ut dx ds

) 1
r+2√

E(t) ≤ C
[
E(t)− E(t+ T )

] 1
r+2
√

E(t) .
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Also, we have

I2 ≤ 2K1

∫ t+T

t

∫

Ω2

a(x) |ut|p+1 (|∇u|+ |u|) dx ds

≤ C

(∫ t+T

t

∫

Ω2

a(x)
p+2
p+1 |ut|p+2 dx ds

)p+1
p+2

(∫ t+T

t

∫

Ω2

(|∇u|+ |u|)p+2 dx ds

) 1
p+2

≤ C

(∫ t+T

t

∫

Ω2

a(x) |ut|p+2 dx ds

)p+1
p+2

(∫ t+T

t

∫

Ω
|∇u|p+2 dx ds

) 1
p+2

where we have used the Poincare’s inequality in W 1,p+2
o (Ω) and the fact that a(x)

is a bounded function.

Using Gagliardo–Niremberg Lemma and Poincare’s inequality we have

‖∇u‖
(Lp+2(Ω))3

≤ C ‖∇u‖θ
(H1(Ω))3

‖∇u‖1−θ
(L2(Ω))3

≤ C ‖u‖θ
(H2(Ω)∩H1

o (Ω))
3 ‖∇u‖1−θ

(L2(Ω))3

≤ C ‖∆u‖θ
(L2(Ω))3

‖∇u‖1−θ
(L2(Ω))3

≤ C ‖∇u‖1−θ
(L2(Ω))3

≤ CE(t)
1−θ
2

with θ = 3p
2(p+2) .

From above estimate and the assumption (2.3) on ρ(x, s) and using (2.4), we

conclude that

I2 ≤ C

(∫ t+T

t

∫

Ω2

ρ(x, ut) · ut dx ds

)p+1
p+2

E(t)
1−θ
2

≤ C
[
E(t)− E(t+ T )

] p+1
p+2 E(t)

4−p
4(p+2) .

Combining the estimates for I1 and I2 with inequality (4.18) we conclude the

proof of (4.14).

Next, we consider the case r ≥ 0 and −1 ≤ p < 0. Then

I1 ≤ C
[
E(t)− E(t+ T )

] 1
r+2

√
E(t) .

Poincare’s inequality implies that

I2 ≤ 2K1

∫ t+T

t

∫

Ω2

a(x) |ut| (|∇u|+ |u|) dx ds

≤ C

(∫ t+T

t

∫

Ω2

a(x) |ut|2 dx ds

)1
2 √

E(t) ≤
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≤ C



(∫ t+T

t

∫

Ω2

(
a(x) |ut|2−α

)4−p
4 dx ds

) 4
4−p



1/2

·


(∫ t+T

t

∫

Ω2

(|ut|α)
4−p
−p dx ds

] −p
4−p



1/2√

E(t)

= C

(∫ t+T

t

∫

Ω2

a(x) |ut|p+2 dx ds

) 2
4−p

(∫ t+T

t

∫

Ω2

|ut|6 dx ds

) −p

8−2p √
E(t)

with α = −6p
4−p .

From Theorem of Existence we have that u ∈ W 1,∞(0,∞; (H1
o (Ω))

3), then

ut ∈ L∞(0,∞; (H1
o (Ω))

3). Therefore,

‖ut‖(L6(Ω))3
≤ C ‖∇ut‖(L2(Ω))3

≤ C .

Thus, we have

I2 ≤ C

(∫ t+T

t

∫

Ω2

a(x) |ut|p+2 dx ds

) 2
4−p √

E(t)

≤ C

(∫ t+T

t

∫

Ω2

ρ(x, ut)·ut dx ds

) 2
4−p√

E(t) ≤ C
[
E(t)− E(t+T )

] 2
4−p

√
E(t) .

Combining above estimates for I1 and I2 with inequality (4.18), the result of

(4.15) holds.

The case −1 < r < 0 and 0 ≤ p ≤ 2. In this case, using Poincare’s inequality

and (2.4), we have

I1 ≤ C

∫ t+T

t

∫

Ω1

a(x) |ut|r+1 |∇u| dx ds

≤ C

(∫ t+T

t

∫

Ω1

a(x) |ut|r+2 dx ds

)r+1
r+2

(∫ t+T

t

∫

Ω
|∇u|r+2 dx ds

) 1
r+2

≤ C

(∫ t+T

t

∫

Ω1

ρ(x, ut) · ut dx ds

)r+1
r+2

(∫ t+T

t

∫

Ω
|∇u|r+2 dx ds

) 1
r+2

≤ C
[
E(t)− E(t+ T )

] r+1
r+2
√

E(t) .

The estimate for I2 is the same of case (4.14): r ≥ 0 and 0 ≤ p ≤ 2. From

estimates for I1, I2 and inequality (4.18) we conclude the proof of (4.16).
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The case −1 < r < 0 and −1 ≤ p < 0. In the same way of above case, we

obtain

I1 ≤ C
[
E(t)− E(t+ T )

] r+1
r+2

√
E(t) .

The integral I2 is estimated like in the second case (4.15), that is

I2 ≤ C
[
E(t)− E(t+ T )

] 2
4−p

√
E(t) .

Combining these estimates with inequality (4.18) we conclude the proof of

(4.17).

Proposition 4.3. The energy for the solution of problem (1.1)–(1.3) satisfies

E(t) ≤ C

{
Di(t)

2 +

∫ t+T

t

∫

ω
(|u|2 + |ut|2) dx ds

}
, i = 1, 2, 3, 4 ,(4.19)

where

D1(t)
2 =

[
E(t)− E(t+ T )

]
+
[
E(t)− E(t+ T )

] 2
r+2 +

[
E(t)− E(t+ T )

] 4(p+1)
5p+4

if r ≥ 0 and 0 ≤ p ≤ 2;

D2(t)
2 =

[
E(t)− E(t+ T )

]
+
[
E(t)− E(t+ T )

] 2
r+2 +

[
E(t)− E(t+ T )

] 4
4−p

for the case r ≥ 0 and −1 ≤ p < 0;

D3(t)
2 =

[
E(t)− E(t+ T )

]
+
[
E(t)− E(t+ T )

] 2(r+1)
r+2 +

[
E(t)− E(t+ T )

] 4(p+1)
5p+4

for the case −1 < r < 0 and 0 ≤ p ≤ 2;

D4(t)
2 =

[
E(t)− E(t+ T )

]
+
[
E(t)− E(t+ T )

] 2(r+1)
r+2 +

[
E(t)− E(t+ T )

] 4
4−p

for the case −1 < r < 0 and −1 ≤ p < 0.

Proof: The proof follows using Lemma 4.1, Lemma 4.2 and Young’s inequal-

ity.

Now, in order to estimate the last two terms of (4.19) we need the following

result.

Proposition 4.4. There exists a constant C > 0 such that

∫ t+T

t

∫

Ω
|u|2 dx ds ≤ C

{
Di(t)

2 +

∫ t+T

t

∫

ω
|ut|2 dx ds

}
(4.20)

where u is the solution of problem (1.1)–(1.3) with initial data uo, u1 such that

E(0) ≤ R, R > 0 fixed. The constant C depends on R.
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Proof: We prove by contradiction. If (4.20) is false, exist a sequence of

solutions {un}n≥1 with initial data uno , u
n
1 and a sequence {tn}n≥1 such that

lim
n→∞

∫ tn+T

tn
‖un(s)‖2(L2(Ω))3

ds

Di(tn)
2 +

∫ tn+T

tn

∫

ω
|unt|2 dx ds

= +∞ .(4.21)

Let λ2n =

∫ tn+T

tn
‖un(s)‖2(L2(Ω))3

ds and vn(t) =
u(t+tn)
λn

, 0 ≤ t ≤ T . Then we

have from (4.21)

Q2n(tn) =
1

λ2n

{
Di(tn)

2 +

∫ tn+T

tn

∫

ω
|unt|2 dx ds

}
→ 0 , n→∞(4.22)

according each case i = 1, 2, 3, 4.

Also, we have
∫ T

0

∫

Ω
|vn|2 dx ds = 1 .(4.23)

Thus, we have from inequality (4.19),

E(vn(t)) = E

(
un(t+ tn)

λn

)
=

1

λ2n
E(un(t+ tn)) ≤

1

λ2n
E(un(tn)) ≤

≤ 1

λ2n

{
Di(tn)

2 +

∫ tn+T

tn

∫

ω
(|unt|2 + |un|2) dx ds

}

≤ C

{
Qn(tn)

2 +
1

λ2n

∫ tn+T

tn

∫

ω
|un(x, s)|2 dx ds

}

≤ C

{
Qn(tn)

2 +
1

λ2n

∫ T

0

∫

Ω
|un(x, τ + tn)|2dx dτ

}

= C

{
Qn(tn)

2 +

∫ T

0

∫

Ω
|vn(x, τ)|2dx dτ

}

≤ C
{
Qn(tn)

2 + 1
}
≤ 2C < +∞ , 0 ≤ t ≤ T, n large .

Therefore,

‖vnt(t)‖(L2(Ω))3
, ‖∇vn‖(L2(Ω))3

≤ C , 0 ≤ t ≤ T, ∀ n .(4.24)

On the other hand, by Poincare’s inequality and estimate (4.24) it results
∫

Ω
|vn(x, t)|2 dx =

∫

Ω

1

λ2n
|un(x, t+ tn)|2 dx ≤

≤ C

∫

Ω

1

λ2n
|∇un(x, t+tn)|2 dx ≤ C

∫

Ω
|∇vn(t)|2dx < C , ∀ t ∈ [0, T ], ∀n.

(4.25)
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From (4.24) and (4.25) we conclude

vn ∈ W 1,∞(0, T ; (L2(Ω))3) ∩ L∞(0, T ; (H1
0 (Ω))

3) .(4.26)

To take the limit of vn(t), first, we need check that

lim
n→∞

1

λn
ρ(x, unt(t+ tn)) = 0 in L1([0, T ]× Ω) .

For the case r ≥ 0 and 0 ≤ p ≤ 2 we see, from the estimates for I1 and I2,

that

∫ t+T

t

∫

Ω
|ρ(x, ut)| dx ds ≤ C

{[
E(t)−E(t+T )

] 1
r+2 +

[
E(t)−E(t+T )

] p+1
p+2

}
(4.27)

and using the definition of D1(t) in Proposition 4.3 we obtain

[
E(t)− E(t+ T )

] 1
r+2 ≤ C D1(t) ,

[
E(t)− E(t+ T )

] p+1
p+2 ≤ C D1(t)

4+5p
2(p+2) .

Therefore
∫ t+T

t

∫

Ω
|ρ(x, ut)| dx ds ≤ C

{
D1(t) +D1(t)

4+5p
2(p+2)

}
.

Using the definition of Qn we can write

1

λn

∫ t+T

t

∫

Ω
|ρ(x, unt)| dx ds ≤ C

{
Qn(tn) + λ−1n D1(tn)

4+5p
2(p+2)

}

= C
{
Qn(tn) + λ

3p
2(p+2)
n Qn(tn)

4+5p
2(p+2)

}
.

Now, we observe that {λn}n≥1 is a bounded sequence

λn =

(∫ tn+T

tn
‖un(s)‖2 ds

)1/2
≤ C

(∫ tn+T

tn
‖∇un(s)‖2 ds

)1/2
≤ C E(un(0)) ≤ C R

because the initial data are in a ball B(0, R).

Hence, (4.22) implies that

1

λn

∫ t+T

t

∫

Ω
|ρ(x, unt)| dx ds ≤

≤ C
{
Qn(tn) + λ

3p
2(p+2)
n Qn(tn)

4+5p
2(p+2)

}
→ 0 , n→∞ .

(4.28)
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For the case r ≥ 0 and −1 ≤ p < 0, from estimates for I1 and I2, we obtain

∫ t+T

t

∫

Ω
|ρ(x, unt)| dx ds ≤ C

{[
E(t)− E(t+ T )

] 1
r+2 +

[
E(t)− E(t+ T )

] 2
4−p
}

≤ C D2(t) .

Thus
1

λn

∫ t+T

t

∫

Ω
|ρ(x, unt)| dx ds ≤ CQn(tn) → 0 , n→∞ .(4.29)

For the others two cases we obtain the same conclusion as in (4.28) and (4.29)

respectively. We have proved, in the four cases, that

1

λn
ρ(x, unt(t+ tn))→ 0 in L1([0, T ]× Ω) .(4.30)

Now we can take a limit of {vn(t)}n≥1. From (4.26) there exists a function

v(t) such that

vn(t)
∗
⇀ v(t), in W 1,∞(0, T ; (L2(Ω))3) ∩ L∞(0, T ; (H1

o (Ω))
3)

and strongly in L2([0, T ]× Ω).

Then, the limit function satisfies:

v ∈ W 1,∞(0, T ; (L2(Ω))3) ∩ L∞(0, T ; (H1
o (Ω))

3) ,

vtt − b2∆v − (a2 − b2)∇ div v + α v = 0, in [0, T ]× Ω ,(4.31)
∫ T

0

∫

ω
|vt(t)|2 dx ds = 0 ,(4.32)

∫ T

0
‖v(t)‖2 ds = 1 .(4.33)

In fact, semigroups theory says that

v ∈ C1(0, T ; (L2(Ω))3) ∩ C(0, T ; (H1
o (Ω))

3) .

Because the function v satisfies (4.31) and (4.32), the Holmgren’s Unique-

ness Theorem implies that v(x, t) = 0 in Ω × [0, T ]. This result contradicts the

condition (4.33) on the function v. Thus, the inequality (4.20) holds.
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5 – Proof of Theorem 2.2

Using the result of Proposition 4.3 and the estimate in the Proposition 4.4 we

conclude
E(t) ≤ C

{
Di(t)

2 +

∫ t+T

t

∫

ω
|ut|2 dx ds

}
(5.1)

where Di(t) (i = 1, 2, 3, 4) are given in the Proposition 4.3.

Now, we shall estimate the last term in (5.1) and derive the decay estimates

stated in the Theorem 2.2.

For the case 0 ≤ r and 0 ≤ p ≤ 2, we see from the hypothesis (2.1) on function

a(x)∫ t+T

t

∫

ω
|ut|2 dx ds ≤ C

∫ t+T

t

∫

Ω
a(x) |ut|2 dx ds

≤ C

∫ t+T

t

∫

Ω1

a(x) |ut|2 dx ds+

∫ t+T

t

∫

Ω2

a(x) |ut|2 dx ds

≤ C

{[∫ t+T

t

∫

Ω1

a(x) |ut|r+2 dx ds

] 2
r+2

+

∫ t+T

t

∫

Ω2

a(x) |ut|p+2 dx ds

}

≤ C

{[∫ t+T

t

∫

Ω1

ρ(x, ut)·ut dx ds

] 2
r+2

+

∫ t+T

t

∫

Ω2

ρ(x, ut)·ut dx ds

}

where the last C depends on |Ω|, T and ||a||∞.

Then, due to (2.4), we have∫ t+T

t

∫

ω
|ut|2 dx ds ≤ C

{[
E(t)− E(t+ T )

]
+
[
E(t)− E(t+ T )

] 2
r+2

}
.(5.2)

From (5.1), (5.2) and the expression for D1(t)we obtain

E(t) ≤ C

{[
E(t)−E(t+T )

]
+
[
E(t)−E(t+T )

] 2
r+2 +

[
E(t)−E(t+T )

] 4(p+1)
4+5p

}
.

Then, because E(t) is bounded, we conclude that

E(t) ≤ C
[
E(t)− E(t+ T )

]K1

where K1 = min
{

2
r+2 ,

4(p+1)
4+5p

}
is such that 0 < K1 < 1.

We have obtained the following inequality

sup
t≤s≤t+T

E(s)
1
K1 ≤ E(t)

1
K1 ≤ C

[
E(t)− E(t+ T )

]
.(5.3)

If we set 1 + γ = 1
K1

, then γ = 1−K1
K1

and applying Lemma 3.1 to (5.3) we

obtain that

E(t) ≤ C1(1 + t)−γ1(5.4)

with γ1 = min
{
2
r ,
4(p+1)

p

}
.
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For the case 0 ≤ r and −1 ≤ p < 0 we have
∫ t+T

t

∫

Ω2

a(x) |ut|2 dx ds ≤ C1
[
E(t)− E(t+ T )

] 4
4−p .

Then, in the same way of the first case, we get
∫ t+T

t

∫

ω
|ut|2 dx ds ≤ C1

{[
E(t)−E(t+T )

] 2
r+2+

[
E(t)−E(t+T )

] 4
4−p

}
.(5.5)

From (5.1) , (5.5) and the definition of D2(t) we have

E(t) ≤ C

{
E(t)− E(t+ T ) +

[
E(t)− E(t+ T )

] 2
r+2 +

[
E(t)− E(t+ T )

] 4
4−p

}

and because this

E(t)
1
K2 ≤ C

[
E(t)− E(t+ T )

]
(5.6)

with K2 = min
{

2
r+2 ,

4
4−p

}
such that 0 < K2 < 1.

Applying Lemma 3.1 to (5.6) we have

E(t) ≤ C(1 + t)−γ2

with γ2 = min
{
2
r ,
−4
p

}
.

For the case −1 < r < 0 and 0 ≤ p ≤ 2, we see that

∫ t+T

t

∫

Ω1

a(x) |ut|2 dx ds ≤ C

∫ t+T

t

∫

Ω1

a(x) |ut|r+2 dx ds

≤ C

∫ t+T

t

∫

Ω1

ρ(x, ut)·ut dx ds ≤ C
[
E(t)− E(t+ T )

]

and it follows that
∫ t+T

t

∫

ω
|ut|2 dx ds ≤ C

[
E(t)− E(t+ T )

]
.(5.7)

Thus, from (5.1), (5.7) and the definition of D3(t), we get

E(t) ≤ C

{
E(t)−E(t+T )+

[
E(t)−E(t+T )

]2(r+1)
r+2 +

[
E(t)−E(t+T )

]4(p+1)
4+5p

}
.(5.8)

Therefore

E(t)
1
K3 ≤ C1

[
E(t)− E(t+ T )

]

with K3 = min
{
2(r+1)
r+2 , 4(p+1)4+5p

}
such that 0 < K3 < 1 .

We conclude by Lemma 3.1,

E(t) ≤ C(1 + t)−γ3

with γ3 = min
{
−2(r+1)

r , 4(p+1)p

}
.
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Finally, for the case −1 < r < 0 and −1 ≤ p < 0, we have

∫ t+T

t

∫

ω
|ut|2 dx ds ≤ C

{[
E(t)− E(t+ T )

]
+
[
E(t)− E(t+ T )

] 4
4−p

}

and by (5.1) and the definition of D4(t) it follows that

E(t) ≤ C

{
E(t)−E(t+T )+

[
E(t)−E(t+T )

]2(r+1)
r+2 +

[
E(t)−E(t+T )

] 4
4−p

}
.

Thus

E(t)
1
K4 ≤ C

[
E(t)− E(t+ T )

]

with K4 = min
{
2(r+1)
r+2 , 4

4−p

}
.

From this inequality, using Lemma 3.1, we obtain

E(t) ≤ C(1 + t)−γ4

with γ4 = min
{
−2(r+1)

r , −4)p

}
.

The proof of Theorem 2.2 is complete.
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