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STRONG UNIFORM APPROXIMATION FOR
SOME SINGULARLY PERTURBEDDIFFERENTIAL EQUATIONS

ARISING IN CHEMICAL REACTOR THEORY

Dialla Konate

Abstract: A family of singularly perturbed ordinary differential problems that

arise from Chemical Reactor Theory introduced among others by O’Malley is under

consideration. The numerical stability of this problem is very fragile, very sensitive to

the functional space setting particularly to the norm the functional space is equipped

with. So the issue of finding an asymptotic solution remains of higher interest since most

of those one may find in the literature are not easy to compute or are not of higher order.

What we do within the current paper is to make a repeated use of the classical matching

technique that is well-known in Asymptotic Analysis to construct, via a strong stable

corrector (in a sense to be defined) an easy to compute regular asymptotic solution of any

pescribed order. This higher order solution is valid throughtout the geometric domain

of study.

1 – Introduction

In many problems arising from various fields of physical interest such as bio-

chemical kinetics, plasma physics, mechanical and electrical systems, the observed

phenomenon, for exemple a Mechanical Oscillator or a Chemical Reactor may be

described by a differential equation involving a small parameter, say ε, affecting

the highest derivative term. In the present paper we are focusing our attention

on a family of problems that arise in the study of adiabatic tubular chemical flow
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reactors with axial diffusion that is present in the mathematical literature (for

example I refer the reader to [19] and the therein references and to other works

upto a recent study that is [16]).

From a mathematical point of view the study of such phenomena turns into the

study of the attached singularly perturbed problems whose solutions are expected

to depict their behaviour.

The numerical study of singularly perturbed differential equations is known

to be difficult. Usually two approches are used to tackle it. A first one, with re-

gard to the failure of many classical numerical methods, is aiming at constructing

adapted numerical methods using special meshes or any other special approxi-

mation techniques.

Some authors has proposed such schemes that became classical. The inter-

ested reader may report to: [6], [1], [21], [14]. In the same field, some new ideas

have been proposed these last years. One may find some of those in [3], [7] and

[22].

A second approach goes it way through the use of the techniques of Asymptotic

Analysis. The asymptotic analysis of ordinary differential equations is largely

present in the literature.

As sample of well-known works including pioneering ones we may cite: [24],

[19;20], [17], [8], [13], [23], [11], [2]. But it is rare to find easy to compute uniform

higher order asymptotic approximation for higher order perturbed differential

problems.

Nevertheless in [19;20] and [3;4], explicite approximation solutions have been

worked out but those which are higher order approximations are rather represen-

tation forms than actual easy to compute solutions.

In the current paper we have made the choice to work from an asymptotic

analysis point of view. Namely, we perform the construction of a higher order

asymptotic approximation solution in a sense that we call it, according to [3], a

Strongly Uniformly or Strongly Stable Asymptotic Approximation.

In fact, adopting the notations in [19;20]; in its more general expression, the

family of singularly perturbed problems under our consideration may be written

as:

(1.1)















Lεu ≡ ε u′′ + a(x)u′ + b(x, u) = f , 0 ≤ x ≤ 1 ,

Bε,0u = u(0) − ε u′(0) = A ,

Bε,1u = u(1) + ε u′(1) = B .

Setting Ω = ]0, 1[, we suppose that for x ∈ Ω

(1.2) a(x) ≥ α > 0 ; a ∈ C1(Ω) , b ∈ C1(Ω×R) .
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In [18] and [3;4] it is shown that the stability of the difference operator associated

with equations (1.1) is very sensitive to the functional space setting. So that

in general, (1.1) is not stable and then is difficult to solve numerically. This

legitimates the seek of asymptotic solutions as far as one may find some easy to

compute ones.

2 – Setting the problem in the Linear case

The linear singular perturbation problem is derived from (1.1) by taking the

function b such that b(x, u) = b(x)u.

‖ · ‖∞ stands for the Maximum Norm.

L1(Ω) stands for the Lebesgue space of absolute integrable functions over Ω ,

and L2(Ω) is the Lebesgue Space of Square Integrable functions defined on Ω.

The norms over these classical Lebesgue function spaces are set to be respectively:

|f |1 =

∫

Ω
|f(x)| dx and |f |2 =

(
∫

Ω
|f(x)|2 dx

)
1

2

.

H1(Ω) denotes the Sobolev Space of the functions which, with their first

derivatives are lying in L2(Ω). The norm in H1(Ω) is set to be:

‖f‖1 = Max
(

|f |2, |f
′|2
)

.

Then, we consider the following linear singular perturbation problem:

(2.1)















Lεu ≡ εu′′ + a(x)u′ + b(x)u = f , x ∈ Ω ,

Bε,0u = u(0) − ε u′(0) = A ,

Bε,1u = u(1) + ε u′(1) = B .

Hypothesis (1.2) becomes:

(2.2) a(x) ≥ α > 0 , a, b ∈ C1(Ω) .

It is known from [19] that under hypothesis (2.2) Problem (2.1) has a unique

solution which exhibits a boundary layer phenomenon near the point x = 0.

A key tool we are using in the sequel is an a-priori estimate from [18] that is

used in [4] (see theorem 1.2 at page 633) to set up the notion of Strong Stability.

We set the Weighted Sobolev Norm to be:

|||v||| = ‖v‖∞ + ‖v
′‖∞ .
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In the sequel, we are making use of a definition from [3;4] which is:

Definition 2.1. We say that the set (Lε, Bε,0, Bε,1) is strongly Uniformly

Stable in the sense of Gartland Jr. if there exist two constants C and ε0 such

that:

|||v||| ≤ C
(

|Lεv|1 + |Bε,0v|+ |Bε,1v|
)

for 0 < ε ≤ ε0, and all sufficiently smooth v.

We, then have the following result:

Theorem 2.1. Under hypothesis (2.2), the set (Lε, Bε,0, Bε,1) that defines

Problem (2.1) is Strongly Uniformly Stable.

3 – Construction of the Uniformly Stable Solution

With regard to what precedes, we define a corrector in the following sense

Definition 3.1. Consider two auxiliary operators Bε,0 and Bε,1 such that

(Lε , Bε,0Bε,1) is strongly uniformly stable in the sense of Gartland. A regu-

lar function, say θq is said to be a Strong Stable q-th order Corrector or a

Strongly Uniformly Stable Corrector for u solution of Problem (2.1) with respect

to (Lε , Bε,0Bε,1) if:

(H.1) Max
(

|Bε,0w|, |Bε,1w|
)

≤ C.εq

where w = u− (uq + θq) and uq is a q-th order outer expansion to u (see below).

The regular function Yq = uq + θq will be said a strongly Stable q-th order

approximation solution to u if, in addition to inequality (H.1), the following

inequality holds true:

(H.2) |Lεw|1 ≤ C.εq .

C stands for various contants that are independent of ε.

We start by setting up uq the q-th order outer expansion or regular expansion

to u.

uq =
q
∑

i=0

εiui where the coefficient functions ui, 0 ≤ i ≤ q, are defined by:

(3.1) a u′0 + b u0 = f , a u′i + b ui = −u′′i−1, 1 ≤ i ≤ q
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under some initial conditions that are:

(3.2) u0(1) = B , ui(1) = −u
′
i−1(1), 1 ≤ i ≤ q .

We state:

Theorem 3.1. There exists a regular function U such that:

(3.3)















LεU ≡ ε U ′′ + a(x)U ′ + b(x)U = −εq+1 u′′q ,

Bε,0U = U(0) − ε U ′(0) = A + αε ,

Bε,1U = U(1) + ε U ′(1) = εq+1 u′q(1) ,

where: A = u(0)− ε u′(0);

αε = −uq(0) + ε u′q(0)

= −u0(0) − ε
(

u1(0)− u′0(0)
)

− ε2
(

u2(0)− u′1(0)
)

− ε3
(

u3(0)− u′2(0)
)

− · · · − εq
(

uq(0)− u′q−1(0)
)

+ εq+1 u′q(0) .

Proof: Set U= u− uq.

• Calculation of LεU

From (3.1) we get:

Lεu0 = ε u′′0 + a u′0 + b u0 = f + ε u′′0

and, for 1 ≤ i ≤ q :

Lεui = ε u′′i + a u′i + b ui = −u′′i−1 + ε u′′i ,

εi Lεui = −εi u′′i−1 + εi+1 u′′i .

Hence

Lεuq =
q
∑

i=0

εiLεui = f + ε u′′0 +
q
∑

i=1

(−εi u′′i−1 + εi+1 u′′i ) = f + εq+1 u′′q .

Which identity, by virtue of the equality U = u− uq, leads to:

LεU = Lεu− Lεuq = f − f − εq+1 u′′q = −εq+1 u′′q

which is the first equality of the system (3.3).
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• Calculation of Bε,0U = U(0)− ε U ′(0).

We have:

uq(0)− ε u′q(0) = u0(0) +
q
∑

i=1

εi
(

ui(0)− u′i−1(0)
)

− εq+1 u′q(0) .

We set:

−αε = u0(0) +
q
∑

i=1

εi
(

ui(0)− u′i−1(0)
)

− εq+1 u′q(0) .

So:

U(0)− ε U ′(0) = u(0)− ε u′(0)−
(

uq(0)− ε u′q(0)
)

= A+ αε .

• Calculation of Bε,1U= U(1) + ε U ′(1). We have:

uq(1) + ε u′q(1) = u0(1) +
q
∑

i=1

ε
(

ui(1) + ui−1(1)
′
)

+ εq+1 u′q(1) .

According to equation (3.2), it comes that:

uq(1) + ε u′q(1) = B + εq+1 u′q(1) ,

then we conclude that:

U(1) + ε U ′(1) = u(1) + ε u′(1)−
(

uq(1) + ε u′q(1)
)

= B −B − εq+1 u′q(1)

= − εq+1 u′q(1) .

Next, we state:

Theorem 3.2. There exists a regular function W such that W is a q+1-th

order corrector to u based only on the outer expansion uq at the exclusion of the

inner expansion.

Proof: We consider a regular expansion, say βq such that:

βq =
q
∑

i=0

εiβi where βi(x) = (x−1)
2 ti, ti ∈ R, 0 ≤ i ≤ q .

Since

β′i(x) = 2 ti(x− 1)
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then it is obvious that

(3.4) βq(1) + ε β
′

q(1) = 0 .

The coefficients ti which values identification are a part of the trouble to shoot

will be determined later. We need now to calculate βq(0) + β
′

q(0). We have

βi(0) = ti and β′i(0) = −2 ti which, put together lead to βq(0) =
q
∑

i=0

εiti and

β
′

q(0) = −2
(

q
∑

i=0

εiti
)

so, we obtain:

(3.5) βq(0)− ε β
′

q(0) = (1 + 2 ε)

( q
∑

i=0

εiti

)

.

We set (1 + 2 ε)
(

q
∑

i=0

εiti
)

= B and V = U− βq= u− uq − βq. We state:

Lemma 3.1. The function V such that V = U − βq = u− uq − βq satisfies:

(3.6)



















LεV = −ε
q+1 u′′q − Lεβq , 0 ≤ x ≤ 1,

Bε,0V = V (0)− εV ′(0) = A+ αε −B,

Bε,1V = V (1) + εV ′(1) = εq+1 u′q(1) ,

where

(3.7)















Lεβq =
q
∑

i=0

Lεβi =
q
∑

i=0

εitic ,

c = 2 ε+ 2 (x−1) a(x) + (x−1)2 b(x) .

Proof:

• Calculation of LεV .

From

βi = (x− 1)
2 ti ,

and reminding that:

Lεu = ε u′′ + a u′ + b u ,

the equalities:

β′i = 2 ti (x−1)

β′′i = 2 ti
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lead to

Lεβi = ti
(

2 ε+ 2 a(x−1) + b(x−1)2
)

= ti c

hence Lεβq is given by equation (3.7).

From equality V = U − βq, we get:

LεV = LεU − Lεβq = −εq+1 u′′q − Lεβq

by virtue of Theorem 3.1.

• Calculation of Bε,0V

Bε,0V = U(0)− ε U ′(0)−
(

βq(0)− ε β
′

q(0)
)

= A+ αε −B

by virtue of Theorem 3.1 and equation (3.5).

• Calculation of Bε,1V

Bε,1V = U(1) + ε U ′(1) +
(

βq(1) + ε β
′

q(1)
)

= εq+1 u′q(1)

by virtue of Theorem 3.1 and equation (3.4).

The next step on the way to our goal is to work out an asymptotic outer

expansion to V . We state:

Lemma 3.2. There exists a regular function Hq which coincides with a

q-th order outer expansion to V . Moreover the regular function W such that

W = V −Hq satisfies:

(3.8)















LεW = O(εq+1),

W (0)− εW ′(0) = O(εq+1),

W (1) + εW ′(1) = O(εq+1) .

Proof: We set

Hq =
q
∑

i=0

εitihi

where the scalars ti are the same from the definition of βi and the coefficient

functions hi are to be determined by matching, with regard to the parameter ε,

the same power terms in LεV in one hand and in LεHq in an other hand.

We know LεV from equation (3.7) and it remains to work out LεHq.
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• Calculation of LεHq

From the equality Hq =
q
∑

i=0

εitihi, we draw obviuosly that:

LεHq =
q
∑

i=0

(

εi+1 ti h
′′
i + εi ti(a h

′
i + b hi)

)

.

So the matching yields:

(3.9a)















a h′0 + b h0 = − c ,
{

ti(a h
′
i + b hi) = − ti−1 h

′′
i−1− ti c ,

1 ≤ i ≤ q .

The equations (3.9a) have to be supplemented with some boundary or initial con-

ditions to make well posed problems out about the determination of the functions

hi.

• Determination of the boundary conditions attached to the function hi.

One has:

(3.10a)

Hq(1) + εH ′
q(1) =

= t0 h0(1) +
q
∑

i=1

(

εi
(

ti hi(1) + ti−1 h
′
i−1(1)

)

)

+ εq+1 tq h
′
q(1)

and

(3.11)

Hq(0)− εH ′
q(0) =

= t0 h0(0) +
q
∑

i=1

(

εi
(

ti hi(0)− ti−1 h
′
i−1(0)

)

)

− εq+1 tq h
′
q(0) .

We are imposing such boundary conditions on the function hi so that:

|Hq(1) + εH ′
q(1)| = O(εq+1) .

Such condition is fullfilled under:

(3.9b)















h0(1) = 0 ,
{

ti hi(1) + ti−1 h
′
i−1 = 0 ,

1 ≤ i ≤ q .

More precisely, under conditions (3.9b), we get:

(3.10b) Hq(1) + εH ′
q(1) = εq+1 tq h

′
q(1) .
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Then the coefficient functions hi are fully determined by putting together the

equations (3.9a) and (3.9b).

• Calculation of LεW :

SinceHq is the q-th order outer expansion to V then, according to Theorem 3.1

we have:

(3.12a) LεW = − εq+1 tq h
′′
q − εq+1 u′′q .

• Calculation of Bε,0W :

We have:

W (0)− εW ′(0) = V (0)− ε V ′(0)−
(

Hq(0)− εH ′
q(0)

)

.

Refering to

V (0)− ε V ′(0) = A+ αε −B

and to equation (3.11), we conclude that:

(3.12b)

W (0)− εW ′(0) = g

= A− u0(0)− t0 − t0 h0(0)

−
q
∑

i=1

εi
(

ui(0)− u′0(0) + 2 ti + ti hi(0)− ti−1 h
′
i−1(0)

)

+ εq+1
(

u′q(0)− 2 tq + tq h
′
q(0)

)

.

• Calculation of Bε,1W :

We have:

W (1) + εW ′(1) = V (1) + ε V ′(1)−
(

Hq(1) + εH ′
q(1)

)

.

From Lemma 3.1, we take:

V (1) + ε V ′(1) = εq+1 u′q(1)

and from equation (3.10b), we have

Hq(1) + εH ′
q(1) = εq+1 tq h

′
q(1)

so that, we get:

(3.12c) W (1) + εW ′(1) = εq+1
(

u′q(1)− tq h
′
q(1)

)

.
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Put together, equations (3.12a), (3.12b) and (3.12c) lead to the system:

(3.12)



















LεW = − εq+1 tq h
′′
q − εq+1 u′′q ,

W (0)− εW ′(0) = g ,

W (1) + εW ′(1) = εq+1
(

u′q(1)− tq h
′
q(1)

)

,

where g is given by (3.12b). This leads to the conclusion that equations (3.8)

holds true.

Next we state:

Theorem 3.2. We set

θq = uq + βq +Hq .

We assume that:

(3.13)







hi(0) 6= −1 ,

0 ≤ i ≤ q .

Then there exists a unique (q+1)-tuple [t0, t1, ..., tq] that makes a Uniformly Stable

q-th order Solution to u out of the regular function θq. More precisely, we have:

|||(u− θq)||| ≤ C εq+1

where C is a constant that is independent of ε.

Proof: From equations (3.12), we have:

W (0)− εW ′(0) = g .

We assume that conditions (3.13) hold true. The following setting:















t0 = (A− u0(0)− 1)/(h0(0) + 1) ,
{

ti =
(

ui(0)− u′i−1(0) + 2 ti−1 − ti−1 h
′
i−1(0)

)

/(hi(0) + 1) ,

1 ≤ i ≤ q ,

turns g to be such that

g = εq+1
(

u′q(0)− 2 tq + tq h
′
q(0)

)

.
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Which means, among others, that

(3.14) |g| = O(εq+1) .

Then equations (3.12) can be rewritten as:

(3.12bis)























LεW = − εq+1 ti h
′′
i ,

W (0)− εW ′(0) = εq+1
(

u′q(0)− 2 tq + tq h
′
q(0)

)

,

W (1) + εW ′(1) = εq+1
(

u′q(1)− tq h
′
q(1)

)

.

we have:

W = V −Hq = u− (uq + βq +Hq) = u− θq .

One has just to replace, into equations (3.12bis) W with u− θq and to, straight-

way apply Theorem 2.1 knowing that

Max
[

|Lεu− θq|, |Bε,0u− θq|, |Bε,1u− θq|
]

≤ C εq+1

with C a constant independent of ε.

An easy consequence of Therorem 3.2 is:

Corollary 3.1. We assume the hypotheses of Theorem 3.2. In addition,

we assume that the functions u , uq , Hq belong to C∞(Ω). Then the following

statement holds true:

u(i)(x) = u(i)q (x) + β
(i)
q (x) + H(i)

q (x) +O(ε
q−i+1)

for x ∈ Ω, for 0 ≤ i ≤ q.

Remark 3.1. Via linearization technics (e.g. the Newton Method of Quasi-

lineaization); the non-linear case that occurs when b = b(x, u) can be turned into

a sequence of linear problems to be solved as above.

We may observe that:

Remark 3.2. The coefficient functions ui of uq and hi of Hq are obtained

from similar equations so they can be computed in parallel.
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