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LOCAL EXISTENCE OF CLASSICAL SOLUTIONS
TO THE WELL-POSED HELE–SHAW PROBLEM

S.N. Antontsev, C.R. Gonçalves and A.M. Meirmanov

Abstract: We prove local existence of classical solutions to the well-posed Hele–Shaw

problem under general conditions on the fixed boundaries. Our approach consists of a

construction of approximate solutions as the solutions to the one-phase Stefan problem

with ε- heat capacity and energy estimates in Von Mises variables. These estimates

permit us to find some small time interval where norms of approximate solutions in some

Sobolev spaces are bounded and pass to the limit when ε goes to zero.

1 – Introduction

The Hele–Shaw problem is a well-known model of liquid filtration in a porous

medium. In this model the governing equation for the liquid’s pressure is simply

the Poisson equation

(1.1) −∆p = f(x) ≡ divF

in the flow region Ω ⊂ Rn, n = 2, 3. This region is bounded by a multicomponent

boundary ∂Ω(t) which consists of a finite number of connected moving (free) or

fixed components without intersection. Let us denote by S(k), k = 1, ...,m the

fixed component and by Γ(i), i=1, ..., ` the free component of ∂Ω(t), so that

∂Ω(t) = S ∪ Γ(t)
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with

S =
m⋃

k=1

S(k) , Γ(t) =
⋃̀

i=1

Γ(i)(t) .

On the fixed boundary we assume the following boundary condition of the

third type

(1.2) α(k) ·
∂p

∂ν
+ (1− α(k)) · β(x, t) · p = p0(x, t) , x ∈ S(k) ,

where ∂
∂ν is the derivative in the outward normal direction, α(k) = const,

0 ≤ α(k) ≤ 1, β(x, t) ≥ 0.

Let us denote by S ′ the part of the fixed boundary where α(k) = 0 and,

respectively, the Dirichlet boundary condition holds. We put β = 1 on S ′. Note

also that α(k)=1 corresponds to the Neumann boundary condition.

On the free boundary Γ(t) the following boundary conditions hold (in what

follows all variables are dimensionless)

(1.3) p = 0 ,

(1.4) pt = |∇p|2 + F · ∇p .

The initial condition on the free boundary Γ(t)

(1.5) Γ(0) = Γ0 , Ω(0) = Ω0

completes the formulation of the problem.

We call this problem well-posed Hele–Shaw problem (WPHSP) whenever its

solution p(x, t) is nonnegative, which corresponds to the case

(1.6) p0(x, t) > 0 , f(x) ≥ 0 ,

and ill-posed otherwise.

Note that the problem (1.1)–(1.5) is exactly the one-phase Stefan problem

with vanishing heat capacity. It is well-known that the solutions of the one-

phase Stefan problem are infinitely smooth for t > 0 outside of fixed boundaries

independently on the smoothness of given boundary and initial data (supposed

Γ(t) is Lipshitz continuous). For the Hele–Shaw problem the solution may be

irregular with respect to the time variable (see examples in [1]). This peculiarity

implies the independent studying of the Hele–Shaw problem. Complete references

about this problem one can find in the paper of J.R. Ockendon and his collegues

(see [2]).
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Weak solutions for WPHSP have been studied by Elliott and Janovsky [3],

Gustafsson [4], Louro and Rodrigues [5]. The general case has been considered

by Antontsev, Meirmanov, Yurinski in the recent publication [1].

Classical solutions to WPHSP have been investigated by Meirmanov [6],

Reissig [7], Escher and Simonett [8].

Meirmanov [6] has studied WPHSP for the case n = 2 and strip-like domain

Ω(t) with α = 1, p0 = γ = const, F = γ∇x2,

S : x2 = 0

Γ0 : x2 = 1 + εR0(x1) .

He announced the local in time existence of the analytical solution such that

the position R(x1, t) of the free boundary Γ(t):

Γ(t) : x2 = 1 + εR(x1, t)

tends to the solution of the Boussinesque equation

∂h

∂t
=

∂

∂x1

(
h

∂h

∂x1

)

when ε→ 0.

The statement follows after the application of the nonlinear abstract Cauchy–

Kovalevskaya theorem proved by L. Ovsiannikov in the work [9], where he has

studied the free boundary Cauchy–Poisson problem for the Euler equations.

Using the same method Reissig [7] has proved the local in time existence of

the analytical solution for the special case of source point function f(x).

The most recent result belongs to Escher and Simonett [8], where the local

in time existence of the classical solution has been obtained for the case β = 1,

p0 = p0(x) and f= 0.

Global existence of the classical solution to WPHSP has been proved by

Antontsev, Meirmanov, Yurinski [10] for the case of strip-like domain when

α = 0, f= 0 and p0 = p0(t).

The structure of the present article is the following. After the formulation

of the main results we consider the simple case of a strip-like domain and show

the idea of the method. This method consists of a construction of approximate

solutions as the solutions to the one-phase Stefan problem with ε-heat capacity, an

introduction of the von Mises variables and construction of corresponding energy

estimates in the Sobolev spaces W n
2 . These estimates and the corresponding

embedding theorem guarantee Hn−1+α smoothness (independently on ε) of the
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approximate solutions on some small time interval (0, T∗) which doesn’t depend

of ε. The passage from the simple to the general case is the same as in [11] for

the general Stefan problem. Note that this technique is also applicable to the

two-phase situation.

All notations of the functional spaces and norms in the present paper are the

same as in [12].

2 – Main results

We suppose that the following conditions are fulfilled:

(A) S(k) ∈ Lip if α(k)=0 and S(k) ∈ C2 otherwise;

(B) Γ0 ∈Wn
2 ∩ Cn−1+γ0 with some γ0 > 0;

(C) suppF ⊂ Ω0, f ∈ L∞(Ω0);

(D) β, p0,
∂n−1β

∂tn−1
,
∂n−1p0

∂tn−1
∈ L∞(ST ), ST = S×(0, T ).

Theorem 1. Under conditions (A)–(D) there exists at least one classical

solution {p,Γ(t)} to the problem (1.1)–(1.5) on some small time interval (0, T∗)

such that Γ(t) is infinitely smooth with respect to the spatial variables, p, pt

are infinitely smooth with respect to the spatial variables near Γ(t) (outside of

suppF ) for t > 0 and

pt ∈ L∞(0, T∗;H
γ(Ω(t))) , ∇p ∈ Hγ, γ

2 (ΩT∗) , ΩT∗= {(x, t) : x∈Ω(t), t∈(0, T∗)}

with some γ > 0.

Our approach is based on a construction of approximate solutions as solutions

to the one-phase Stefan problem

(2.1) ε
∂θε

∂t
−∆θε = f , x ∈ Ωε(t)

with additional initial condition

(2.2) θε(x, 0) = θε0(x) , x ∈ Ω0(t)

and appropriate energy estimates in von Mises variables.

The special choice of θε0 allows us to evaluate ∂n−1θε

∂tn−1 independently on ε.
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Lemma 2. There exists a nonnegative function θε0 ∈ Hλ(Ω0) with λ > 4

such that θε0 satisfies the corresponding compatibility conditions on the boundary

Γ0 up to order [λ] and

(2.3)
∣∣∣ ln |∇θε0(x)|

∣∣∣ ≤M0 , x ∈ Γ0 ,

(2.4)

∣∣∣∣ θ
ε
0,

1

ε
(∆θε0 + f),

1

ε2
∆(∆θε0 + f)

∣∣∣∣
(2)

Ω0
≤ M0 ,

where M0 depends only on the given data.

The proof of this lemma is standard if we will look for θε0 as

θε0 = θ0 + ε θ .

Here θ0 is a solution of the equation (1.1) in the domain Ω0 with boundary

conditions (1.2) and (1.3) and

(2.5) θ(x) = |∇θ(x)| = 0 , x ∈ Γ0 .

The last condition and the compatibility condition of the first order determine

all second derivatives of θ on the boundary Γ0. Repeating the procedure we will

determine all derivatives of θ up to order 2[λ] on the boundary Γ0.

Now, using the usual way we determine θ in Ω0.

3 – Special case of the strip-like domain

Let

S =
{
x = (x′, xn) | xn= f0(x

′), x′ ∈ Λ
}
, Λ =

{
x′ | |x′|<1

}
,

Γ(t) =
{
x | xn= R(x′, t), x′ ∈ Λ

}
,

Ω(t) =
{
x | f0(x

′) < xn < R(x′, t), x′ ∈ Λ
}

and the given data are periodic with respect to the variables x′ with period 1.

We suppose also that α = 0, β = 1, p0 = 1 and f= 0.
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3.1. Approximate solution

As approximate solutions {θε,Γε(t)},

Γε(t) =
{
x | xn= Rε(x

′, t), x′ ∈ Λ
}

,

to the initial problem (1.1)–(1.5) we consider solutions to the one-phase Stefan

problem (2.1), (2.2), (1.2)–(1.5) in the domain

Ωε(t) =
{
x | f0(x

′) < xn < Rε(x
′, t), x′ ∈ Λ

}
.

Instead of the condition (2.3) we suppose that

(3.1.1)

∣∣∣∣ ln
∣∣∣∣
∂θε0
∂xn

(x)

∣∣∣∣
∣∣∣∣ ≤M0 , x ∈ Ω0 .

Under this condition and the conditions of Lemma 2 there exists some small

time interval (0, Tε) where the Stefan problem (2.1), (2.2), (1.2)–(1.5) has a unique

classical solution {θε,Γε(t)} ([11]). Our goal is to find some small interval (0, T∗),

0 < T∗ ≤ Tε, which doesn’t depend on ε, where {θε,Γε(t)} converges to the clas-

sical solution {p,Γ(t)} of the initial problem (1.1)–(1.5).

3.2. The von Mises variables

The monotonicity of the initial function θε0(x) with respect to the variable xn

(estimate (3.1.1)) allows us to introduce the von Mises variables

t = t , y′= x′ , yn = θε(x, t)

on the time interval (0, T∗) where

(3.2.1)

∣∣∣∣∣∇θε(x, t), ln

∣∣∣∣
∂θε

∂xn
(x, t)

∣∣∣∣

∣∣∣∣∣ ≤ 2M0 , x ∈ Ωε(t) .

The new unknown function

u(y, t) = xn

satisfies in the known domain ΠT∗ ,

ΠT∗=
{
(x, t) : x ∈ Π(t), t ∈ (0, T∗)

}
, Π(t) =

{
y | 0 < yn < p0(y

′, t), y′∈ Λ
}

,
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the following initial boundary-value problem

(3.2.2) ε
∂u

∂t
−∆′u+

∂

∂yn

{
1 + |∇′u|2

un

}
= 0 , y ∈ Π(t) ,

(3.2.3)
∂u

∂t
+

1 + |∇′u|2

un
= 0 , y ∈ Σ0 ,

(3.2.4) u = f0(y
′) , y ∈ Σ1 ,

(3.2.5) u(y, 0) = uε0(y) , y ∈ Π(0) ,

where

Σ0 = {y | yn= 0} , Σ1 = {y | yn= p0(y
′, t)} ,

and the function uε0(y) is a solution of the equation

yn= uε0(y
′, uε0(y)) .

In (3.2.2) and (3.2.3)

∆′u =
n−1∑

i=1

∂2u

∂y2i
, ∇′u = (u1, ..., un−1) , uj =

∂u

∂yj
, j = 1, ..., n .

Estimates (3.2.1) imply that

(3.2.6)
∣∣∣∇u, ln |un|

∣∣∣ ≤M .

Here and below we denote by M the constants depending only on M0 and the

given data.

We suppose that on the boundary Σ1 all derivatives D3u (case n = 2) and

D4u,D3ut, D
2D2

t u (case n= 3) are bounded by the constant M0. Such suppo-

sition makes sense in view of the local estimates for the solutions of the heat

equation ([12]) if the functions p0 and f0 are sufficiently smooth.

Note also that the corresponding problem for the derivative
∂u

∂t
satisfies the

maximum principle:

(3.2.7)

∣∣∣∣
∂u

∂t
(y, t)

∣∣∣∣ ≤ max

{∣∣∣∣
∂u

∂t

∣∣∣∣
(0)

Σ1
T∗

,

∣∣∣∣
∂u

∂t
(., 0)

∣∣∣∣
(0)

Π(0)

}
≤ M .
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3.3. Energy estimates. Case n = 2

The first estimates for the derivatives u0 =
∂u
∂t and ui, i < n are simple and

follow from the standard method (multiplication of the equation for uj , j =

0, 1, ..., n−1 by uj and integration by parts) if we take into account (3.2.6):

(3.3.1)

T∗∫

0

∫

Π(t)

|∇uj |
2 dy dt ≤ M , j = 0, 1, ..., n− 1 .

The last estimate, equation (3.2.2) and estimate (3.2.7) imply

(3.3.2) u ∈W
2,1
2 (ΠT∗) , ‖u‖

(2)
2,ΠT∗

≤M .

Let now

uij =
∂2u

∂yi ∂yj
, i, j ≤ n .

For i, j < n the function v = uij satisfies the problem

(3.3.3) ε
∂v

∂t
−∆′v +

∂

∂yn

{
2

un
(∇′u.∇′v)−

1+|∇′u|2

u2n

∂v

∂yn
+ J

}
= 0 , y∈Π(t) ,

∂v

∂t
+

2

un
(∇′u.∇′v)−

1 + |∇′u|2

u2n

∂v

∂yn
+ J = 0 , y ∈ Σ0 ,

where

J =
2

un

n−1∑

k=1

uik ujk −
2

u2n

n−1∑

k=1

uk(uik ujn + ujk uin) +
2

u3n
uin ujn (1 + |∇

′u|2) .

Multiplying (3.3.3) by v and integrating by parts we get after some usual

evaluations

(3.3.4)
d

dt

{
ε

∫

Π(t)

u2ij dy +

∫

Σ0

u2ij dy
′

}
+

∫

Π(t)

|∇uij |
2 dy ≤ M

{n−1∑

`=1

n∑

r=1

I`r + 1

}
.

Here

I`r =

∫

Π(t)

u4`r dy .

To estimate these integrals let us consider new functions

zr = ur(y, t)− ur(y, 0) , r = 1, ..., n .
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Using the identity

(3.3.5) 0 =

1∫

0

∂

∂y`

{
zr

(
∂zr

∂y`

)3}
dy` =

1∫

0

∣∣∣∣
∂zr

∂y`

∣∣∣∣
4

dy` + 3

1∫

0

zr

∣∣∣∣
∂zr

∂y`

∣∣∣∣
2 ∂2zr

∂y2`
dy`

we obtain

(3.3.6) I`r ≤ δ21

∫

Π(t)

∣∣∣∣
∂2zr

∂y2`

∣∣∣∣
2

dy ≤ δ21

{
max
i,j<n

∫

Π(t)

|∇uij |
2 dy + M

}
,

where

δ1 = 3 max
0<r≤n

{
max

0≤t≤T∗

∣∣∣ur(., t)− ur(., 0)
∣∣∣
(0)

Π(t)

}
.

Now we add to the definition (3.2.1) of the interval (0, T∗) the new restriction

(3.3.7) 4Mδ21 < 1 .

Under this condition, inequalities (3.3.4) and (3.3.6) imply

(3.3.8) max
i,j<n

∫

ΠT∗

|∇uij |
2 dy dt + max

i,j<n

{
max

0≤t≤T∗

∫

Σ0

u2ij dy
′

}
≤ M .

Note that in order to evaluate “normal” derivatives uinn and unnn we have

used the equation for the derivatives uj , j ≤ n and estimates (3.3.1) for the

derivatives utj .

So,

u ∈ L2(0, T∗;W
3
2 (Π(t)))

and

(3.3.9)

T∗∫

0

(
‖u(., t)‖

(3)
2,Π(t)

)2
dt ≤ M .

Moreover, the representation of the free boundary Γε(t) in the form

xn = Rε(x
′, t) = u(x′, 0, t)

and estimates (3.3.8) mean that

Rε(., t) ∈W 3
2 (Λ) , t ∈ (0, T∗)

and

max
0≤t≤T∗

‖Rε(., t)‖
(3)
2,Λ ≤ M .
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For the case n = 2 the last estimate and the well-known imbedding theorem

imply

Rε(., t) ∈ H1+β(Λ)

with any 2β ≤ 1 and

max
0≤t≤T∗

|Rε(., t)|
(1+β)
Λ ≤M .

Considering now θε as a solution of the Poisson equation with a bounded right-

hand side (estimate (3.2.7)) which satisfies a zero Dirichlet boundary condition

on the free boundary Γ(t) ∈ H1+β we conclude that

θε(., t) ∈ H1+β(Ωε(t)) .

Applying again the boundness of θεt and lemma 3.1 (chapter II, [12]) we get
∣∣∣θεx(x, t+ T )− θεx(x, t)

∣∣∣ ≤Mτ
γ
2

with some γ = γ(M0) > 0.

The similar estimates hold for the derivatives uk(y, t) which permit us to

choose the interval (0, T∗) satisfying (3.2.1) and (3.3.7):

T∗ = min{M
2
γ ,M

1
2 } .

Now on the interval (0, T∗) we can pass to the limit when ε → 0 and get the

classical solution {p,R} to the initial problem (1.1)–(1.5) such that

R(., t) ∈ W 2
2 (Λ) ∩H1+β(Λ) ,

pt ∈ L∞(0, T∗;H
γ(Ω(t))) , ∇p ∈ Hγ,γ/2(ΩT∗) .

Remark 3. Applying now the Caffarelli’s technique [13] we easily get that

p, pt and Γ(t) are infinitely smooth with respect to the spatial variables. Note that

this technique doesn’t allow evaluate corresponding norms on the hole interval

(0, T∗). It only permits to evaluate these norms on the interval (t0, T∗) and the

corresponding constants might be unbounded when t0 → 0.

3.4. Energy estimates. Case n = 3.

For the case n = 3,
Rε(., t) ∈ H1+β(Λ) ,

if
Rε(., t) ∈W 3

2 (Λ) .

To show that, we will use the same method as we have used for the case n = 2.
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Multiplying the equation for the derivatives

uti =
∂2u

∂t∂yi
, i < n ,

by uti and integrating by parts we get

(3.4.1)
d

dt

{
ε

∫

Π(t)

u2ti dy +

∫

Σ0

u2ti dy
′

}
+

∫

Π(t)

|∇uti|
2 dy ≤ M

{n−1∑

`=0

n∑

r=1

I`r + 1

}
,

where I`r are the same as in the previous section for ` ≥ 1 and

I0r =

∫

Π(t)

u4tr dy .

Let

δ2(t) = max
{
|u(., t)|

(2)
Π(t), |ut(., t)|

(1)
Π(t)

}

and

δ2(0) ≤M0 .

We choose the time interval (0, T∗) from the condition

(3.4.2) δ2(t) ≤ 2M0, for 0 ≤ t ≤ T∗ .

Then (3.4.1) implies

(3.4.3) max
0≤t≤T∗

ε

∫

Π(t)

u2ti dy +

∫

ΠT∗

|∇uti|
2 dy dt ≤ M, for i < n .

Multiplication the equation for the derivatives

v =
∂3u

∂yi ∂yj ∂y`
, v =

∂3u

∂t ∂yi ∂yj
, v =

∂3u

∂t2 ∂yi
, for i, j, ` < n

by v and integration by parts gives us

(3.4.4)
d

dt

{
ε

∫

Π(t)

v2 dy +

∫

Σ0

v2 dy′
}
+

∫

Π(t)

|∇v|2 dy ≤ M

{
η.I0 +

1

4 η
max
k<n

1≤s≤n

Iks + 1

}
.

Here

I0 = max
k<n

1≤j<n
1≤s≤n

∫

Π(t)

|ukjs|
4 dy , ukjs =

∂3u

∂yk ∂yj ∂ys

and η is any positive number.
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Using the identity (3.3.5) for the functions uks we evaluate I0 as

(3.4.5) I0 ≤ δ21

∫

Π(t)

|∇v|2 dy .

Choosing η sufficiently small we get from (3.4.4) and (3.4.5)

(3.4.6) max
0<t<T∗

{
ε max
j,k<n
1≤s<n

‖ujks(., t)‖
2
2,Π(t) + ‖u(., t)‖

2
W 3

2 (Σ
0)

}
+

+ max
j,k<n
1≤s<n

‖∇ujks‖
2
2,ΠT∗

≤ M .

Estimates (3.4.6) for “tangential” derivatives and corresponding equations for

“normal” derivatives permit us to evaluate all derivatives D4u, D3ut and D2utt.

For example, the estimate for DiD
3
nu follows from (3.4.6) and equation (3.2.2) if

we differentiate it with respect to the variables yi and yn.

Thus,

u(., t) ∈W 3
2 (Σ

0) , t ∈ (0, T∗) ,

Dk
t u ∈ L2(0, T∗;W

4−k
2 (Π(t)))

and

(3.4.7) max
0≤t≤T∗

‖u(., t)‖W 3
2 (Σ

0) +

T∗∫

0

(
‖Dk

t u(., t)‖
(4−k)
2,Π(t)

)2
dt ≤ M , k = 0, 1, 2 .

Coming back to the original variables and using the representation of the free

boundary Γε(t) in the form

Γε(t) : xn = u(x′, 0, t) ,

we get
Rε(., t) ∈W 3

2 (Λ) , t ∈ (0, T∗) ,

D2
t θ

ε ∈ L2(0, T∗;W
2
2 (Ωε(t))) ,

D2θε, DDtθ
ε ∈W

2,1
2 (Ωε,T∗)

and

(3.4.8) max
0≤t≤T∗

‖Rε(., t)‖
(3)
2,Λ ≤ M ,

(3.4.9) ‖D2θε, DDtθ
ε‖

(2)
2,Ωε,T∗

+

T∗∫

0

(
‖D2

t θ
ε‖

(2)
2,Ωε(t)

)2
dt ≤ M .
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Here Dv(D2v) means all first (second) derivatives of the function v with respect

to spatial variables and

Ωε,T∗=
{
(x, t) : x∈Ωε(t), t∈(0, T∗)

}
.

The estimate (3.4.8) and the corresponding embedding theorem imply

(3.4.10) Rε(., t) ∈ H1+β(Λ) , max
0≤t≤T∗

‖Rε(., t)‖
(1+β)
Λ ≤M

with any β, 0 < β < 1.

So, as we have proved before

(3.4.11)
∂θε

∂t
∈ L∞(0, T∗;H

γo(Ω(t))) , ∇θε ∈ Hγo,
γo
2 (ΩT∗)

with some positive γo = γo(M0).

The last inclusion permits us to choose some small interval (0, T∗) (indepen-

dently on ε) on which the condition (3.2.1) is satisfied.

To satisfy the condition (3.4.2) we have to prove the Hölder continuity of the

derivatives D2θε and DDtθ
ε. For the derivatives v = D2θε we have

∆v = εD2Dt θ
ε ≡ F

with F ∈ L2(Ω(t)) and v ∈W 2
2 (Γ(t)).

So,

v ∈W 2
2 (Ω(t))

and

max
0≤t≤T∗

‖D2θε(., t)‖
(2)
2,Ω(t) ≤ M .

Thus,

D2θε(., t) ∈ Hβ1(Ω(t))

with some β1 ∈ (0, 12) (lemma 3.3, [12]).

Taking into account the inclusion (3.4.11) and applying lemma 3.1 ([12]) we

get

(3.4.12) D2θε ∈ Hγ, γ
2 (ΩT∗) .

To prove the inclusion

(3.4.13) DDtθ
ε ∈ Hγ, γ

2 (ΩT∗)
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note that from the maximum principle for the solution D2
t θ

ε to the heat equation

and estimates (3.4.2) follows the bound

|D2
t θ

ε(x, t)| ≤M , (x, t) ∈ ΩT∗ .

For the function v = Dtθ
ε we have

∆v = εD2
t θ

ε ≡ F ∈ L∞(Ωε(t)) ,

v |Γ(t) = |∇θε|2 ∈ H1+β(Γε(t)) .

So,

v = Dtθ
ε ∈ H1+β(Ωε(t)) .

Taking into account the inclusion (3.4.11) and applying again lemma 3.1 ([12])

we finally get the inclusion (3.4.9).

The rest of the proof is the same as in the previous section.

4 – Case of arbitrary domain

As we have mentioned above, the approximate solutions to the initial prob-

lem (1.1)–(1.5) are the solutions of the one-phase Stefan problem (2.1), (2.2),

(1.2)–(1.5). The existence of the classical solutions for this last problem for ε > 0

follows from [11]. This solution exists on some small time interval (0, Tε), and

our goal is to prove that there exists some T∗ > 0 such that Tε ≥ T∗ for any ε > 0

and

|Dθε, Dtθ
ε|
(γ)
Ωε,T∗

≤M .

It is obvious that we cannot introduce the von Mises variables in the hole

domain Ωε,T , as we have done it in the special case of the srip-like domain, but

we do it locally near the initial position Γ0 of the free boundary Γ(t).

Let us consider the system of open sets {π(`)} and {Π(`)} such that

π(`) ⊂ Π(`) ,
⋃

`

π(`) =
⋃

`

Π(`) = Γ0

and in the local coordinates on the surface Γ0 the set Π(`) is represented as

Π(`) =
{
ξ | ξn = R

(`)
0 (ξ′), ξ′∈Λ

}
, Λ =

{
|ξ′| < 1

}
.

Moreover, there exists N0 such that the intersection of any (N0 + 1) different

Π(`) is empty.
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Now we have to construct domains Ω(`)(t) where we can introduce the von

Mises variables. If ν(x0) is a normal vector to the surface Γ0 at the point x0 ∈ Γ0,

then we put

Ω̃(`) =
{
x | x = x0 + τ ν(x0), |τ | < h, x0 ∈ Π(`)

}
,

ω̃(`) =
{
x | x = x0 + τ ν(x0), |τ | < h, x0 ∈ π(`)

}
.

Considering θε0(x) in the local coordinates ξ

θε0(x) = θ̃ε0(ξ)

we choose sufficiently small h0 such that for |h| ≤ h0

(4.1)

∣∣∣∣ ln
∣∣∣∣
∂θ̃ε0
∂ξn

(ξ)

∣∣∣∣
∣∣∣∣ < 2M0 , ξ ∈ Ω̃(`)

and

(4.2) Ω̃(`) ∩ supp f = ∅ .

Next, we choose the time interval (0, T∗) where

(4.3)

∣∣∣∣ ln
∣∣∣∣
∂θ̃ε

∂ξn
(ξ, t)

∣∣∣∣
∣∣∣∣, |D

2θ̃ε(ξ, t)|, |DDtθ̃
ε(ξ, t)| ≤ 3M0

for

ξ ∈ Ωε(t) ∩ Ω̃(`) .

These conditions imply that

|∇θε(x, t)|, |D2θε(x, t)|, |DDtθ
ε(x, t)| < 3M0

for x ∈ Γε(t), t ∈ (0, T∗).

Applying the maximum principle for the derivatives Dtθ
ε, D2

t θ
ε we get

(4.4) |Dtθ
ε(x, t)|, |D2

t θ
ε(x, t)| < 3M0

for x ∈ Ωε(t), t ∈ (0, T∗).

Now let us choose the level set

Σ(t) =

{
x∈

⋃

`

Ω̃(`) | θε(x, t) = a = const > 0

}
.

It is always possible to do this for sufficiently small a due to conditions (4.3).
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As a last step we consider the set ω(`)(t)(Ω(`)(t)) which is the set of all points

ω̃(`)(Ω̃(`)) laying between the surfaces Γε(t) and Σ.

Note that near the surface Σ the functions θε, Dtθ
ε and D2

t θ
ε are infinitely

smooth with respect to the spatial variables. This fact follows from the local

estimates for the solution v = Dk
t θ

ε, k = 0, 1, 2, of the heat equation if we consider

a new variable t′= t
ε .

Now we are ready to repeat the same procedure, as we have done before, and

find the lower bound T∗ for the intervals (0, Tε).

Let us consider equation (2.1) and boundary conditions (1.3), (1.4) for the

approximate solutions θε in the local coordinates ξ in the domain Ω(`)(t). These

local coordinates are just the orthogonal transformation of the initial ones. So,

in the local coordinates we have the same heat equation and the same boundary

conditions (1.3), (1.4). The condition (4.3) permits us to introduce the von Mises

variables in the domain Ω(`)(t). We denote as G(`) the image of the domain Ω(`)(t)

in the von Mises variables and, correspondingly, as g(`) the image of the domain

ω(`)(t).

Let η(y′) ∈ C∞, η(y′) = 1 for y ∈ g(`) and η(y) = 0 outside of some small

neighborhood of g(`) (which still contains in G(`)).

Repeating all what we have done before with an evident correction (this is we

multiply the equation not by v but by η v) we get

(4.5) max
0<t<T∗

‖Γε(t)‖
(2)

2,π(`) +

T∗∫

0

(
‖θε(., t)‖

(3)

2,ω(`)(t)

)2
dt ≤

≤ M

{
δ21

T∗∫

0

(
‖θε(., t)‖

(3)

2,Ω(`)(t)

)2
dt+ 1

}
.

Here

δ1 = max
0≤t≤T∗

|∇θε(., t)−∇θε0|
(0)
Ωε(t)

.

Let

G(t) =
⋃

`

Ω(`)(t) =
⋃

`

ω(`)(t) , GT∗=
T∗⋃

t=0

G(t) .

We define the norm in the Sobolev space Wm
2 (G(t)) as

‖v(., t)‖
(m)
2,G(t) = max

`
‖v(., t)‖

(m)

2,Ω(`)(t)
.

It is obvious that

‖v(., t)‖
(m)
2,G(t) ≤ C1 max

`
‖v(., t)‖

(m)

2,ω(`)(t)
≤ C2 ‖v(., t)‖

(2)
2,G(t) .
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Thus (4.5) implies

(4.6) max
0≤t≤T∗

‖Γε(t)‖
(2)
2,Γ0 ≤ M ,

if

(4.7) M C1 δ
2
1 <

1

2

and the rest of the proof for the case n = 2 is the same as for the special case of

the strip-like domain.

For the case n = 3 we get

(4.8) max
0≤t≤T∗

‖Γε(t)‖
(3)

2,π(`) +
2∑

k=0

T∗∫

0

(
‖Dk

t θ
ε(., t)‖

(4−k)

2,ω(`)(t)

)2
dt ≤

≤ M

{
η

2∑

k=0

T∗∫

0

(
‖Dk

t θ
ε(., t)‖

(4−k)

2,Ω(`)(t)

)2
dt+ C(η)

}
.

Taking maximum over all domains ω(`)(t) and choosing η sufficiently small,

we get

(4.9) max
0≤t≤T∗

‖Γε(t)‖
(3)
2,Γ0 +

2∑

k=0

‖Dk
t θ

ε‖
(4−k)
2,GT∗

≤ M .

These estimates permit us to satisfy the conditions (4.3) on some small interval

(0, T∗) which doesn’t depend on ε and pass to the limit when ε→ 0.

REFERENCES

[1] Antontsev, S.N.; Meirmanov, A.M. and Yurinsky, V.V. – Weak Solutions

for Well-Posed Hele–Shaw Problem, Universidade da Beira Interior, Portugal,
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