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STABILITY AND CONTINUOUS DEPENDENCE OF
SOLUTIONS OF ONE-PHASE STEFAN PROBLEMS

FOR SEMILINEAR PARABOLIC EQUATIONS

Philippe Souplet

Presented by J.F. Rodrigues

Abstract: We consider a one-phase Stefan problem for the heat equation with a

superlinear reaction term and we prove the stability of fastly decaying global solutions.

Also, we establish a result of continuous dependence of local solutions up to the maximum

existence time, needed for the stability proof.

1 – Introduction and results

Consider the following reaction-diffusion problem with free boundary:

(SP)































ut − uxx = up, 0 < t < T, 0 < x < s(t),

u(0, x) = u0(x) ≥ 0, 0 < x < s0, s(0) = s0 > 0,

u(t, s(t)) = ux(t, 0) = 0, 0 < t < T,

s′(t) = −ux(t, s(t)), 0 < t < T ,

where p > 1 is a fixed real number. Problem (SP) can be viewed as a simple

model of a chemically reactive and heat-diffusive liquid surrounded by ice. Here

u ≥ 0 represents the temperature of the liquid phase, and the ice is assumed to

be at temperature 0.
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We say that (u0, s0) are (admissible) initial data if

s0 > 0, u0 ∈ C1([0, s0]), u0 ≥ 0 and (u0)x(0) = u0(s0) = 0 .

Under these assumptions, which will be in force through out this paper, it is well

known that there exists a unique, maximal in time, classical solution (u, s) of

(SP), which satisfies u ≥ 0 and s′ ≥ 0 (see [6, 1]). The maximal existence time is

denoted by T ∈ (0,∞] and we say that (u, s) is a global solution if T =∞.

In what follows, the function u0 (resp., u(t, .)) is extended by 0 for x > s0

(resp. x > s(t)), and |.|∞ denotes the supremum over (0,∞). Also we will use

the couple (u, s) to denote another solution of (SP), associated to initial data

(u0, s0), with maximal existence time T .

Nonglobal solutions to (SP) were studied in [9, 1], where the shape of some

blowing-up solutions was investigated. A sufficient blowup condition of energy

type was obtained in [8]. Global solutions were studied in [2, 3, 8, 7]. In [8, 7],

it was shown that all global solutions decay uniformly to 0 as t→∞ and satisfy

uniform a priori estimates for t ≥ 0. Moreover, introducing the notions of fast

and slow global solutions, the following classification for the asymptotic behavior

of global solutions has been obtained in [8].

Theorem A. Let u be a global solution of (SP). Then it holds

limt→∞ |u(t)|∞ = 0. Moreover, if we let s∞ = limt→∞ s(t) ≤ ∞, then one of

the following two possibilities occurs:

(i) u is a fast solution i.e., s∞ < ∞ and there exist real numbers C, α > 0

(depending on u) such that

|u(t)|∞ ≤ C e−αt, t ≥ 0 ;

(ii) u is a slow solution i.e., s∞ =∞ and one has the estimates

s(t) = O(t2/3), t→∞ and lim inf
t→∞

s2/(p−1)(t) |u(t)|∞ > 0

hence, in particular,

lim inf
t→∞

t4/(3(p−1)) |u(t)|∞ > 0 .

Concerning the existence of global fast and slow solutions, the following result

was proved.
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Theorem B.

(i) (see [8]) There exists K = K(p) > 0 such that if

|u0|∞ < Kmin(1, s
−2/(p−1)
0 ) ,

then u is a global fast solution.

(ii) (see [7]) Let φ ∈ C1([0, s0]) satisfy φ ≥ 0, φ 6≡ 0, with φx(0) = φ(s0) = 0.

There exists λ∗ > 0 such that the solution of (SP) with initial data

u0 = λφ is a global fast solution for 0 < λ < λ∗ and a global slow

solution for λ = λ∗.

The fact that suitably small data yield global fast solutions was proved earlier

in [2] in the case p > 2. In [3], still for p > 2, the following stability property for

global fast solutions was obtained.

Theorem C. Assume p > 2 and let (u, s) be a global fast solution of (SP).

For some q = q(p) > 1 and for all A > 0, there exists η = η(u, s, p, A) > 0 such

that

(1.1) |u0|∞ < A and |u0 − u0|Lq(0,∞) + |s0 − s0| < η

implies that (u, s) is a global fast solution.

The goal of the present paper is twofold:

(i) First, we want to show that a stability property of global fast solutions

is actually true for all p > 1.

(ii) Second, we would like to provide a precise result on continuous depen-

dence of local solutions of (SP), up to the maximum existence time T ,

i.e. on each interval [0, T1] with T1 < T . Besides its own interest, this is

one of the main ingredients of our stability proof. Of course, results on

continuous dependence of solutions of problems of type (SP) were proved

in the past by several authors (see [6, 11]), but their formulations do not

seem suitable to our needs (see Remark 2.1 (c)).

2 – Main results

Theorem 2.1 (Stability of global fast solutions). Assume p > 1 and let

(u, s) be a global fast solution of (SP). There exists η = η(u, s, p) > 0 such that

(2.1) |u0 − u0|∞ + |s0 − s0| < η

implies that (u, s) is a global fast solution.
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Theorem 2.2 (Continuous dependence up to T ). Assume p > 1 and

let (u, s) be a maximal solution of (SP), with maximal existence time T ∈ (0,∞].

For all 0 < T1 < T and all ε > 0, there exists η = η(u, s, p, T1, ε) > 0 such that

|u0 − u0|∞ + |s0 − s0| < η

implies

(2.2) T > T1 and sup
t∈[0,T1]

|u(t, .)− u(t, .)|∞ + |s(t)− s(t)| < ε .

Remarks 2.1.

(a) The result of Theorem 2.2 remains valid if the nonlinearity up is replaced

by any function f(u) with f : [0,∞)→ [0,∞) locally Lipschitz.

(b) The stability result Theorem C from [3] is actually proved for weak so-

lutions of (SP) and the smallness condition (1.1) involves a weaker norm

than our condition (2.1). Of course the main improvement in Theorem

2.1 is to assume p > 1 instead of p > 2.

(c) Results on continuous dependence of solutions of problems of type (SP)

were proved in the past by several authors, but their formulations do not

seem suitable for the proof of Theorem 2.1. For instance, in [6, Theorem

2], continuous dependence is stated only for small time and it is assumed

that s0 = s0. In [11, pp. 130–134] this is proved for all times but it is

assumed a priori that T > T1, and since |u − u| is estimated only for

x ≤ min(s(t), s(t)), it is not clear if this assumption can be relaxed.

Moreover, in both [6] and [11], the closeness of u0 and u0 is measured in

C1 norm while we wish to use only L∞ norm. The paper [10] treats a

linear heat equation with nonlinear free-boundary conditions arising from

chemical applications. Continuous dependence is also proved there only

for small time and with respect to the C1 norm. On the other hand,

the works [12, 5] (see also [4]) treat the classical Stefan problem for the

linear heat equation ut = uxx, for which all solutions exist globally. The

continuous dependence results there are global in time and involve the

L∞ norm. Our method is different from [6, 10, 11] and related to that in

[12, 5].
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3 – Proofs

The proof of Theorem C from [3] relies on rather involved energy arguments.

The proof of Theorem 2.1 is simpler. It is a consequence of Theorem B (i) from

[8] (which was based on the construction of a suitable supersolution) and on

Theorem 2.2. Let us first give the proof of Theorem 2.1, assuming Theorem 2.2

is proved.

Proof of Theorem 2.1: Since s∞ <∞ and limt→∞ |u(t)|∞ = 0 by assump-

tion, it follows that

|u(t0)|∞ < Kmin(1, s(t0)
−2/(p−1))

for some large t0. By the continuous dependence property of Theorem 2.2, we

deduce that for η = η(u, s, p, t0) > 0 sufficiently small, (2.1) implies T > t0 and

|u(t0)|∞ < Kmin(1, s(t0)
−2/(p−1)) .

But in view of Theorem B (i), this implies that (u, s) is a global fast solution.

Theorem 2.1 is proved.

Iw view of the proof of Theorem 2.2, we prepare two lemmas. The first one

is a special case of Theorem 2.2, for which we can make use of the comparison

principle. In what follows, we say that (u0, s0) and (u0, s0) are ordered if s0 ≤ s0
and u0 ≤ u0 or if s0 ≥ s0 and u0 ≥ u0.

Lemma 3.1. Let (u, s) be a maximal solution of (SP), with maximal ex-

istence time T ∈ (0,∞]. For all 0 < T1 < T and all ε,A > 0, there exists

η = η(u, s, p, T1, ε, A) > 0 such that, if

|u0|C1([0,s0]) < A, |u0 − u0|∞ + |s0 − s0| < η

and

(u0, s0) and (u0, s0) are ordered ,

then (2.2) holds.

Proof: For all t ∈ [0,min(T, T )), we define

σ(t) = min(s(t), s(t)) , δ(t) = sup
τ∈[0,t]

|s(τ)− s(τ)| ,

w = u− u and µ(t) = |w(t)|∞ .
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Take M , L > 0 such that |u(t)|∞ ≤M and s(t) ≤ L for t ∈ [0, T1]. Assume

|u0|C1([0,s0]) < A and |u0 − u0|∞ + |s0 − s0| < η < 1
2 min(1, s0) ,

where η will be chosen later. In the rest of the proof we denote by C any positive

constant depending only on u, s, p, A and T1 (but not on η).

Now suppose there is a first t0∈(0, T ) with t0≤T1, such that µ(t0)+δ(t0)=1.

In particular we have

|u(t)|∞ ≤ N :=M + 1 and s(t) ≤ L+ 1, 0 ≤ t ≤ t0 .

It then follows from [1] (see the proof of Lemma 3.3) that there exists M ′ =

M ′(M,L, |u0|C1([0,s0]), A, p, T1) > 0 such that

sup
[0,s(t)]

|ux(t, x)|, sup
[0,s(t)]

|ux(t, x)| ≤M ′ , 0 ≤ t ≤ t0 .

This implies in particular

(3.1) |w(t, x)| ≤M ′δ(t) , 0 ≤ t ≤ t0, x ≥ σ(t) .

On the other hand w satisfies














wt − wxx = a(t, x)w , 0 < t < t0, 0 < x < σ(t),

wx(t, 0) = 0 , 0 < t < t0,

|w(t, σ(t))| ≤M ′δ(t) , 0 < t < t0 ,

where |a(t, x)| ≤ pNp−1. Since δ(t) is nondecreasing, it follows from the maxi-

mum principle and (3.1) that

(3.2) µ(t) ≤M ′δ(t) + |w(0)|∞ epN
p−1T1 ≤ Cη + Cδ(t) , 0 ≤ t ≤ t0 .

Now we use the assumption that the initial data are ordered, say, s0 ≥ s0 and

u0 ≥ u0. By the comparison principle (see, e.g., [1]), it follows that s ≥ s and

u ≥ u. On the other hand, by integrating (SP)1, one obtains

s(t)− s(t) +

∫ s(t)

0
u(t) −

∫ s(t)

0
u(t) =

= s0 − s0 +

∫ s0

0
u0 −

∫ s0

0
u0 +

∫ t

0

∫ s(τ)

0
up −

∫ t

0

∫ s(τ)

0
up .

Therefore,

0 ≤ s(t)− s(t) ≤ (s0 +A+ 1)η + pNp−1L

∫ t

0
µ(τ) dτ +Np

∫ t

0
δ(τ) dτ, 0≤ t≤ t0 .



STABILITY IN SEMILINEAR STEFAN PROBLEMS 321

Combining this with (3.2), we get δ(t) ≤ Cη + C
∫ t
0 δ(τ) dτ . By Gronwall’s

Lemma, it follows that δ(t) ≤ Cη, hence

(3.3) µ(t) + δ(t) ≤ Cη, 0 ≤ t ≤ t0 .

In particular, if η is chosen sufficiently small (depending on M,L, |u0|C1([0,s0]),

A, p, T1), then necessarily t0 ≥ T1. Since nonglobal solutions must satisfy

lim supt→T |u(t)|∞ = ∞ (see [1, Proposition 3.1]), we deduce that T > T1 and

the conclusion follows from (3.3).

The next approximation lemma enables one to reduce the general case to

Lemma 3.1 (and to remove the dependence of η on |u0|C1).

Lemma 3.2. For all admissible initial data (u0, s0) and all η ∈ (0, s0/2),

there exist admissible initial data (u±0 , s
±
0 ) with the following properties:

(3.4) s−0 ≤ s0 − η, u−0 ≤ max(u0 − η, 0) ,

(3.5) s+0 ≥ s0 + η, u+
0 ≥ u0 + η for x ≤ s0 + η

and

(3.6) |u±0 − u0|∞ + |s
±
0 − s0| ≤ Cη , |u±0 |C1([0,s±

0
]) ≤ max(|u0|C1([0,s0]), 1) + Cη ,

where C = C(u0, s0) > 0.

Proof: Extend u0 by 0 for x > s0 and symmetrically for x < 0, and define the

function z0(x) = u0(x)+2η if |x| ≤ s0+2η, z0(x) = (s0+4η−x)+ if |x| > s0+2η,

where t+ = max(t, 0). One then puts u
+
0 = z0 ∗ ρn and u

−
0 = (u0 − Bη)+ ∗ ρn,

where B = 1 + 2k, k = |u0|C1([0,s0]) and ρn is a standard mollifier.

Observe that |y| ≤ 2η implies u0(x − y) ≤ u0(x) + 2kη, hence (u0(x − y) −

Bη)+ ≤ (u0(x) − η)+. Therefore, for n ≥ n0(η) and all x ≥ 0, we get u
−
0 (x) ≤

(u0(x) − η)+. Similarly, we have (u0(y) − Bη)+ = 0 for y ≥ s0 − 2η, so that

u−0 (x) = 0 for x ≥ s0− η and n ≥ n1(η). Therefore we may take s
−
0 = s0− η and

(3.4) is proved.

On the other hand, noting that u0+2η 1{|x|≤s0+2η} ≤ z0 ≤ u0+2η 1{|x|≤s0+4η}

and taking n ≥ n2(η), (3.5) follows easily with s
+
0 = s0 + 5η. Finally, (3.6) is a

consequence of the above and of usual properties of convolution.

Proof of Theorem 2.2: Fix (u0, s0) and η ∈ (0, s0/2), and denote by

(u±, s±) the solutions corresponding to the initial data (u±0 , s
±
0 ) given by Lemma
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3.2, with maximal existence times T±. For any admissible data satisfying

|u0− u0|∞+ |s0− s0| < η, it follows from (3.4) and (3.5) that u−0 ≤ u0 ≤ u+
0 and

s−0 ≤ s0 ≤ s+0 . By the comparison principle, we then have

(3.7) u− ≤ u ≤ u+ and s− ≤ s ≤ s+ , 0 ≤ t < min(T , T±) .

For any 0 < T1 < T , we deduce from (3.6) and Lemma 3.1 that

T± > T1 and sup
t∈[0,T1]

|u±(t, .)− u(t, .)|∞ + |s
±(t)− s(t)| < ε ,

whenever η = η(u, s, p, T1, ε) > 0 small enough. The conclusion (2.2) then fol-

lows from (3.7) and the fact that nonglobal solutions cannot remain uniformly

bounded.
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