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ON THE EXTREMAL BEHAVIOR
OF SUB-SAMPLED SOLUTIONS OF

STOCHASTIC DIFFERENCE EQUATIONS

M.G. Scotto • and K.F. Turkman ◦

Abstract: Let {Xk} be a process satisfying the stochastic difference equation

Xk = AkXk−1 + Bk , k = 1, 2, ... ,

where {Ak, Bk} are i.i.d. R2-valued random pairs. Let Yk = XMk be the sub-sampled

series corresponding to a fixed systematic sampling interval M > 1. In this paper, we look

at the extremal properties of {Yk}. Motivation comes from the comparison of schemes

for monitoring financial and environmental processes. The results are applied to the class

of bilinear and ARCH processes.

1 – Introduction

Stochastic difference equations (SDE) play a crucial role in fields such as

finance, economics, and insurance mathematics. Interest in these equations

arose from the well-known fact that many non-linear processes, including ARCH,

GARCH and bilinear processes, can be embedded in SDE. This implies that the

extremal behavior of these processes can be investigated via the study of stochas-

tic difference equations and their extremal behavior.
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Let {Xk} be a process satisfying the stochastic difference equation

Xk = AkXk−1 +Bk , k = 1, 2, ... ,(1)

where {Ak, Bk} are i.i.d. R2-valued random pairs with some given joint distri-

bution and X0 is independent of this random pair, with some given starting

distribution. Kesten [9], Vervaat [16] and Goldie [5] have studied the existence of

stationary solutions for equation (1). They show essentially that under certain

conditions, the process {Xk} will have a stationary solution whose distribution

converges to the distribution of

R =
∞
∑

s=1

s−1
∏

r=1

Ar Bs .(2)

Although it is difficult to get an explicit solution for R in (2), it is possible

to say something about its tail behavior. Kesten [9], Goldie [5], Grey [7], and

Goldie and Grübel [6] have studied how the tail behavior of the distribution of

R is determined by the joint distribution of {A1, B1}.
The extremal properties of {Xk} were first studied by de Haan et al. [8] and

then by Perfekt [10]. de Haan et al. [8] proved the compound Poisson process

result, when neither Ak nor Bk are heavy tailed but Ak can take values outside the

interval [−1, 1]. As example of application, de Haan and co-workers obtained the

extremal behavior of the ARCH(1) process. Perfekt [10] extended their results to

Markov processes and his results include stochastic difference equations given in

(1) with possibly negative Ak and Bk as a special case. More recently, Turkman

and Amaral Turkman [15] have derived the extremal properties of the first order

bilinear process.

An important feature when dealing with time series is to assess the impact of

different sampling frequencies on the extremes values of the process. For example,

if the assets of a company are monitored daily, it would be important to know how

much larger peak values are to be expected if the sampling was done on an hourly

basis. Similar questions occur in other economical and environmental studies;

Robinson and Tawn [12] give examples on the latter. Although this problem has

important practical implications, it has not been addressed sufficiently.

From equation (1) we define the sub-sampled series

Yk = XMk , k = 1, 2, ... ,(3)

corresponding to a fixed systematic sampling interval M > 1. Our purpose is

to understand how the extremes of {Yk} should behave when Xk satisfies (1).
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As example of application, results on the extremal behavior of the first order

bilinear process and the ARCH(1) process are presented.

The rest of the paper is organized as follows: in Section 2, conditions for the

existence of stationary solutions of the sub-sampled {Yk} process are obtained.

Section 3 deals with the tail of the stationary distribution of Yk when the random

pair {A1, B1} have different tail behavior. In Section 4, the extremal behavior of

{Yk} is obtained. Finally, in Section 5 some concluding remarks are given.

2 – Conditions for the existence of stationary solutions of sub-sampled

series

We first discuss conditions for the existence of stationary solutions of sub-

sampled series embedded in SDE. Since {Xk} satisfies the first order SDE in (1),

it is natural to ask if the sub-sampled process {Yk} can also be embedded in a

SDE.

Proposition 2.1. Let {Xk} be a process satisfying (1), then the sub-sampled

{Yk} process satisfies the SDE

Yk = Ay
kYk−1 +By

k , k = 1, 2, ... ,(4)

where {Ay
k, B

y
k} are i.i.d. random pairs with

Ay
k =

M−1
∏

i=0

AMk−i(5)

and

By
k =

M
∑

j=1

BMk−j+1

j−1
∏

i=1

AMk−i+1 .(6)

We use the convention that
∏0
i=1=1.

Proof: Note that for a fixed value of M > 1

XMk = AMkXMk−1 +BMk

= AMk(AMk−1XMk−2 +BMk−1) +BMk

= AMk AMk−1XMk−2 +AMkBMk−1 +BMk

...
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...

=
M−1
∏

i=0

AMk−iXM(k−1) +
M
∑

j=1

BMk−j+1

j−1
∏

i=1

AMk−i+1

= Ay
kXM(k−1) +By

k .

Thus relation (4) follows since by definition XM(k−1) = Yk−1. To verify that

{Ay
k, B

y
k} form a sequence of independent random pairs, note that {Ay

k, B
y
k} and

{Ay
k+1, B

y
k+1} have no common terms for each k ≥ 1.

In what follows, we investigate the existence of a stationary solution for {Yk}.
Lemma 2.1 below summarizes the main result of this section.

Lemma 2.1. Let {Yk} be the sub-sampled process corresponding to a fixed

systematic interval M > 1 satisfiying the SDE in (4), where {Ay
k, B

y
k} are i.i.d.

R2-valued random pairs defined as in (5) and (6). Define

Ry =
∞
∑

s=1

s−1
∏

r=1

Ay
r B

y
s .(7)

Then

1. If E(log |Ai|) ∈ (−∞, 0) then the sum in (7) converges almost surely and

(4) has a strictly stationary solution Y with distribution equivalent to the

distribution of Ry in (7) if and only if

E
(

log+ |By
1 |
)

<∞ .(8)

2. If E(log |Ai|) = −∞ then the sum in (7) converges almost surely and (4)

has a strictly stationary solution Y with distribution equivalent to the

distribution of Ry in (7) either if (8) holds or Ai = 0 with positive proba-

bility.

The proof is a straight forward extention of Theorem 1.6 of Vervaat [16] and

the details will be omitted.

3 – Tail behavior

Since it is very difficult to obtain an explicit solution for Y , we concentrate

on characterazing its tail behavior. Since the tail behavior of Y will depend on

the joint distribution of A1 and B1, we consider first the case when B1 is heavy

tailed.
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3.1. When B1 is heavy tailed and A1 has comparatively lighter tails

Throughout this section we assume that {Ak, Bk} are i.i.d. R2+-valued random

pairs. The first question we want to answer is: assuming that

P [B1> x] = x−αL(x) , α > 0 ,(9)

where L is a function slowly varying at infinity, can we derive the tail behavior

of By
1? The answer is yes. Next result shows that the distributions associated

with B1 and By
1 are tail equivalent.

Lemma 3.1. Let {Ak, Bk} be i.i.d. R2+-valued random pairs such that

E(A1)
β <∞ for some β > α > 0, then

lim
x→∞

P [By
1 > x]

P [B1 > x]
=

1− (EAα
1 )

M

1− EAα
1

.(10)

Proof: We give an outline of the proof, details can be found in Scotto and

Turkman [14]. Note that By
1 can be rewritten as

By
1 =

M
∑

j=1

Wj ,

where Wj = BM−j+1
∏M−1
i=1 AM−i+1. For a fixed value of 1 ≤ j ≤M ,

lim
x→∞

P [Wj > x]

P [W1 > x]
= lim

x→∞

P

[

BM−j+1

j−1
∏

i=1

AM−i+1 > x

]

P [B1 > x]

= (EAα
1 )

j−1,(11)

which follows from the Breiman’s result quoted in Davis and Resnick [3], page

1197. In addition, for 1 ≤ j1 < j2 ≤M , we need to prove that as x→∞,

P
[

Wj1 > x, Wj2 > x
]

P [W1 > x]
→ 0 .(12)

In doing so, define

Uj1 =
j1−1
∏

i=1

AM−i+1 , Uj1,j2 = BM−j2+1

j2−1
∏

i=j1

AM−i+1 .
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Thus

P
[

Wj1 > x, Wj2 > x
]

= E
{

P
[

min{BM−j1+1, Uj1,j2} > xU−1j1

]}

,

where the expectation is taken over Uj1 . Since the random variables BM−j1+1

and Uj1,j2 are independent for fixed values of j1 6= j2 and M > 1, it follows from

(11) that as x→∞,

P
[

min{BM−j1+1, Uj1,j2} > xU−1j1

]

∼ x−2α U2αj1 (EAα
1 )

j2−j1−1

and

E
{

P
[

min{BM−j1+1, Uj1,j2} > xU−1j1

]}

∼ x−2αE U2αj1 (EAα
1 )

j2−j1−1 .

Thus

P
[

Wj1 > x, Wj2 > x
]

P [W1 > x]
∼ x−α × constant → 0 , x→∞ .

Finally, the result follows as an application of Lemma 2.1 of Davis and Resnick

[3].

Hence the tail behavior of Y follows as an application of Theorem 1 in Grey

[7].

Lemma 3.2. If {Ak, Bk} are such that E log+B1 < ∞, P [A1 > 0= 1], and

for some β > α > 0, EAα
1 < 1 and EAβ

1 <∞, then

1. E log+
∑M

j=1BM−j+1
∏j−1
i=0 AM−i+1 <∞.

2.
∏M−1
i=0 Ai takes non-negative values with probability one.

3. For some β > α > 0, E(
∏M−1
i=0 Ai)

α < 1 and E(
∏M−1
i=0 Ai)

β < ∞, for any

integer M ≥ 1.

Moreover, the following two statements are equivalent:

lim
x→∞

P [By
1 > x]

P [B1 > x]
=

1− (EAα
1 )

M

1− EAα
1

(13)

and

lim
x→∞

P [Y > x]

P [B1 > x]
=

1

1− EAα
1

.(14)
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Proof: Conditions 1, 2 and 3 follow from Lemma 2 of Grey [7]. (14) follows

from (13) as an application of Lemma 3.1, Lemma 2.1 in Davis and Resnick [3],

and the arguments outlined in Resnick [11], page 228. Conversely, (13) follows

from (14) as an application of the if part of Lemma 2 in Grey [7], page 173.

3.2. When neither A1 nor B1 are heavy tailed but A1 can take values

outside the interval [−1, 1]

In this case, the clusters of large values of the sequence {∏n
k=1A

y
k} dominate

the distribution of Yk, in contrast to the case when B1 is heavy tailed. We now

extend Theorem 1.1 in de Haan et al. [8] to characterize the tail behavior of Yk.

Lemma 3.3. If for some κ > 0, E|A1|κ = 1, E|A1|κ log+|A1| < ∞, and

0 < E|B1|κ <∞, then E
∣

∣

∣

∏M−1
i=0 Ai

∣

∣

∣

κ
= 1, E

∣

∣

∣

∏M−1
i=0 Ai

∣

∣

∣

κ
log+

∣

∣

∣

∏M−1
i=0 Ai

∣

∣

∣ <∞,

0 < E

∣

∣

∣

∣

∣

M
∑

j=1

BM−j+1

j−1
∏

i=0

AM−i+1

∣

∣

∣

∣

∣

κ

< ∞ ,

and Yk has a strictly stationary solution Y with distribution equivalent to the

distribution of (7). Moreover, as x→∞

P [Y > x] ∼ c+ x
−κ , P [Y < −x] ∼ c− x

−κ ,(15)

such that at least one of the contants is strictly positive. Further, if P [Ay
1< 0] > 0

then c+= c−> 0.

The proof follows from straight forward extention of the argument given in

de Haan et al. [8]. For details, see Scotto and Turkman [14].

Remark. The exact values of c+ and c− are given in Theorem 4.1 in Goldie

[5]. Unfortunately, these values are in general not very useful as they depend on

the unknown distribution of Y .

4 – Extremal behavior

In this section we present the main results regarding the extremal behavior of

the sub-sampled process {Yk}.
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4.1. When B1 is heavy tailed

We will assume again throughout this section that A1 takes non-negative val-

ues with probability one. Note that if we define {Ŷk} as the associated indepen-

dent process of {Yk}, i.e., Ŷ1, Ŷ2, ... are i.i.d. random variables with the stationary

distribution of {Yk} then from Lemma 3.2 and classical extreme value theory, we

obtain

lim
n→∞

P

[

max
1≤k≤[n/M ]

Ŷk ≤ anx

]

= exp

(

− 1

M

1

1− EAα
1

x−α
)

, x ≥ 0 ,(16)

where an is the 1− n−1 quantile of Ŷ1, i.e.

an = inf

{

x : P [Ŷ1> x] ≤ 1

n

}

.

Hence the maximum of the associated independent process {Ŷk} belongs to the

domain of attraction of the Fréchet distribution. In the dependent case the limit

distribution is still Fréchet but will depend on the extremal index θM , which

under general conditions has an informal interpretation as the reciprocal of the

limiting expected cluster size. In order to describe the clustering of extremes in

more detail, we consider the time-normalized point process Nn of exceedances of

an appropriately high chosen un given by

Nn(·) =
∞
∑

k=1

ε(Mk
n )(·) 1(Yk>un) .(17)

We show that this point process converges to a compound Poisson process N ,

whose events are the clusters of consecutive large values of {Yk}. We derive the

intensity and the distribution of the cluster centers.

Theorem 4.1. For a fixed value of M > 1,

1. Yk has an extremal index θM given by

θM =

∫ ∞

1
P

[

max
1≤r≤∞

rM
∏

s=1

As ≤ y−1
]

α y−α−1 dy ,

and

lim
n→∞

P

[

max
1≤k≤[n/M ]

Yk ≤ an x

]

= exp

(

−θM
M

1

1− EAα
1

x−α
)

.
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2. Nn converges to a compound Poisson process with intensity θM
M

1
1−EAα

1

x−α,

and compounding probabilities πl = (ξl − ξl+1)/θM , where

ξl =

∫ ∞

1
P

[

#

{

r ≥ 1:
rM
∏

s=1

As > y−1
}

= l − 1

]

α y−α−1 dy .

Proof: The proof of the above result is an application of Theorem 4.1 of

Rootzén [13] and follows closely the proof of Theorem 2 given in Turkman and

Amaral Turkman [15]; see also de Haan et al. [8]. For the first part of the theorem,

we need to show that the D(un) condition holds for un= n1/αx, x > 0 and that

lim
γ→0

lim sup
n→∞

∣

∣

∣

∣

∣

P

[

max
1≤r≤[ nM γ]

Yk ≤ an | Y0 > an

]

− θM

∣

∣

∣

∣

∣

= 0 .(18)

The mixing condition D(un) is verified following the arguments given in de Haan

et al. [8]. We now concentrate on verifying (18). Following de Haan et al. [8], set

Y +k =
∏[n/M ]
r=1 Ay

r Y0 and ∆k = Yk − Y +k . Let M[ nM γ] = max1≤r≤[ nM γ] Yr, for any

γ > 0. Then

P
[

M[ nM γ]> an | Y0 > an
]

≥ P

[

max
1≤r≤[ nM γ]

Y +r − max
1≤r≤[ nM γ]

∆r > an | Y0 > an

]

.

Define M+= max1≤r≤[ nM γ] Y
+
r and M∆= max1≤r≤[ nM γ] ∆r. Then, for any δ > 0

{

M+−M∆ > an
}

⊇
{

M+ > (1 + δ) an
}

−
{

M+ > (1 + δ) an ∩M∆ > δ an
}

.

Hence

P
[

M[ nM γ] > an | Y0 > an
]

≥(19)

≥ P
[

M+ > (1+δ) an | Y0 > an
]

− P
[

M∆ > δ an | Y0 > an
]

.

Now, ∆0 = 0 ≤ Y0 = Y , ∆r ≤ Y and

P
[

M∆ > δ an | Y0 > an
]

≤
[

n

M
γ

]

P [Y > δ an] → 0 ,

as γ → 0. Similarly from de Haan et al. [8]

P
[

M+ > (1 + δ) an | Y0 > an
]

=

=

∫ ∞

1
P

[

max
1≤r≤[ nM γ]

r
∏

s=1

Ay
s Y0 > (1 + δ) an | Y0 > an y

]

P [anY0 ∈ dy]

P [anY0 > 1]
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and since P [Y0 > an y]/P [Y0 > an] → y−α uniformly for y ≥ 1, then from (19)

we find

lim
γ→0

lim inf
n→∞

P
[

M[ nM γ] > an | Y0 > an
]

≥

≥ lim
γ→0

∫ ∞

1
P

[

max
1≤r≤[ nM γ]

r
∏

s=1

Ay
s > y−1(1 + δ)

]

α y−α−1 dy

− lim
γ→0

γ δ−α
1

M

1

1− EAα
1

→
∫ ∞

1
P

[

max
1≤r≤[ nM γ]

r
∏

s=1

Ay
s > y−1

]

α y−α−1 dy

= 1− θM ,

as δ → 0. The upper bound is obtained by similar arguments and takes the form

lim
γ→0

lim sup
n→∞

P
[

M[ nM γ] > an | Y0 > an
]

≥

≤ (1− δ)−α
∫ ∞

(1−δ)−1

P

[

max
1≤r≤[ nM γ]

r
∏

s=1

Ay
s > y−1

]

α y−α−1 dy

→
∫ ∞

1
P

[

max
1≤r≤[ nM γ]

r
∏

s=1

Ay
s > y−1

]

α y−α−1 dy

= 1− θM ,

as δ → 0. This, and the fact that
∏r
s=1A

y
s =

∏rM
s=1As, shows (18) and hence the

first part of the theorem. The second part of the theorem follows by introducing

some straightforward changes in the arguments given in the first part of the

theorem; see Rootzén [13] for further details.

4.2. When neither A1 nor B1 are heavy tailed but A1 can take values

outside the interval [−1, 1]

By means of the same machinery developed in Section 4.1 we establish the

extremal properties of the sub-sampled process {Yk}.

Theorem 4.2. Assume that P [Ay
1< 0] > 0. Then, for a fixed value of M>1

1. Yk has an extremal index θM given by

θM =

∫ ∞

1
P

[

max
1≤r≤∞

rM
∏

s=1

As ≤ y−1
]

κ y−κ−1 dy ,
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and

lim
n→∞

P

[

max
1≤k≤[n/M ]

Yk ≤ an x

]

= exp

(

−c+ θM
M

x−κ
)

.

2. Nn converges to a compound Poisson process with intensity
c+ θM
M x−κ and

compounding probabilities πl = (ξl − ξl+1)/θM , where

ξl =

∫ ∞

1
P

[

#

{

r ≥ 1:
rM
∏

s=1

As > y−1
}

= l−1

]

κ y−κ−1 dy

Proof: The proof is very similar to the proof of Theorem 4.1 and will not

be given. (See Scotto and Turkman, [14] for details). However, note that when

M = 1, our results are consistent with those obtained by de Haan et al. [8].

5 – Examples

In order to illustrate the results given above, we study the tail and extremal

behavior of a first order bilinear process with heavy-tailed innovations and an

ARCH(1) process with light tailed innovations.

5.1. Sub-sampled bilinear processes

Assume that Xk satisfies the recursive equation

Xk = bXk−1Zk−1 + Zk , k = 1, 2, ... ,(20)

where {Zk} are i.i.d. non-negative random variables with common distribution

F whose tail satisfies P [Z1> x] = x−αL(x), α > 0, where L is a function slowly

varying at infinity, and b is a positive constant. First note that the representation

given in (20) is not Markovian and the random pair {Ak, Bk}={bZk−1, Zk} forms

an 1-dependent, identically distributed pair. However, by setting Sk= bZkXk we

see that

Sk = As
k Sk−1 +Bs

k ,

where {As
k, B

s
k} = {bZk, bZ2k} forms an i.i.d. random sequence. Note that Xk can

be expressed in the form

Xk = Sk−1 + Zk ,(21)
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where Sk has a Markovian representation. Hence, Yk can be written as

Yk = Vk−1 + Zy
k ,(22)

where Zy
k = ZMk. From (4), (5) and (6),

Vk = Ay
k Vk−1 +By

k ,(23)

with {Ay
k, B

y
k} =

{

∏M−1
i=0 bZMk−i,

∑M
j=1 b

j
(

∏j−1
i=1 ZMk−i+1

)

Z2Mk−j+1

}

. Note that

{Ay
k, B

y
k} forms an i.i.d. random sequence. Theorem 3.2 given above can be used

to describe the tail behavior of Vk. First note that since P [Z21 >x] is regularly

varying with index −α/2, it follows from Lemma 3.1 that

lim
x→∞

P [By
1 > x]

P [Z21 > x]
= bα/2

1− (bα/2EZ
α/2
1 )M

1− bα/2EZ
α/2
1

.(24)

The tail behavior of Vk now follows from (24) and Lemma 3.2:

lim
x→∞

P [V1 > x]

P [Z21 > x]
=

bα/2

1− bα/2EZ
α/2
1

.

It is worth noting that the reason in considering the tail behavior of Vk rather

than Yk itself is due to the fact that the contribution of the term ZMk on the

extremal behavior of Yk is negligible; see Turkman and Amaral Turkman [15] for

further details. Since Z21 is regularly varying with index −α/2, by Theorem 4.1

Vk has extremal index θM given by

θM =

∫ ∞

1
P

[

max
1≤r≤∞

rM
∏

s=1

bZs ≤ y−1
]

α

2
y−α/2−1 dy

and

lim
n→∞

P

[

max
1≤k≤[n/M ]

Vk ≤ a2n x

]

= exp

(

−θM
M

bα/2

1− bα/2EZ
α/2
1

x−α/2
)

.

In addition, by defining N v
n as the time-normalized exceedance point process of

Vk, it follows from Theorem 4.1 that N v
n converges to a compound Poisson pro-

cess with intensity θM
M

bα/2

1−bα/2EZ
α/2
1

x−α/2, and compounding probabilities πl =

(ξl − ξl+1)/θM , where

ξl =

∫ ∞

1
P

[

#

{

r ≥ 1:
rM
∏

s=1

bZs > y−1
}

= l−1

]

α

2
y−α/2−1 dy .
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Finally, in order to prove that the time-normalized point process Nn converge to

the same limit, it is suffices to show that (Resnick [11], page 232)

Ny
n(f)−Nv

n(f) → 0 ,

in probability, where f is any positive, continuous and bounded function defined

on [0,∞). From the definition of the vague metric (Resnick [11], page 148) it is

suffice to check that

[n/M ]
∑

k=1

f

(

Mk

n

)

1(Yk>a2
nx)

−
[n/M ]
∑

k=1

f

(

Mk

n

)

1(Vk>a2
nx)

→ 0 ,(25)

in probability. The rest of the proof follows by the arguments given in Turkman

and Amaral Turkman [15] with some minor changes. We skip the details.

5.2. Sub-sampled ARCH processes

The most widely used models of dynamic conditional variance on financial

time series have been the ARCH models, first introduced by Engle [4]. This class

was extended by Bollerslev [2] who suggested an alternative and more flexible

dependence structure for describing log-returns (i.e. daily logarithmic differences

of financial returns), the generalized ARCH or GARCH models. We consider the

ARCH(1) model defined as

Xk = Zk
√
σk , k = 1, 2, ... ,

where {Zk} is a sequence of i.i.d. random variables with zero-mean and unit

variance and σk a time-varying, positive and measurable function of the k − 1

information set, satisfying the recurrence equation σk = a0+a1X
2
k−1 with a0 > 0

and 0 < a1 < 1. For deriving probabilistic properties of the ARCH(1) process we

will make extensive use of the fact that the squared process {X2k} satisfies the

SDE,

X2k = AkX
2
k−1 +Bk , k = 1, 2, ... ,(26)

where {Ak, Bk} = {a1Z2k , a0Z2k}. The tail behavior of Yk is discussed below.
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5.2.1. When neither A1 nor B1 are heavy tailed but A1 can take

values outside the interval [−1, 1]

In view of (26), Yk takes the form

Yk = Zy
k

√

σyk ,(27)

with Zy
k = ZMk and σyk= σMk, which implies that Y 2k has a representation as in

(4) in the form

Y 2k = Ay
k Y

2
k−1 +By

k ,

with {Ay
k, B

y
k} =

{

aM1
∏M−1
i=0 Z2Mk−i,

∑M
j=1 a0 Z

2
Mk−j+1

∏j−1
i=1 a1Z

2
Mk−i+1

}

. By

Theorem 3.3, κ = κ(a1) is the unique solution of the equation E(a1Z
2
1 )

κ = 1, and

P [Y 2 > x] ∼ c+ x
−κ ,

as x→∞. Finally, by Theorem 4.2 the sub-sampled squared ARCH process {Y 2k }
has extremal index given by,

θM =

∫ ∞

1
P

[

max
1≤r≤∞

rM
∏

s=1

a1Z
2
s ≤ y−1

]

κ y−κ−1 dy ,

and

lim
n→∞

P

[

max
1≤k≤[n/M ]

Y 2k ≤ an x

]

= exp

(

−c+ θM
M

x−κ
)

.

Moreover, Nn converges to a compound Poisson process with intensity c+θM
M x−κ

and compounding probabilities πl where

ξl =

∫ ∞

1
P

[

#

{

r ≥ 1:
rM
∏

s=1

a1Z
2
s > y−1

}

= l−1

]

κ y−κ−1 dy .

6 – Notes and comments

In this paper we have obtained limit results for sub-sampled processes gen-

erated by stationary solutions of 1-dimensional SDE. It would be interesting to

extend those results in a multivariate setting. The reason is that many non-linear

models, can be studied in the context of multivariate SDEs. Let us consider a

few of them.
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• GARCH(1,1). Assume that, for an i.i.d. sequence {Zk}, the process {Xk}
satisfies the equations

Xk =
√
σk Zk ,

σk = a0 + a1X
2
k−1 + b1 σk−1 ,

where a0, a1 and b1 are fixed constants. The GARCH(1,1) process can be

rewritten as a two-dimensional SDE in the form (1) as follows:
(

X2k+1
σk+1

)

= Ak+1

(

X2k
σk

)

+ Bk+1 , k ≥ 1 ,

where

Ak+1 =

(

a1Z
2
k b1Z

2
k

a1 b1

)

, Bk+1 =

(

a0Z
2
k

a0

)

.

• GARCH(p, q) process. Assume {Xk} is a solution to the GARCH equations

Xk = σk Zk ,

σ2k = a0 + a1X
2
k−1 + · · ·+ apXn−p + b1 σ

2
k−1 + · · ·+ bq σ

2
k−q .

Following Basrak [1], one possibility for {Xk} to be embedded in a SDE

is the following: define Xk = (X2k , ..., X
2
k−p+1, σ

2
k, ..., σk−q+1)

′
, and notice

that this (p+ q)-dimensional process satisfies the SDE

Xk = Ak Xk−1 + Bk , k ≥ 1 ,(28)

with

Ak+1 =



































a1Z
2
k · · · ap−1Z

2
k apZ

2
k b1Z

2
k · · · bq−1Z

2
k bqZ

2
k

1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

...
...

...

0 · · · 1 0 0 · · · 0 0

a1 · · · ap−1 ap b1 · · · bq−1 bq
0 · · · 0 0 1 · · · 0 0

· · · · · · · · · · · · · · · . . . · · · · · ·
0 · · · 0 0 0 · · · 1 0



































and

Bk = (a0 Z
2
k , 0, ..., 0, a0, 0, ..., 0)

′ .

The study of the extremal properties of sub-sampled processes associated with

those processes remains as a topic of future research.
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