PORTUGALIAE MATHEMATICA

Vol. 59 Fasc. 2 - 2002
Nova Série

ON THE SET $a x+b g^{x}(\bmod p)$

Cristian Cobeli, Marian Vâjâttu and Alexandru Zaharescu

Abstract

Given nonzero integers a, b we prove an asymptotic result for the distribution function of the set $a x+b g^{x}(\bmod p)$, as p goes to infinity and g is a primitive root $\bmod p$.

1 - Introduction

Various aspects of the distribution of powers of a primitive root g modulo a large prime number p have been investigated by a number of authors (see for example [2], [3], [4], [6], [7], [8]). In this paper we fix nonzero integers a, b and study the distribution function of the set $a x+b g^{x}(\bmod p)$, as p goes to infinity and g is a primitive root $\bmod p$. In particular we are interested in the distance between x and g^{x} as x runs over the set $\{1,2, \ldots, p-1\}$. Throughout this paper g^{x} means the least positive residue of $g^{x} \bmod p$. We also consider a short interval version of the problem, more precisely we fix two intervals \mathcal{I}, \mathcal{J} and work only with those integers $x \in \mathcal{I}$ for which $g^{x}(\bmod p)$ belongs to \mathcal{J}. In the following we let $\mathcal{I}=\{0,1, \ldots, M-1\}, \mathcal{J}=\{0,1, \ldots, N-1\}$ with M, N positive integers $\leq p$ and denote $\mathcal{M}=\left\{x \in \mathcal{I}: g^{x} \in \mathcal{J}, a x+b g^{x}<t\right\}$. The distribution function is given by $D(t)=D(a, b, p, g, \mathcal{I}, \mathcal{J}, t)=\# \mathcal{M}$. Replacing if necessary a, b and t by $-a,-b$ and $-t$ respectively, we may assume in the following that $b>0$. We now introduce a function $G(t, a, b, M, N)$ which will appear in the estimation of $D(t)$.

[^0]If $a>0$ we set

$$
G(t, a, b, M, N)= \begin{cases}0, & \text { if } t<0 \\ \frac{t^{2}}{2 a b}, & \text { if } 0 \leq t<U \\ \frac{U^{2}}{2 a b}+\frac{U(t-U)}{a b}, & \text { if } U \leq t<V \\ M N-\frac{(a M+b N-t)^{2}}{2 a b}, & \text { if } V \leq t<a M+b N \\ M N, & \text { if } a M+b N \leq t\end{cases}
$$

where $U=\min \{a M, b N\}$ and $V=\max \{a M, b N\}$. If $a<0$ then we let
$G(t, a, b, M, N)= \begin{cases}0, & \text { if } t<a M, \\ -\frac{(t-a M)^{2}}{2 a b}, & \text { if } a M \leq t \leq W, \\ \left(M N+\frac{(W-a M)^{2}}{a b}\right) \frac{t-W}{Z-W}-\frac{(W-a M)^{2}}{2 a b}, & \text { if } W<t<Z, \\ M N+\frac{(t-b N)^{2}}{2 a b}, & \text { if } Z \leq t<b N, \\ M N, & \text { if } b N \leq t,\end{cases}$
where $W=\min \{0, b N+a M\}$ and $Z=\max \{0, b N+a M\}$. We will prove the following

Theorem 1. For any $a, b, p, g, \mathcal{I}, \mathcal{J}, t$ as above one has

$$
D(a, b, p, g, \mathcal{I}, \mathcal{J}, t)=\frac{G(t, a, b, M, N)}{p}+O_{a, b}\left(p^{1 / 2} \log ^{3} p\right)
$$

It is well established that the discrete exponential map $x \mapsto g^{x} \bmod p$ is a "random" map, and this is used by random number generators which use the linear congruential method [1]. There are various ways to check this randomness. For instance, if we count those $x \in\{1,2, \ldots, p-1\}$ for which $g^{x}<x$, respectively those x for which $g^{x}>x$ there should be no bias towards any one of these inequalities, in other words one would expect that about half of the x 's are larger than g^{x} and half of the x 's are smaller than g^{x}. We can actually prove this statement by using Theorem 1.

Corollary 1. One has

$$
\left|\#\left\{0 \leq x \leq p-1: x>g^{x}\right\}-\frac{p}{2}\right| \leq 7 p^{1 / 2}(1+\log p)^{3}
$$

As another application of Theorem 1 we have the following asymptotic result for all even moments of the distance between x and g^{x}.

Corollary 2. Let k be a positive integer. Then we have

$$
M(p, g, 2 k):=\sum_{x=0}^{p-1}\left(g^{x}-x\right)^{2 k}=\frac{p^{2 k+1}}{(k+1)(2 k+1)}+O_{k}\left(p^{2 k+1 / 2} \log ^{3} p\right)
$$

In particular, for $k=1$ one has

$$
M(p, g, 2)=\frac{p^{3}}{6}+O\left(p^{5 / 2} \log ^{3} p\right)
$$

This says that in quadratic average $\left|g^{x}-x\right|$ is $\sim \frac{p}{\sqrt{6}}$.

2 - Setting the problem

We will need a bound for the exponential sum

$$
S(m, n, g, p)=\sum_{z=0}^{p-1} e_{p}\left(m z+n g^{z}\right)
$$

where m, n are integers and $e_{p}(t)=e^{\frac{2 \pi i t}{p}}$. This problem was handled by Mordell [5].

Lemma 1 (Mordell). Let p be a prime, g a primitive root $\bmod p$ and m, n integers, not both multiples of p. Then

$$
|S(m, n, g, p)|<2 p^{1 / 2}(1+\log p)
$$

The next lemma allows us to compute quite general sums involving x and g^{x}.

Lemma 2. Let \mathcal{U}, \mathcal{V} be subsets of $\{0,1, \ldots, p-1\}$, let f be a complex valued function defined on $\mathcal{U} \times \mathcal{V}$ and consider the transform

$$
\check{f}(m, n)=\sum_{(x, y) \in \mathcal{U} \times \mathcal{V}} f(x, y) e_{p}(m x+n y) .
$$

Then

$$
\sum_{\substack{(x, y) \in \mathcal{U} \times \mathcal{V} \\ y \equiv g^{x}(\bmod p)}} f(x, y)=\frac{1}{p^{2}} \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} \check{f}(m, n) S(-m,-n, g, p) .
$$

Proof: Using the definition, the right hand side can be written as

$$
\begin{aligned}
& \frac{1}{p^{2}} \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} \check{f}(m, n) S(-m,-n, g, p)= \\
& \quad=\frac{1}{p^{2}} \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} \sum_{(x, y) \in \mathcal{U} \times \mathcal{V}} f(x, y) e_{p}(m x+n y) \sum_{z=0}^{p-1} e_{p}\left(-m z-n g^{z}\right) \\
& \quad=\frac{1}{p^{2}} \sum_{(x, y) \in \mathcal{U} \times \mathcal{V}} f(x, y) \sum_{z=0}^{p-1} \sum_{m=0}^{p-1} e_{p}(m(x-z)) \sum_{n=0}^{p-1} e_{p}\left(n\left(y-g^{z}\right)\right) .
\end{aligned}
$$

Here the sum over n is zero unless $y \equiv g^{z}(\bmod p)$ when it equals p. Similarly, since $0<x, z \leq p-1$ the sum over m is zero unless $x=z$ when it equals p. Thus the sum over z is zero if $y \not \equiv g^{x}(\bmod p)$ and it equals p^{2} if $y \equiv g^{x}(\bmod p)$, which proves the statement of the lemma.

We will apply Lemma 2 with $\mathcal{U}=\mathcal{I}, \mathcal{V}=\mathcal{J}$ and

$$
f(x, y)=f(t, x, y, a, b)= \begin{cases}1, & \text { if } a x+b y<t \tag{1}\\ 0, & \text { if } a x+b y \geq t .\end{cases}
$$

Then the distribution function is given by

$$
\begin{equation*}
D(t)=\sum_{\substack{(x, y) \in \mathcal{I} \times \mathcal{J} \\ y \equiv g^{x}(\bmod p)}} f(x, y) \tag{2}
\end{equation*}
$$

and this is a sum as in Lemma 2. The coefficients $\check{f}(m, n)$ can be estimated accurately, as we will see in the next section.

3 - Proof of Theorem 1

In what follows we assume that $0 \leq m, n \leq p-1$. We find an upper bound for $\check{f}(m, n)=\check{f}(t, m, n, a, b)$ which is independent of t and then calculate explicitly $\check{f}(0,0)$, which gives the main term of $D(t)$. There are four cases.
I. $m=0, n \neq 0$. We have

$$
\check{f}(t, 0, n, a, b)=\sum_{(x, y) \in \mathcal{I} \times \mathcal{J}} f(x, y) e_{p}(n y)
$$

By the definition of $f(x, y)$ it follows that for each $x \in \mathcal{I}$ we have a sum of $e_{p}(n y)$ with y running in a subinterval of \mathcal{J}, that is a sum of a geometric progression with ratio $e_{p}(n)$. The absolute value of such a sum is $\leq \frac{2}{\left|e_{p}(n)-1\right|}$ and consequently

$$
\begin{equation*}
|\check{f}(t, 0, n, a, b)| \leq|\mathcal{I}| \frac{2}{\left|e_{p}(n)-1\right|}=\frac{M}{\sin \frac{n \pi}{p}} \leq \frac{M}{2\left\|\frac{n}{p}\right\|} \tag{3}
\end{equation*}
$$

where $\|\cdot\|$ denotes the distance to the nearest integer.
II. $m \neq 0, n=0$. Similarly, as in case \mathbf{I}, we have

$$
\begin{equation*}
|\check{f}(t, m, 0, a, b)| \leq \frac{N}{2\left\|\frac{m}{p}\right\|} \tag{4}
\end{equation*}
$$

III. $m \neq 0, n \neq 0$. We need the following lemma.

Lemma 3. Let $h, k \not \equiv 0(\bmod p), L, T$ and $u \geq 0$ be integers. Let $S=$ $\sum_{x=0}^{L} \sum_{y=0}^{u x+T} e_{p}(h x) e_{p}(k y)$. Then one has

$$
|S| \leq \frac{1}{4\left\|\frac{k}{p}\right\|} \min \left\{L, \frac{1}{2\left\|\frac{h+u k}{p}\right\|}\right\}+\frac{1}{4\left\|\frac{k}{p}\right\|} \cdot \frac{1}{2\left\|\frac{h}{p}\right\|}
$$

The proof is left to the reader. We now return to the estimation of $\check{f}(m, n)$. Writing

$$
\check{f}(m, n)=\sum_{\substack{x, y) \in \mathcal{I} \times \mathcal{J} \\ a x+b y<t}} e_{p}(m x+n y)
$$

as a sum of b sums according to the residue of x modulo b, one arrives at sums as in Lemma 3, with $h=m b, k=n, u=-a$. It follows that

$$
\begin{equation*}
|\check{f}(t, m, n, a, b)|<_{a, b} \frac{1}{2\left\|\frac{n}{p}\right\|} \min \left\{M, \frac{1}{2\left\|\frac{m b-a n}{p}\right\|}\right\}+\frac{1}{2\left\|\frac{n}{p}\right\|} \cdot \frac{1}{2\left\|\frac{m b}{p}\right\|} \tag{5}
\end{equation*}
$$

IV. $m, n=0$. By definition, we have

$$
\check{f}(t, 0,0, a, b)=\sum_{(x, y) \in \mathcal{I} \times \mathcal{J}} f(t, x, y, a, b) .
$$

Let \mathcal{D} be the set of real points from the rectangle $[0, M) \times[0, N)$ which lie below the line $a x+b y=t$. Then $\check{f}(t, 0,0, a, b)$ equals the number of integer points from \mathcal{D}. Therefore

$$
\check{f}(t, 0,0, a, b)=\operatorname{Area}(\mathcal{D})+O(\text { length }(\partial \mathcal{D}))
$$

An easy computation shows that $\operatorname{Area}(\mathcal{D})$ equals the expression $G(t, a, b, M, N)$ defined in the Introduction, while the length of the boundary $\partial \mathcal{D}$ is $\leq 2 M+2 N \leq$ $4 p$. Hence

$$
\check{f}(t, 0,0, a, b)=G(t, a, b, M, N)+O(p) .
$$

By (2) and Lemma 2 we know that

$$
\left|D(t)-\frac{1}{p^{2}} \check{f}(0,0) S(0,0, g, p)\right| \leq D_{1}+D_{2}+D_{3}
$$

where

$$
D_{1}=\frac{1}{p^{2}} \sum_{m=1}^{p-1}|\check{f}(m, 0)||S(m, 0, g, p)|, \quad D_{2}=\frac{1}{p^{2}} \sum_{n=1}^{p-1}|\check{f}(0, n)||S(0, n, g, p)|
$$

and

$$
D_{3}=\frac{1}{p^{2}} \sum_{m=1}^{p-1} \sum_{n=1}^{p-1}|\check{f}(m, n)||S(m, n, g, p)|
$$

One has

$$
\frac{1}{p^{2}} \check{f}(0,0) S(0,0, g, p)=\frac{\check{f}(0,0)}{p}=\frac{G(t, a, b, M, N)}{p}+O(1)
$$

Next, since $S(m, 0, g, p)=\sum_{x=0}^{p-1} e_{p}(m x)=0$ for $1 \leq m \leq p-1$, it follows that $D_{1}=0$. By (3) and Lemma 1 we have

$$
\begin{aligned}
D_{2} \leq \frac{1}{p^{2}} \sum_{n=1}^{p-1} \frac{M}{\left\|\frac{n}{p}\right\|} p^{1 / 2}(1+\log p) & =2 M p^{-3 / 2}(1+\log p) \sum_{n=1}^{\frac{p-1}{2}} \frac{p}{n} \\
& \leq 2 p^{1 / 2}(1+\log p)^{2}
\end{aligned}
$$

In order to estimate D_{3} we first use Lemma 1 and (5) to obtain
(6) $\quad D_{3}<_{a, b} \frac{\log p}{p^{3 / 2}} \sum_{m=1}^{p-1} \sum_{n=1}^{p-1} \frac{1}{\left\|\frac{n}{p}\right\|} \min \left\{M, \frac{1}{\left\|\frac{m b-a n}{p}\right\|}\right\}+\frac{\log p}{p^{3 / 2}} \sum_{m=1}^{p-1} \sum_{n=1}^{p-1} \frac{1}{\left\|\frac{n}{p}\right\|} \cdot \frac{1}{\left\|\frac{m b}{p}\right\|}$.

The first double sum in (6) is

$$
\begin{aligned}
& \sum_{m=1}^{p-1} \sum_{n=1}^{p-1} \frac{1}{\left\|\frac{n}{p}\right\|} \min \left\{M, \frac{1}{\left\|\frac{m b-a n}{p}\right\|}\right\} \leq \\
& \quad \leq \sum_{n=1}^{p-1} \frac{1}{\left\|\frac{n}{p}\right\|} \sum_{\substack{m=1 \\
m b-a n \equiv 0(\bmod p)}}^{p-1} p+\sum_{n=1}^{p-1} \frac{1}{\left\|\frac{n}{p}\right\|} \sum_{\substack{m=1 \\
m b-a n \neq 0(\bmod p)}}^{p-1} \frac{1}{\left\|\frac{m b-a n}{p}\right\|} \\
& \quad \leq p \sum_{n=1}^{\frac{p-1}{2}} \frac{p}{n}+\sum_{n=1}^{p-1} \frac{1}{\left\|\frac{n}{p}\right\|} \sum_{m^{\prime}=1}^{p-1} \frac{1}{\left\|\frac{m^{\prime}}{p}\right\|} \leq p^{2}(1+\log p)+4 p^{2}(1+\log p)^{2}
\end{aligned}
$$

while the second double sum is

$$
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} \frac{1}{\left\|\frac{n}{p}\right\|} \cdot \frac{1}{\left\|\frac{m b}{p}\right\|}=4 \sum_{m=1}^{\frac{p-1}{2}} \frac{p}{m} \sum_{n=1}^{\frac{p-1}{2}} \frac{p}{n} \leq 4 p^{2}(1+\log p)^{2}
$$

Hence $D_{3} \ll a, b p^{1 / 2} \log ^{3} p$. Putting all these together, Theorem 1 follows.

4 - Proof of the Corollaries

For the proof of the first Corollary, let us notice that

$$
\#\left\{0 \leq x \leq p-1: x>g^{x}\right\}=D(a=-1, b=1, p, g, \mathcal{I}, \mathcal{J}, t=0)
$$

with $\mathcal{I}=\mathcal{J}=\{0,1, \ldots, p-1\}$. Here $M=N=p, W=Z=0$ and so

$$
G(t=0, a=-1, b=1, M=p, N=p)=-\frac{(a M-t)^{2}}{2 a b}=\frac{p^{2}}{2}
$$

Thus

$$
\#\left\{0 \leq x \leq p-1: x>g^{x}\right\}=\frac{p}{2}+O\left(p^{\frac{1}{2}} \log ^{3} p\right)
$$

One obtains the more precise upper bound $7 p^{\frac{1}{2}} \log ^{3} p$ for the error term by following the proof of Theorem 1 in this particular case.

To prove Corollary 2 note that

$$
\begin{aligned}
M(p, g, 2 k) & =\sum_{x=0}^{p-1}\left(g^{x}-x\right)^{2 k} \\
& =\sum_{-p<t<p} t^{2 k} \#\left\{0 \leq x, y \leq p-1: y \equiv g^{x}(\bmod p), y-x=t\right\}
\end{aligned}
$$

This equals

$$
\sum_{-p<t<p} t^{2 k}(D(t+1)-D(t))=D(p)(p-1)^{2 k}+\sum_{-p<t<p} D(t)\left((t-1)^{2 k}-t^{2 k}\right)
$$

where $D(t)=D(a=-1, b=1, p, g, \mathcal{I}, \mathcal{J}, t)$ with $\mathcal{I}=\mathcal{J}=\{0,1, \ldots, p-1\}$. From Theorem 1 it follows that

$$
\begin{aligned}
M(p, g, 2 k)= & p^{2 k-1} G(p,-1,1, p, p)+\frac{1}{p} \sum_{-p<t<p} G(t,-1,1, p, p)\left((t-1)^{2 k}-t^{2 k}\right) \\
& +O_{k}\left(p^{2 k+\frac{1}{2}} \log ^{3} p\right)+O\left(p^{1 / 2} \log ^{3} p \sum_{-p<t<p}\left|(t-1)^{2 k}-t^{2 k}\right|\right)
\end{aligned}
$$

Since $(t-1)^{2 k}-t^{2 k}=-2 k t^{2 k-1}+O_{k}\left(p^{2 k-2}\right)$ and $0 \leq G(t,-1,1, p, p) \leq p^{2}$ we derive

$$
\begin{aligned}
M(p, g, 2 k)= & p^{2 k-1} G(p,-1,1, p, p) \\
& -\frac{2 k}{p} \sum_{-p<t<p} t^{2 k-1} G(t,-1,1, p, p)+O_{k}\left(p^{2 k+\frac{1}{2}} \log ^{3} p\right)
\end{aligned}
$$

From the definition of G we see that

$$
G(t,-1,1, p, p)= \begin{cases}0, & \text { if } t<-p \\ \frac{(p+t)^{2}}{2}, & \text { if }-p \leq t \leq 0 \\ p^{2}-\frac{(p-t)^{2}}{2}, & \text { if } 0<t<p \\ p^{2}, & \text { if } p \leq t\end{cases}
$$

Using the fact that for any positive integer r one has $\sum_{-p<t<p} t^{r}=\frac{2 p^{r+1}}{r+1}+O_{r}\left(p^{r}\right)$ if r is even and $\sum_{-p<t<p} t^{r}=0$ if r is odd, the statement of Corollary 2 follows after a straightforward computation.

ACKNOWLEDGEMENTS - We acknowledge the valuable discussions with S.M. Gonek on the subject.

REFERENCES

[1] Knuth, D. - The Art of Computer Programming, $2^{\text {nd }}$ edition, Addison-Wesley, Reading, Mass, 1973.
[2] Konyagin, S. and Shparlinski, I. - Character Sums With Exponential Functions and Their Applications, Cambridge Tracts in Mathematics, 136, Cambridge University Press, Cambridge, 1999.
[3] Korobov, N.M. - On the distribution of digits in periodic fractions, Math. USSR Sbornik, 18(4) (1972), 654-670.
[4] Montgomery, H.L. - Distribution of small powers of a primitive root, in "Advances in Number Theory" (Kingston, ON, 1991), Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp.137-149. Amer. Math. Soc., 111(2) (1991), 523-531.
[5] Mordell, L.J. - On the exponential sum $\sum_{x=1}^{X} \exp \left(2 \pi i\left(a x+b g^{x}\right) / p\right)$, Mathematika, 19 (1972), 84-87.
[6] Niederreiter, H. - Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc., 84 (1978), 957-1041.
[7] Rudnick, Z. and Zaharescu, A. - The distribution of spacings between small powers of a primitive root, Israel J. Math., 120(A) (2000), 271-287.
[8] Shparlinski, I.E. - Computational Problems in Finite Fields, Kluwer Acad. Publ. North-Holland, 1992.

```
Cristian Cobeli, Marian Vâjâitu and Alexandru Zaharescu,
    Institute of Mathematics of the Romanian Academy,
        P.O. Box 1-764, 70 700 Bucharest - ROMANIA
            E-mail: ccobeli@stoilow.imar.ro
                mvajaitu@stoilow.imar.ro
```


[^0]: Received: November 15, 2000; Revised: April 27, 2001.
 AMS Subject Classification: 11A07.

