WEIGHTED NORM INEQUALITY FOR THE POISSON INTEGRAL ON THE SPHERE

Benjamin Bordin, Iara A.A. Fernandes and Sergio A. Tozoni

Abstract

We obtain, for each $p, 1<p<\infty$, a necessary and sufficient condition for the Poisson integral of functions defined on the sphere S^{n}, to be bounded from a weighted space $L^{p}\left(S^{n}, W d \sigma\right)$ into a space $L^{p}(\mathbb{B}, \nu)$, where σ is the Lebesgue measure on S^{n} and ν is a positive measure on the unit ball \mathbb{B} of \mathbb{R}^{n+1}.

Introduction

In this paper we consider a homogeneous space $X=G / H$ where G is a locally compact Hausdorff topological group and H is a compact subgroup of G which is provided with a quasi-distance d and with a measure μ induced on X by a Haar measure on the topological group G. If $x \in X$ and $r>0, B(x, r)$ will denote the ball $\{y \in X: d(x, y)<r\}$ in X. We also write $\widetilde{X}=X \times[0, \infty)$ and if $B=B(x, r)$ we write $\widetilde{B}=B(x, r) \times[0, r]$.

We define the maximal operator \mathcal{M} by

$$
\mathcal{M} f(x, r)=\sup _{s \geq r} \frac{1}{\mu(B(x, s))} \int_{B(x, s)}|f(y)| d \mu(y)
$$

for all real-valued locally integrable function f on X and $(x, r) \in \widetilde{X}$. If $r=0$ the above supremum is taken over all $s>0$ and $\mathcal{M} f(x, 0)=f^{*}(x)$ is the HardyLittlewood maximal function.

A weight is a positive locally integrable function $W(x)$ on X and we will write $W(A)=\int_{A} W d \mu$. We say that W is a weight in the class $A_{\infty}(X)$ if there exist

[^0]positive constants C_{W} and δ such that
$$
\frac{\mu(A)}{\mu(B)} \leq C_{W}\left(\frac{W(A)}{W(B)}\right)^{\delta}
$$
for all ball $B=B(x, r), x \in X, r>0$, and all Borel subsets A of B. We observe that the above inequality is equivalent to a similar one where μ appears instead of W and conversely (see [5, 1]). We write $L^{p}(W)=L^{p}(X, W(x) d \mu(x)), 1 \leq p<\infty$.

Let $1<p<\infty, p^{\prime}$ such that $1 / p+1 / p^{\prime}=1$, let β be a positive measure on the Borel subsets of \widetilde{X} and W a weight on X. In Section 2 we introduce a maximal operator of dyadic type \mathcal{M}_{d}^{b}, where b is an integer, using partitions of dyadic type for the homogeneous space X introduced in Section 1.

In Section 3 we prove the following theorem.
Theorem 3.1. Let G be a compact or an Abelian group, let $1<p<\infty$ and let W be a weight on X such that $W^{1-p^{\prime}} \in A_{\infty}(X)$. Then the following conditions are equivalent:
(i) There exists a constant $C>0$, such that, for all $f \in L^{p}(W)$,

$$
\int_{\widetilde{X}}[\mathcal{M} f(x, r)]^{p} d \beta(x, r) \leq C \int_{X}|f(x)|^{p} W(x) d \mu(x)
$$

(ii) There exists a constant $C>0$, such that, for all balls $B=B(z, t)$, $0 \leq t<\infty$,

$$
\int_{\widetilde{B}}\left[\mathcal{M}\left(W^{1-p^{\prime}} \chi_{B}\right)(x, r)\right]^{p} d \beta(x, r) \leq C \int_{B} W^{1-p^{\prime}}(x) d \mu(x)<\infty
$$

The above result for $X=\mathbb{R}^{n}$ was proved in Ruiz-Torrea [7]. A similar result for the fractional maximal operator was obtained in Bernardis-Salinas [1]. The condition (ii) of Theorem 3.1 implies the condition

$$
\frac{\beta(\widetilde{B})^{1 / p}}{\mu(B)}\left(\int_{B} W^{1-p^{\prime}}(x) d \mu(x)\right)^{1 / p^{\prime}} \leq C<\infty
$$

for all balls B. It was proved in Ruiz-Torrea [8] that the above condition is a necessary and sufficient condition for \mathcal{M} to be a bounded operator from $L^{p}(X, W(x) d \mu(x))$ into weak $-L^{p}(\widetilde{X}, \beta)$. In the particular case $W(x) \equiv 1$, the condition (ii) of Theorem 3.1 is equivalent to the Carleson's condition for the homogeneous space X :

$$
\beta(\widetilde{B}) \leq C \mu(B)
$$

for all balls B and for a constant $C>0$.

Now, if $x \in \mathbb{R}^{n+1}$, we write $|x|=(x \cdot x)^{1 / 2}$ and $d(x, y)=|x-y|$, where $x \cdot y$ is the usual scalar product of x and y in \mathbb{R}^{n+1}. Here S^{n} will denote the unit n-sphere $\left\{y \in \mathbb{R}^{n+1}:|y|=1\right\}$ in \mathbb{R}^{n+1}, σ the normalized Lebesgue measure on S^{n} and $h:[1-\sqrt{2}, 1] \rightarrow[0,2]$ will be the function defined by $h(r)=\sqrt{2}(1-r)$.

The Poisson kernel for the sphere S^{n} is given by

$$
P_{r y}(x)=\frac{1}{\omega_{n}} \frac{1-r^{2}}{|r y-x|^{n+1}}
$$

for $x, y \in S^{n}$ and $0 \leq r<1$, where ω_{n} is the area of the sphere S^{n}. For a real-valued integrable function f we denote by $u_{f}(r y)$ the Poisson integral

$$
u_{f}(r y)=\int_{S^{n}} P_{r y}(x) f(x) d \sigma(x)
$$

and we define the maximal function u_{f}^{*} by

$$
u_{f}^{*}(r y)=\sup _{0 \leq s \leq r}\left|u_{f}(s y)\right|, \quad 0 \leq r<1, \quad y \in S^{n}
$$

If B is the open ball $B(z, t)=\left\{x \in S^{n}:|x-z|<t\right\}, 0<t \leq 2$, we define

$$
\begin{aligned}
& \bar{B}=\left\{s x: h^{-1}(t) \leq s \leq 1, x \in B\right\} \quad \text { if } 0<t \leq \sqrt{2} ; \\
& \bar{B}=\{s x: 0 \leq s \leq 1, x \in B\} \quad \text { if } \quad \sqrt{2} \leq t \leq 2 .
\end{aligned}
$$

We observe that \bar{B} is a truncated cone in the ball $\mathbb{B}=\left\{y \in \mathbb{R}^{n+1}:|y| \leq 1\right\}$ in \mathbb{R}^{n+1} if $0<t \leq \sqrt{2}$ and a cone if $\sqrt{2} \leq t \leq 2$.

In Section 4 we prove the following result.
Theorem 4.1. Let $1<p<\infty$, let W be a weight on S^{n} such that $W^{1-p^{\prime}} \in A_{\infty}\left(S^{n}\right)$ and let ν be a Borel positive measure on S^{n}. Then the following conditions are equivalent:
(i) There exists a constant $C>0$, such that, for all $f \in L^{p}(W)$,

$$
\int_{\mathbb{B}}\left[u_{f}^{*}(y)\right]^{p} d \nu(y) \leq C \int_{S^{n}}|f(x)|^{p} W(x) d \sigma(x)
$$

(ii) There exists a constant $C>0$, such that, for all balls $B=B(z, t)$, $0<t \leq 2$,

$$
\int_{\bar{B}}\left[u_{W^{1-p^{\prime}} \chi_{B}}^{*}(y)\right]^{p} d \nu(y) \leq C \int_{B} W^{1-p^{\prime}}(x) d \sigma(x)<\infty .
$$

We point out that the Theorem 4.1 for $W \equiv 1$ and $n=1$ was proved in Carleson [2].

1 - Preliminaries

In this section we introduce some notations, definitions and basic facts.
Let G be a locally compact Hausdorff topological group with unit element e, H be a compact subgroup and $\pi: G \mapsto G / H$ the canonical map. Let $d g$ denote a left Haar measure on G, which we assume to be normalized in the case of G to be compact. If A is a Borel subset of G we will denote by $|A|$ the Haar measure of A. The homogeneous space $X=G / H$ is the set of all left cosets $\pi(g)=g H, g \in G$, provided with the quotient topology. The Haar measure $d g$ induces a measure μ on the Borel σ-field on X. For $f \in L^{1}(X)$,

$$
\int_{X} f(x) d \mu(x)=\int_{G} f \circ \pi(g) d g
$$

We observe that the group G acts transitively on X by the map $(g, \pi(h)) \mapsto$ $g \pi(h)=\pi(g h)$, that is, for all $x, y \in X$, there exists $g \in G$ such that $g x=y$. We also observe that the measure μ on X is invariable on the action of G, that is, if $f \in L^{1}(X), g \in G$ and $R_{g} f(x)=f\left(g^{-1} x\right)$, then

$$
\int_{X} f(x) d \mu(x)=\int_{X} R_{g} f(x) d \mu(x)
$$

Definition 1.1. A quasi-distance on X is a map $d: X \times X \mapsto[0, \infty)$ satisfying:
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(g x, g y)=d(x, y)$ for all $g \in G, x, y \in X$;
(iv) there exists a constant $K \geq 1$ such that, for all $x, y, z \in X$,

$$
d(x, y) \leq K[d(x, z)+d(z, y)]
$$

(\mathbf{v}) the balls $B(x, r)=\{y \in X: d(x, y)<r\}, x \in X, r>0$, are relatively compact and measurable, and the balls $B(\mathbb{1}, r), r>0$, form a basis of neighborhoods of $\mathbb{1}=\pi(e)$;
(vi) there exists a constant $A \geq 1$ such that, for all $r>0$ and $x \in X$,

$$
\mu(B(x, 2 r)) \leq A \mu(B(x, r))
$$

In this paper X will denote a homogeneous space provided with a quasidistance d.

Given a quasi-distance d on X, there exists a distance ρ on X and a positive real number γ such that d is equivalent to ρ^{γ} (see [5]). Therefore the family of d-balls is equivalent to the family of ρ^{γ}-balls and ρ^{γ}-balls are open sets.

It follows by Definition 1.1(iii) that $B(g x, r)=g B(x, r)$ for all $g \in G$, $x \in X$ and $r>0$, and hence $\mu(B(g x, r))=\mu(B(x, r))$. Thus we can write $X=\bigcup_{j \geq 1} g_{j} B(x, r)$ where $\left(g_{j}\right)$ is a sequence of elements of G and consequently $\mu(B(x, r))>0$. In particular, X is separable.

Lemma 1.1. Let b be a positive integer and let $\lambda=8 K^{5}$. Then for each integer $k,-b \leq k \leq b$, there exist an enumerable Borel partition \mathcal{A}_{k}^{b} of X and a positive constant C depending only on X, such that:
(i) for all $Q \in \mathcal{A}_{k}^{b},-b \leq k \leq b$, there exists $x_{Q} \in Q$ such that

$$
B\left(x_{Q}, \lambda^{k}\right) \subset Q \subset B\left(x_{Q}, \lambda^{k+1}\right)
$$

and

$$
\mu\left(B\left(x_{Q}, \lambda^{k+1}\right)\right) \leq C \mu(Q)
$$

(ii) if $-b \leq k<b, Q_{1} \in \mathcal{A}_{k+1}^{b}, Q_{2} \in \mathcal{A}_{k}^{b}$ and $Q_{1} \cap Q_{2} \neq \emptyset$, then $Q_{2} \subset Q_{1}$, and

$$
0<\mu\left(Q_{1}\right) \leq C \mu\left(Q_{2}\right) ;
$$

(iii) for all $x \in X$ and $r, \lambda^{-b-1} \leq r \leq \lambda^{b}$, there exist $Q \in \mathcal{A}_{k}^{b}$ for some $-b \leq k \leq b$ and $g \in G$ such that $d(g x, x) \leq \lambda^{k+1}, B(x, r) \subset g Q$ and

$$
\mu(Q) \leq C \mu(B(x, r)) .
$$

Proof: The properties (i) and (ii) follow by Lemma 3.21, p. 852 of [9] and by Definition 1.1.

Let us prove (iii). Given $x \in X$ and $\lambda^{-b-1} \leq r \leq \lambda^{b}$, let $-b \leq k \leq b$ such that $\lambda^{k-1} \leq r \leq \lambda^{k}$. There exists an unique $Q \in \mathcal{A}_{k}^{b}$ such that $x \in Q$. Consider x_{Q} as in (i) and $g \in G$ such that $x=g x_{Q}$. If a is an integer such that $2^{a-1}<\lambda \leq 2^{a}$, then by (i) we have

$$
B(x, r) \subset B\left(g x_{Q}, \lambda^{k}\right) \subset g Q \subset B\left(x, \lambda^{k+1}\right)
$$

and hence by Definition 1.1(vi) we have

$$
\begin{aligned}
\mu(Q) & \leq \mu\left(B\left(x_{Q}, 2^{a} \lambda^{k}\right)\right) \\
& \leq A^{a} \mu\left(B\left(x_{Q}, \lambda^{k}\right)\right) \\
& \leq A^{2 a} \mu(B(x, r))
\end{aligned}
$$

We also have that $d(g x, x)=d\left(x, x_{Q}\right) \leq \lambda^{k+1}$.
Let $(\Omega, \mathcal{F}, \nu)$ be a σ-finite measure space, let $\left(\mathcal{F}_{k}\right)_{k \in \mathbb{Z}}$ be an increasing sequence of sub- σ-fields of \mathcal{F}, and for each $k \in \mathbb{Z}$, consider a real-valued \mathcal{F}_{k}-measurable function f_{k}. We say that the sequence $\left(f_{k}\right)_{k \in \mathbb{Z}}$ is a martingale with respect to the sequence $\left(\mathcal{F}_{k}\right)_{k \in \mathbb{Z}}$ if, for all $k \in \mathbb{Z}$ and all $A \in \mathcal{F}_{k}$ such that $\nu(A)<\infty$, we have that

$$
\int_{A}\left|f_{k}\right| d \nu<\infty, \quad \int_{A} f_{k} d \nu=\int_{A} f_{k+1} d \nu
$$

Now, consider a σ-finite measure ν on the Borel σ-field of X and let \mathcal{F}_{k} be the σ-field generated by the partition \mathcal{A}_{-k}^{b} for $-b \leq k \leq b$, by \mathcal{A}_{-b}^{b} for $k \geq b$ and by \mathcal{A}_{b}^{b} for $k \leq-b$. If $f \in L^{1}(X, \nu)$,

$$
f_{k}(x)=E\left[f \mid \mathcal{F}_{k}\right](x)=\sum_{Q \in \mathcal{A}_{k}^{b}}\left(\frac{1}{\nu(Q)} \int_{Q} f(y) d \nu(y)\right) \chi_{Q}(x), \quad-b \leq k \leq b
$$

and $f_{k}=f_{b}$ for $k \geq b, f_{k}=f_{-b}$ for $k \leq-b$, then $\left(f_{k}\right)_{k \in \mathbb{Z}}$ is a martingale with respect to the sequence $\left(\mathcal{F}_{k}\right)_{k \in \mathbb{Z}}$. We define the maximal operator M_{ν}^{b}, for all $f \in L^{1}(X, \nu)$ by

$$
M_{\nu}^{b} f(x)=\sup _{k \in \mathbb{Z}} E\left[|f| \mid \mathcal{F}_{k}\right](x)=\sup _{\substack{x \in Q \\ Q \in \mathcal{A}^{b}}} \frac{1}{\nu(Q)} \int_{Q}|f(y)| d \nu(y)
$$

where $\mathcal{A}^{b}=\bigcup_{-b \leq k \leq b} \mathcal{A}_{k}^{b}$.
The next result can be found in Dellacherie-Meyer [3], number 40, p. 37.

Theorem 1.1. If $1<p<\infty$ and $f \in L^{p}(X, \nu)$, then

$$
\left\|M_{\nu}^{b} f\right\|_{L^{p}(X, \nu)} \leq p^{\prime}\|f\|_{L^{p}(X, \nu)}
$$

2 - A maximal operator of dyadic type

Let b be a fixed positive integer. Given $Q \in \mathcal{A}^{b}=\bigcup_{-b \leq k \leq b} \mathcal{A}_{k}^{b}$, where \mathcal{A}_{k}^{b} are the partitions of X in Lemma 1.1, \widetilde{Q} will denote the subset $Q \times\left[0, \alpha^{-1}(\mu(Q))\right]$ of $\widetilde{X}=X \times[0, \infty)$, where $\alpha:[0, \infty) \rightarrow[0, \infty)$ is the function defined by $\alpha(r)=$ $\mu(B(\mathbb{1}, r)), \mathbb{1}=\pi(e)$.

If f is a real-valued locally integrable function on X, we define, for each $(x, r) \in \widetilde{X}$,

$$
\mathcal{M}_{d}^{b} f(x, r)=\sup _{\substack{x \in Q \in \mathcal{A} b \\ \mu(Q) \geq \alpha(r)}} \frac{1}{\mu(Q)} \int_{Q}|f(y)| d \mu(y) .
$$

If $\mu(Q)<\alpha(r)$ for all $Q \in \mathcal{A}^{b}$ such that $x \in Q$, we define $\mathcal{M}_{d}^{b} f(x, r)=0$.

Lemma 2.1. Let W be a weight and let A be a measurable subset of X. If $1<p<\infty$ and $W^{-1} \chi_{A} \notin L^{p^{\prime}}(W)$, then there exists a positive function $f \in L^{p}(W)$ such that

$$
\int_{A} f(x) d \mu(x)=\infty .
$$

Proof: Let ψ be the linear functional on $L^{p}(W)$ given by $\psi(g)=\int_{A} g d \mu$. Since $W^{-1} \chi_{A} \notin L^{p^{\prime}}(W)$, it follows by the Riesz representation theorem that ψ is not continuous. Therefore, there exists $\varepsilon>0$, such that, for each positive integer m, there exists $g_{m} \in L^{p}(W)$ such that $\left\|g_{m}\right\|_{L^{p}(W)} \leq 2^{-m}$ and $\left|\psi\left(g_{m}\right)\right| \geq \varepsilon$. We set $f_{m}(x)=\left|g_{1}(x)\right|+\cdots+\left|g_{m}(x)\right|$ and then, for all $m, k \geq 1$,

$$
\left\|f_{m+k}-f_{m}\right\|_{L^{p}(W)} \leq\left\|g_{m+1}\right\|_{L^{p}(W)}+\cdots+\left\|g_{m+k}\right\|_{L^{p}(W)}<2^{-m}
$$

Hence $\left(f_{m}\right)$ is a Cauchy sequence in $L^{p}(W)$ and therefore there exists $f \in L^{p}(W)$ such that $f_{m} \rightarrow f$ in $L^{p}(W)$. On the other hand

$$
\psi\left(f_{m}\right) \geq\left|\psi\left(g_{1}\right)\right|+\cdots+\left|\psi\left(g_{m}\right)\right| \geq m \varepsilon .
$$

But $f_{m} \uparrow f$ a.e. and thus by the monotone convergence theorem we obtain

$$
\int_{A} f d \mu=\lim _{m \rightarrow \infty} \psi\left(f_{m}\right)=\infty
$$

Theorem 2.1. Given a weight W on X, a positive measure β on \tilde{X}, and $1<p<\infty$, the following conditions are equivalent:
(i) There exists a constant $C>0$, such that, for all $f \in L^{p}(W)$ and all positive integer b,

$$
\int_{\widetilde{X}}\left[\mathcal{M}_{d}^{b} f(x, r)\right]^{p} d \beta(x, r) \leq C \int_{X}|f(x)|^{p} W(x) d \mu(x)
$$

(ii) There exists a constant $C>0$, such that, for all $Q \in \mathcal{A}^{b}$ and all positive integer b,

$$
\int_{\widetilde{Q}}\left[\mathcal{M}_{d}^{b}\left(W^{1-p^{\prime}} \chi_{Q}\right)(x, r)\right]^{p} d \beta(x, r) \leq C \int_{Q} W^{1-p^{\prime}}(x) d \mu(x)<\infty
$$

Proof: The proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$ is exactly as the proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$ in Theorem 3.1.

Proof of $(\mathrm{ii}) \Rightarrow(\mathrm{i})$: Let us fix $f \in L^{p}(W)$ and for each $k \in \mathbb{Z}$, let Ω_{k} be the set

$$
\Omega_{k}=\left\{(x, r) \in \widetilde{X}: \mathcal{M}_{d}^{b} f(x, r)>2^{k}\right\}
$$

For each $k \in \mathbb{Z}$, we denote by C_{k}^{0} the family formed by all $Q \in \mathcal{A}^{b}$ such that

$$
|f|_{Q}=\frac{1}{\mu(Q)} \int_{Q}|f(y)| d \mu(y)>2^{k}
$$

Since for every $Q \in \mathcal{A}_{k}^{b},-b \leq k<b$, there exists $Q^{\prime} \in \mathcal{A}_{k+1}^{b}$ such that $Q \subset Q^{\prime}$, then every element $Q \in C_{k}^{0}$ is contained in a maximal element $Q^{\prime} \in C_{k}^{0}$. We denote by C_{k} the family $\left\{Q_{j}^{k}: j \in J_{k}\right\}$ formed by all maximal elements $Q \in C_{k}^{0}$. Since \mathcal{A}_{k}^{b} is a partition of X and all elements of C_{k} are maximal, we can conclude that the sets $Q_{j}^{k}, j \in J_{k}$, are pairwise disjoint. Therefore the sets $\widetilde{Q}_{j}^{k}, j \in J_{k}$, are also pairwise disjoint and,

$$
\Omega_{k}=\bigcup_{j \in J_{k}} \widetilde{Q}_{j}^{k}
$$

Now, for each $k \in \mathbb{Z}$ and each $j \in J_{k}$, let

$$
E_{j}^{k}=\widetilde{Q}_{j}^{k} \backslash \Omega_{k+1}
$$

Then the sets E_{j}^{k} and E_{i}^{h} are disjoint for $(k, j) \neq(h, i)$ and

$$
\left\{(x, r): \mathcal{M}_{d}^{b} f(x, r)>0\right\}=\bigcup_{k \in \mathbb{Z}}\left(\Omega_{k} \backslash \Omega_{k+1}\right)=\bigcup_{k \in \mathbb{Z}} \bigcup_{j \in J_{k}} E_{j}^{k}
$$

Therefore

$$
\begin{align*}
\int_{\widetilde{X}}\left[\mathcal{M}_{d}^{b} f(x, r)\right]^{p} d \beta(x, r) & =\sum_{k, j} \int_{E_{j}^{k}}\left[\mathcal{M}_{d}^{b} f(x, r)\right]^{p} d \beta(x, r) \\
& \leq 2^{p} \sum_{k, j} \beta\left(E_{j}^{k}\right)\left(2^{k}\right)^{p} \\
& \leq 2^{p} \sum_{k, j} \beta\left(E_{j}^{k}\right)\left(\frac{1}{\mu\left(Q_{j}^{k}\right)} \int_{Q_{j}^{k}}|f(x)| d \mu(x)\right)^{p} \tag{2.1}
\end{align*}
$$

Now, we introduce the following notations:

$$
\begin{gathered}
\nu(x)=W^{1-p^{\prime}}(x), \quad \nu(A)=\int_{A} \nu(x) d \mu(x) \\
\gamma_{k, j}=\beta\left(E_{j}^{k}\right)\left(\frac{\nu\left(Q_{j}^{k}\right)}{\mu\left(Q_{j}^{k}\right)}\right)^{p}, \quad g_{k, j}=\left(\frac{1}{\nu\left(Q_{j}^{k}\right)} \int_{Q_{j}^{k}} \frac{|f(x)|}{\nu(x)} \nu(x) d \mu(x)\right)^{p} \\
Y=\left\{(k, j): k \in \mathbb{Z}, j \in J_{k}\right\}, \quad \Gamma(\lambda)=\left\{(k, j) \in Y: g_{k, j}>\lambda\right\}
\end{gathered}
$$

Let γ be the measure on Y such that $\gamma(\{(k, j)\})=\gamma_{k, j}$ and let g be the function defined on Y by $g((k, j))=g_{k, j}$. We have that

$$
\gamma_{k, j} g_{k, j}=\beta\left(E_{j}^{k}\right)\left(\frac{1}{\mu\left(Q_{j}^{k}\right)} \int_{Q_{j}^{k}}|f(x)| d \mu(x)\right)^{p}
$$

and hence it follows by (2.1) that

$$
\begin{align*}
\int_{\widetilde{X}}\left[\mathcal{M}_{d}^{b} f(x, r)\right]^{p} d \beta(x, r) & \leq 2^{p} \sum_{k, j} \gamma_{k, j} g_{k, j} \\
& =2^{p} \int_{0}^{\infty} \gamma(\Gamma(\lambda)) d \lambda \\
& =2^{p} \int_{0}^{\infty}\left(\sum_{(k, j) \in \Gamma(\lambda)} \gamma_{k, j}\right) d \lambda \\
& =2^{p} \int_{0}^{\infty} \sum_{(k, j) \in \Gamma(\lambda)} \int_{E_{j}^{k}}\left(\frac{\nu\left(Q_{j}^{k}\right)}{\mu\left(Q_{j}^{k}\right)}\right)^{p} d \beta(x, r) d \lambda \tag{2.2}
\end{align*}
$$

For each $\lambda>0$, let $\left\{Q_{i}^{\lambda}: i \in I_{\lambda}\right\}$ be the family formed by all maximal elements of the family

$$
\left\{Q_{j}^{k}:(k, j) \in \Gamma(\lambda)\right\}=\left\{Q_{j}^{k}: \frac{1}{\nu\left(Q_{j}^{k}\right)} \int_{Q_{j}^{k}} \frac{|f(x)|}{\nu(x)} \nu(x) d \mu(x)>\lambda^{1 / p}\right\}
$$

If $Q_{j}^{k} \subset Q_{i}^{\lambda}$ and $(x, r) \in E_{j}^{k}$, then $x \in Q_{j}^{k}, \mu\left(Q_{j}^{k}\right) \geq \alpha(r)$ and thus

$$
\mathcal{M}_{d}^{b}\left(\nu \chi_{Q_{i}^{\lambda}}\right)(x, r)=\sup _{\substack{x \in Q \in \mathcal{A}^{b} \\ \mu(Q) \geq \alpha(r)}} \frac{\nu\left(Q \cap Q_{i}^{\lambda}\right)}{\mu(Q)} \geq \frac{\nu\left(Q_{j}^{k}\right)}{\mu\left(Q_{j}^{k}\right)}
$$

Therefore, if $Q_{j}^{k} \subset Q_{i}^{\lambda}$ we obtain

$$
\begin{equation*}
\int_{E_{j}^{k}}\left(\frac{\nu\left(Q_{j}^{k}\right)}{\mu\left(Q_{j}^{k}\right)}\right)^{p} d \beta(x, r) \leq \int_{E_{j}^{k}}\left[\mathcal{M}_{d}^{b}\left(\nu \chi_{Q_{i}^{\lambda}}\right)(x, r)\right]^{p} d \beta(x, r) \tag{2.3}
\end{equation*}
$$

Taking into account that the sets E_{j}^{k} are disjoint, it follows from (2.2), (2.3) and by the hypothesis that

$$
\begin{aligned}
\int_{\widetilde{X}}\left[\mathcal{M}_{d}^{b} f(x, r)\right]^{p} d \beta(x, r) & \leq 2^{p} \int_{0}^{\infty} \sum_{i \in I_{\lambda}} \sum_{\substack{(k, j) \in \Gamma(\lambda) \\
Q_{j}^{k} \subset Q_{i}^{\lambda}}} \int_{E_{j}^{k}}\left[\mathcal{M}_{d}^{b}\left(\nu \chi_{Q_{i}^{\lambda}}\right)(x, r)\right]^{p} d \beta(x, r) \\
& \leq 2^{p} \int_{0}^{\infty} \sum_{i \in I_{\lambda}} \int_{\widetilde{Q}_{i}^{\lambda}}\left[\mathcal{M}_{d}^{b}\left(\nu \chi_{Q_{i}^{\lambda}}\right)(x, r)\right]^{p} d \beta(x, r) \\
& \leq C 2^{p} \int_{0}^{\infty} \sum_{i \in I_{\lambda}} \int_{Q_{i}^{\lambda}} \nu(x) d \mu(x) \\
& =C 2^{p} \int_{0}^{\infty} \nu\left(\bigcup_{(k, j) \in \Gamma(\lambda)} Q_{j}^{k}\right) d \mu(x) .
\end{aligned}
$$

It follows by the definition of the maximal operator M_{ν}^{b} in Section 1 and by the definition of $\Gamma(\lambda)$ that

$$
\begin{equation*}
\bigcup_{(k, j) \in \Gamma(\lambda)} Q_{j}^{k} \subset\left\{x \in X: M_{\nu}^{b}\left(\frac{|f|}{\nu}\right)(x)>\lambda^{1 / p}\right\} \tag{2.5}
\end{equation*}
$$

Then, by (2.4), (2.5) and Theorem 1.1,

$$
\begin{aligned}
\int_{\widetilde{X}}\left[\mathcal{M}_{d}^{b} f(x, r)\right]^{p} d \beta(x, r) & \leq C 2^{p} \int_{0}^{\infty} \nu\left(\left\{x:\left(M_{\nu}^{b}\left(\frac{|f|}{\nu}\right)(x)\right)^{p}>\lambda\right\}\right) d \lambda \\
& =C 2^{p} \int_{X}\left(M_{\nu}^{b}\left(\frac{|f|}{\nu}\right)(x)\right)^{p} \nu(x) d \mu(x) \\
& \leq C 2^{p}\left(p^{\prime}\right)^{p} \int_{X} \frac{|f(x)|^{p}}{(\nu(x))^{p}} \nu(x) d \mu(x) \\
& =C 2^{p}\left(p^{\prime}\right)^{p} \int_{X}|f(x)|^{p} W(x) d \mu(x) .
\end{aligned}
$$

Remark 2.1. Let us fix $g \in G$ and let $g^{-1} \mathcal{A}_{k}^{b}=\left\{g^{-1} Q: Q \in \mathcal{A}_{k}^{b}\right\}, g^{-1} \mathcal{A}^{b}=$ $\left\{g^{-1} Q: Q \in \mathcal{A}^{b}\right\}$. Then for each $-b \leq k \leq b, g^{-1} \mathcal{A}_{k}^{b}$ is a partition of X and Lemma 1.1 and Theorem 1.1 in Section 1 also hold, with the same constants, when we change \mathcal{A}_{k}^{b} for $g^{-1} \mathcal{A}_{k}^{b}$. If f is a real-valued locally integrable function on X, we define

$$
\mathcal{M}_{d}^{b, g} f(x, r)=\sup _{\substack{x \in Q \in g^{-1} \mathcal{A}^{b} \\ \mu(Q) \geq \alpha(r)}} \frac{1}{\mu(Q)} \int_{Q}|f(y)| d \mu(y) .
$$

Then

$$
\mathcal{M}_{d}^{b}\left(R_{g} f\right)(g x, r)=\mathcal{M}_{d}^{b, g} f(x, r)
$$

where $R_{g} f(x)=f\left(g^{-1} x\right)$. The Theorem 2.1 also hold, with the same proof, when we change the operator \mathcal{M}_{d}^{b} for $\mathcal{M}_{d}^{b, g}$ and the family \mathcal{A}^{b} for $g^{-1} \mathcal{A}^{b}$. \square

3 - The boundedness of the operator \mathcal{M}

Given a positive integer b and a real-valued locally integrable function f on X, we define for $(x, r) \in \widetilde{X}$,

$$
\mathcal{M}^{b} f(x, r)=\sup _{\max \left\{\lambda^{-b-1}, r\right\} \leq s \leq \lambda^{b}} \frac{1}{\mu(B(x, s))} \int_{B(x, s)}|f(y)| d \mu(y) .
$$

We define $\mathcal{M}^{b} f(x, r)=0$ if $r>\lambda^{b}$ and we observe that $\mathcal{M}^{b} f(x, r) \uparrow \mathcal{M} f(x, r)$ if $b \uparrow \infty$ for all $(x, r) \in \widetilde{X}$.

Let us denote

$$
G_{b}=\left\{g \in G: d(g x, x) \leq \lambda^{b+1} \text { for all } x \in X\right\}
$$

If $d(g \mathbb{1}, \mathbb{1})=d(g x, x)$ for all $x \in X$ and $g \in G$, in particular if G is an Abelian group, then

$$
G_{b}=\left\{g \in G: d(g \mathbb{1}, \mathbb{1}) \leq \lambda^{b+1}\right\},
$$

and hence G_{b} is relatively compact in G and $0<\left|G_{b}\right|<\infty$ (see [4]).
Lemma 3.1. Let b be a positive integer, $g \in G$, let $\mathcal{M}_{d}^{b, g}$ be the maximal operator defined in Remark 2.1, let f be a real-valued locally integrable function on X and let $(x, r) \in \tilde{X}$. Then

$$
\begin{equation*}
\mathcal{M}_{d}^{b, g} f(x, r) \leq C \mathcal{M} f(x, r) \tag{3.1}
\end{equation*}
$$

If G is a compact or an Abelian group, then

$$
\begin{equation*}
\mathcal{M}^{b} f(x, r) \leq \frac{C}{\left|G_{b}\right|} \int_{G_{b}} \mathcal{M}_{d}^{b, g} f(x, r) d g \tag{3.2}
\end{equation*}
$$

The constants C in (3.1) and in (3.2) depend only on X and if X is compact we can change G_{b} for G.

Proof: Let us fix $(x, r) \in \tilde{X}$ and $g \in G$. If $\mu(Q)<\alpha(r)$ for all $Q \in \mathcal{A}^{b}$ such that $x \in g^{-1} Q$, we have $\mathcal{M}_{d}^{b, g} f(x, r)=0$. Thus to prove (3.1), it is enough to consider $Q \in \mathcal{A}_{k}^{b},-b \leq k \leq b$, such that $x \in g^{-1} Q$ and $\mu(Q) \geq \alpha(r)$. By Lemma 1.1(i) there exist $x_{Q} \in Q$ such that $Q \subset B\left(x_{Q}, \lambda^{k+1}\right)$ and $\mu\left(B\left(x_{Q}, \lambda^{k+1}\right)\right) \leq$ $C \mu(Q)$. For $t=2 K \lambda^{k+1}$ we have $B\left(g^{-1} x_{Q}, \lambda^{k+1}\right) \subset B(x, t)$ and hence

$$
\alpha(t)=\mu(B(x, t)) \geq \mu\left(B\left(g^{-1} x_{Q}, \lambda^{k+1}\right)\right) \geq \mu(Q) \geq \alpha(r)
$$

If $2^{a-1}<K \leq 2^{a}$, it follows by Definition 1.1(vi) that

$$
\mu(B(x, t)) \leq A^{a+1} \mu\left(B\left(x_{Q}, \lambda^{k+1}\right)\right) \leq A^{a+1} C \mu\left(g^{-1} Q\right)
$$

Therefore
$\frac{1}{\mu\left(g^{-1} Q\right)} \int_{g^{-1} Q}|f(y)| d \mu(y) \leq \frac{A^{a+1} C}{\mu(B(x, t))} \int_{B(x, t)}|f(y)| d \mu(y) \leq A^{a+1} C \mathcal{M} f(x, r)$ and hence we obtain (3.1).

Let us fix $(x, r) \in \widetilde{X}$. If $r>\lambda^{b}$ we have $\mathcal{M}^{b} f(x, r)=0$ and thus we can suppose $r \leq \lambda^{b}$. Given s such that, $\lambda^{-b-1} \leq s \leq \lambda^{b}$ and $s \geq r$, by Lemma 1.1(iii), there exist $Q \in \mathcal{A}_{k}^{b}$ for some $-b \leq k \leq b$ and $g \in G_{b}$, such that $B(x, s) \subset g^{-1} Q$ and $\mu(Q) \leq C \mu(B(x, s))$. Then

$$
\frac{1}{\mu(B(x, s))} \int_{B(x, s)}|f(y)| d \mu(y) \leq \frac{C}{\mu\left(g^{-1} Q\right)} \int_{g^{-1} Q}|f(y)| d \mu(y) \leq C \mathcal{M}_{d}^{b, g} f(x, r)
$$

since $\mu(Q) \geq \mu(B(x, s)) \geq \alpha(r)$. Therefore, integrating both sides of the above inequality on G_{b}, we have that

$$
\frac{1}{\mu(B(x, s))} \int_{B(x, s)}|f(y)| d \mu(y) \leq \frac{C}{\left|G_{b}\right|} \int_{G_{b}} \mathcal{M}_{d}^{b, g} f(x, r) d g
$$

and hence we obtain (3.2).
Proof of Theorem 3.1: First we prove the implication (i) \Rightarrow (ii). Suppose that there exists $B=B(z, t), 0<t<\infty$ such that

$$
\int_{B} W^{1-p^{\prime}}(x) d \mu(x)=\infty
$$

Then $W^{-1} \chi_{B} \notin L^{p^{\prime}}(W)$ and thus, by Lemma 2.1, there exists a positive function $f \in L^{p}(W)$ such that

$$
\int_{B} f(x) d \mu(x)=\infty
$$

Therefore given $(x, r) \in \tilde{X}$, there exists $s \geq r$ such that $B \subset B(x, s)$ and hence $\mathcal{M} f(x, r)=\infty$. Since β is a positive measure, we have a contradiction of the condition (i). Thus

$$
\int_{B} W^{1-p^{\prime}}(x) d \mu(x)<\infty
$$

To obtain the inequality in (ii) it is sufficient to choose $f(x)=W^{1-p^{\prime}}(x) \chi_{B}(x)$ in the hypothesis.

Let us prove (ii) \Rightarrow (i). We fix a positive integer $b, g \in G$ and $Q \in \mathcal{A}_{k}^{b},-b \leq$ $k \leq b$. Then, by Lemma 1.1(i) there exist $x_{Q} \in Q$ such that $Q \subset B\left(x_{Q}, \lambda^{k+1}\right)$ and $\mu\left(B\left(x_{Q}, \lambda^{k+1}\right)\right) \leq C \mu(Q)$. We write $B=B\left(g^{-1} x_{Q}, \lambda^{k+1}\right), Q^{\prime}=g^{-1} Q$ and $\nu=W^{1-p^{\prime}}$. Since $\nu \in A_{\infty}(X)$, there exist positive constants C_{ν} and δ, depending only on ν, such that

$$
\frac{\mu\left(Q^{\prime}\right)}{\mu(B)} \leq C_{\nu}\left(\frac{\nu\left(Q^{\prime}\right)}{\nu(B)}\right)^{\delta}
$$

Therefore

$$
\nu(B) \leq C_{\nu}^{1 / \delta}\left(\frac{\mu(B)}{\mu\left(Q^{\prime}\right)}\right)^{1 / \delta} \nu\left(Q^{\prime}\right) \leq C_{1} \nu\left(Q^{\prime}\right)
$$

Then by the hypothesis and (3.1) we obtain

$$
\begin{aligned}
\int_{\widetilde{Q}^{\prime}}\left[\mathcal{M}_{d}^{b, g}\left(W^{1-p^{\prime}} \chi_{Q^{\prime}}\right)(x, r)\right]^{p} d \beta(x, r) & \leq C_{2} \int_{\widetilde{B}}\left[\mathcal{M}\left(\nu \chi_{B}\right)(x, r)\right]^{p} d \beta(x, r) \\
& \leq C_{3} \nu(B) \\
& \leq C_{4} \int_{Q^{\prime}} W^{1-p^{\prime}}(x) d \mu(x)
\end{aligned}
$$

Since the constant C_{4} depends only on p, W and β, then by Theorem 2.1 and Remark 2.1, there exists a constant C_{5} such that,

$$
\begin{equation*}
\int_{\widetilde{X}}\left[\mathcal{M}_{d}^{b, g} f(x, r)\right]^{p} d \beta(x, r) \leq C_{5} \int_{X}|f(x)|^{p} W(x) d \mu(x) \tag{3.3}
\end{equation*}
$$

for all $f \in L^{p}(W)$ and all $g \in G$. Then, it follows by (3.2), (3.3) and by Jensen's inequality that

$$
\int_{\widetilde{X}}\left[\mathcal{M}^{b} f(x, r)\right]^{p} d \beta(x, r) \leq \int_{\widetilde{X}}\left(\frac{C_{6}}{\left|G_{b}\right|} \int_{G_{b}} \mathcal{M}_{d}^{b, g} f(x, r) d g\right)^{p} d \beta(x, r)
$$

$$
\begin{aligned}
& \leq C_{6}^{p} \int_{G_{b}} \int_{\widetilde{X}}\left[\mathcal{M}_{d}^{b, g} f(x, r)\right]^{p} d \beta(x, r) \frac{d g}{\left|G_{b}\right|} \\
& \leq C_{6}^{p} C_{5} \int_{X}|f(x)|^{p} W(x) d \mu(x)
\end{aligned}
$$

The result follows by the Monotone Convergence Theorem.
Remark 3.1. (a) For $W \equiv 1$, the condition (ii) of Theorem 3.1 is given by

$$
\begin{equation*}
\int_{\widetilde{B}}\left[\mathcal{M}\left(\chi_{B}\right)(x, r)\right]^{p} d \beta(x, r) \leq C \mu(B) \tag{3.4}
\end{equation*}
$$

for all balls B. Let us fix $B=B(z, t), 0<t<\infty$. Then, it follows as in the proof of inequality (3.1) of Lemma 3.1 that there exists a constant $C>0$ such that

$$
C \leq \mathcal{M}\left(\chi_{B}\right)(x, r) \leq 1
$$

for all $(x, r) \in \widetilde{B}$. Therefore, from (3.4) we obtain

$$
C^{p} \beta(\widetilde{B}) \leq \int_{\widetilde{B}}\left[\mathcal{M}\left(\chi_{B}\right)(x, r)\right]^{p} d \beta(x, r) \leq C \mu(B)
$$

Then, the condition (3.4) implies the condition:

$$
\begin{equation*}
\beta(\widetilde{B}) \leq C \mu(B) \tag{3.5}
\end{equation*}
$$

for a constant $C>0$ and all balls B. But, from the condition (3.5) we obtain

$$
\int_{\widetilde{B}}\left[\mathcal{M}\left(\chi_{B}\right)(x, r)\right]^{p} d \beta(x, r) \leq \beta(\widetilde{B}) \leq C \mu(B)
$$

and therefore the conditions (3.4) and (3.5) are equivalent. The condition (3.5) is the Carleson condition for the homogeneous space X (see [8]).
(b) Let $B=B(z, t), 0<t<\infty$ and $\nu=W^{1-p^{\prime}}$. Then

$$
C \frac{\nu(B)}{\mu(B)} \leq \mathcal{M}\left(\nu \chi_{B}\right)(x, r)
$$

for all $(x, r) \in \widetilde{B}$. Therefore, from the condition (ii) of Theorem 3.1 we obtain

$$
\begin{aligned}
\beta(\widetilde{B})^{1 / p} & =\left(\frac{\mu(B)}{\nu(B)}\right)\left[\int_{\widetilde{B}}\left(\frac{\nu(B)}{\mu(B)}\right)^{p} d \beta(x, r)\right]^{1 / p} \\
& \leq C\left(\frac{\mu(B)}{\nu(B)}\right)\left[\int_{\widetilde{B}}\left[\mathcal{M}\left(\nu \chi_{B}\right)(x, r)\right]^{p} d \beta(x, r)\right]^{1 / p} \\
& \leq C^{\prime}\left(\frac{\mu(B)}{\nu(B)}\right) \nu(B)^{1 / p}
\end{aligned}
$$

Then, the condition (ii) of Theorem 3.1 implies the condition:

$$
\begin{equation*}
\frac{\beta(\widetilde{B})^{1 / p}}{\mu(B)}\left(\int_{B} W^{1-p^{\prime}}(x) d \mu(x)\right)^{1 / p^{\prime}} \leq C \tag{3.6}
\end{equation*}
$$

for a constant $C>0$ and all balls B. It was proved in Ruiz-Torrea [8] that the condition (3.6) is a necessary and sufficient condition for \mathcal{M} to be a bounded operator from $L^{p}(X, W(x) d \mu(x))$ into weak - $L^{p}(\widetilde{X}, \beta)$. व

4 - The boundedness of the Poisson integral

Let $\xi:[0, \pi]^{n-1} \times[0,2 \pi] \rightarrow S^{n}$ be the function defined by $\xi(\theta)=\xi\left(\theta_{1}, \ldots, \theta_{n}\right)=$ $\left(x_{1}, \ldots, x_{n+1}\right)$, where

$$
x_{1}=\cos \theta_{1} ; \quad x_{i}=\cos \theta_{i} \prod_{j=1}^{i-1} \sin \theta_{j}, 2 \leq i \leq n ; \quad x_{n+1}=\prod_{j=1}^{n} \sin \theta_{j} .
$$

We identify $S^{n} \times[0,1]$ with the ball $\mathbb{B}=\left\{y \in \mathbb{R}^{n+1}:|y| \leq 1\right\}$ using the application $(y, r) \mapsto r y$. If f is a real and integrable function on S^{n} we define $\overline{\mathcal{M}} f(y)=$ $\mathcal{M} f\left(y^{\prime}, h(|y|)\right)$ for $y \in \mathbb{B}, y \neq 0, y^{\prime}=y /|y|$.

In Rauch [6] it was proved that

$$
u_{f}^{*}\left(y^{\prime}\right)=\sup _{0 \leq r<1}\left|u_{f}\left(r y^{\prime}\right)\right| \leq C_{n} \overline{\mathcal{M}} f\left(y^{\prime}\right), \quad y^{\prime} \in S^{n}, \quad f \in L^{1}\left(S^{n}\right)
$$

The inequality in the following lemma generalizes the above inequality.
Lemma 4.1. There exists a constant $C>0$ such that, for all real-valued integrable function f on S^{n} and all $y \in \mathbb{B}, 0<|y|<1$, we have

$$
u_{f}^{*}(y) \leq C \overline{\mathcal{M}} f(y)
$$

Proof: We may assume $y=r \mathbb{1}=r(1,0, \ldots, 0), 0 \leq r<1$. Let us denote $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right), \theta^{\prime}=\left(\theta_{2}, \ldots, \theta_{n}\right), \omega\left(\theta^{\prime}\right)=\sin ^{n-2} \theta_{2} \cdots \sin \theta_{n-1}$ and

$$
\begin{equation*}
p\left(\theta_{1}, r\right)=P_{r \mathbb{\Perp}}(\xi(\theta))=\frac{1}{\omega_{n}} \frac{1-r^{2}}{\left(1-2 r \cos \theta_{1}+r^{2}\right)^{(n+1) / 2}} . \tag{4.1}
\end{equation*}
$$

Then

$$
u_{f}(r \mathbb{1})=\int_{0}^{\pi} d \theta_{1} \cdots \int_{0}^{2 \pi} p\left(\theta_{1}, r\right) f(\xi(\theta)) \sin ^{n-1} \theta_{1} \omega\left(\theta^{\prime}\right) d \theta_{n} .
$$

If $0 \leq r \leq 1 / 2$, we have that $p\left(\theta_{1}, r\right) \leq 2^{n+1} / \omega_{n}$ and hence

$$
\left|u_{f}(r \mathbb{1})\right| \leq \frac{2^{n+1}}{\omega_{n}} \int_{S^{n}}|f(x)| d \sigma(x) \leq 2^{n+1} \overline{\mathcal{M}} f(r \mathbb{1})
$$

Now, let us suppose $1 / 2 \leq r<1$. If $m(r)=\arccos r(2-r)$, then, integrating by parts with respect to θ_{1}, we obtain

$$
\begin{aligned}
I_{r}= & \left|\int_{S^{n} \backslash B(\mathbb{1}, h(r))} P_{r \mathbb{1}}(x) f(x) d \sigma(x)\right| \\
\leq & p(\pi, r) \int_{0}^{\pi} d \theta_{1} \cdots \int_{0}^{2 \pi}|f(\xi(\theta))| \sin ^{n-1} \theta_{1} \omega\left(\theta^{\prime}\right) d \theta_{n} \\
& +p(m(r), r) \int_{0}^{m(r)} d \theta_{1} \int_{0}^{\pi} d \theta_{2} \cdots \int_{0}^{2 \pi}|f(\xi(\theta))| \sin ^{n-1} \theta_{1} \omega\left(\theta^{\prime}\right) d \theta_{n} \\
& +\int_{m(r)}^{\pi}\left|\frac{\partial p\left(\theta_{1}, r\right)}{\partial \theta_{1}}\right|\left[\int_{0}^{\theta_{1}}\left(\int_{0}^{\pi} d \theta_{2} \cdots \int_{0}^{2 \pi}\left|f\left(\xi\left(t, \theta^{\prime}\right)\right)\right| \sin ^{n-1} t \omega\left(\theta^{\prime}\right) d \theta_{n}\right) d t\right] d \theta_{1} \\
= & I_{r}^{1}+I_{r}^{2}+I_{r}^{3}
\end{aligned}
$$

We have that

$$
I_{r}^{1}=\frac{1}{\omega_{n}} \frac{1-r}{(1+r)^{n}} \int_{S^{n}}|f(x)| d \sigma(x) \leq \overline{\mathcal{M}} f(r \mathbb{1})
$$

Since

$$
\frac{\omega_{n-1}}{n 2^{n-1}}(1-r)^{n} \leq \sigma(B(\mathbb{1}, h(r))) \leq \frac{2^{n} \omega_{n-1}}{n}(1-r)^{n}
$$

then for $1 / 2 \leq r<1$, it follows that

$$
I_{r}^{2} \leq \frac{2}{\omega_{n}(1-r)^{n}} \int_{B(\mathbb{1}, h(r))}|f(x)| d \sigma(x) \leq \frac{2^{n+1} \omega_{n-1}}{n \omega_{n}} \overline{\mathcal{M}} f(r \mathbb{1})
$$

Using properties of the Poisson kernel and integration by parts, we obtain

$$
\int_{0}^{\pi}\left|\frac{\partial p\left(\theta_{1}, r\right)}{\partial \theta_{1}}\right|\left(\int_{0}^{\theta_{1}} \sin ^{n-1} t d t\right) d \theta_{1}=\frac{1}{\omega_{n-1}}\left(1-\frac{1-r}{(1+r)^{n}}\right) \leq \frac{1}{\omega_{n-1}}
$$

and thus

$$
I_{r}^{3} \leq \frac{1}{\omega_{n-1}} \overline{\mathcal{M}} f(r \mathbb{l})
$$

Therefore, there exists a constant $D>0$, such that

$$
I_{r} \leq I_{r}^{1}+I_{r}^{2}+I_{r}^{3} \leq D \overline{\mathcal{M}} f(r \mathbb{1})
$$

for all $1 / 2 \leq r<1$. Consequently

$$
\begin{aligned}
\left|u_{f}(r \mathbb{1})\right| & \leq \frac{2}{\omega_{n}} \frac{1}{(1-r)^{n}} \int_{B(\mathbb{1}, h(r))}|f(x)| d \sigma(x)+I_{r} \\
& \leq \frac{2^{n+1} \omega_{n-1}}{n \omega_{n}} \frac{1}{\sigma(B(\mathbb{1}, h(r)))} \int_{B(\mathbb{1}, h(r))}|f(x)| d \sigma(x)+D \overline{\mathcal{M}} f(r \mathbb{1}) \\
& \leq \frac{2^{n+1} \omega_{n-1}}{n \omega_{n}} \overline{\mathcal{M}} f(r \mathbb{1})+D \overline{\mathcal{M}} f(r \mathbb{1})=C \overline{\mathcal{M}} f(r \mathbb{1}) .
\end{aligned}
$$

Proof of Theorem 4.1: The Proof of $(\mathrm{i}) \Rightarrow$ (ii) is exactly as the proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$ in Theorem 2.1 and Theorem 3.1.

Let us prove $(\mathrm{ii}) \Rightarrow(\mathrm{i})$. Let f be a real-valued positive integrable function on S^{n}. There exists a constant $C>0$, depending only on n, such that

$$
P_{r y^{\prime}}(x) \geq \frac{C}{\sigma\left(B\left(y^{\prime}, h(r)\right)\right)}
$$

for all $0 \leq r<1, y^{\prime} \in S^{n}$ and $x \in B\left(y^{\prime}, h(r)\right)$. Therefore

$$
u_{f}\left(r y^{\prime}\right) \geq \frac{C}{\sigma\left(B\left(y^{\prime}, h(r)\right)\right)} \int_{B\left(y^{\prime}, h(r)\right)} f(x) d \sigma(x)
$$

and hence

$$
\begin{equation*}
u_{f}^{*}\left(r y^{\prime}\right) \geq C \overline{\mathcal{M}} f\left(r y^{\prime}\right) \tag{4.2}
\end{equation*}
$$

Consider the function $k: \mathbb{B} \rightarrow \widetilde{S}^{n}$ defined by $k(x)=(x /|x|, h(|x|)), x \neq 0$, $k(0)=(\mathbb{1}, 0), \mathbb{1}=(1,0, \ldots, 0)$. Then applying Theorem 3.1 to $X=S^{n}$ and to the image measure β of ν by $k, \beta(A)=\nu\left(k^{-1}(A)\right)$ and using the inequalities (4.1) and (4.2), we obtain the wanted proof.

REFERENCES

[1] Bernardis, A. and Salinas, O. - Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type, Studia Math., 108 (1994), 201207.
[2] Carleson, L. - Interpolation by bounded analytic functions and the corona problem, Annals of Math., 76 (1962), 547-/559.
[3] Dellacherie, C. and Meyer, P.A. - Probabilités et potentiel. Théorie des Martingales, Hermann, Paris, 1980.
[4] Korányi, A. and Vági, S. - Singular integrals on homogeneous spaces and some problems of classical analysis, Annali della Scuola Norm. Sup. di Pisa, 25 (1971), 575-648.
[5] Macias, R. and Segovia, C. - A well behaved quasi-distance for spaces of homogeneous type, Trabajos de Matemática, 32, Inst. Argentino de Matemática, 1981.
[6] Rauch, H.E. - Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood, Canad. J. Math., 8 (1956), 171-183.
[7] Ruiz, F.J. and Torrea, J.L. - A unified approach to Carleson measures and A_{p} weights II, Pacific J. Math., 120 (1985), 189-197.
[8] Ruiz, F.J. and Torrea, J.L. - Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math., 88 (1988), 221-243.
[9] Sawyer, E. and Wheeden, R.L. - Weighted inequalities for fractional integrals on euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874.

Benjamin Bordin, Iara A.A. Fernandes and Sergio A. Tozoni, Instituto de Matemática, Universidade Estadual de Campinas, Caixa Postal 6065, 13.081-970 Campinas - SP - BRAZIL

E-mail: bordin@ime.unicamp.br
iara@ime.unicamp.br
tozoni@ime.unicamp.br

[^0]: Received: September 4, 2000; Revised: February 23, 2001.
 AMS Subject Classification: 42B25, 43A85.
 Keywords: Poisson integral; Carleson condition; homogeneous space; weight; sphere.

