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ON THE SET ax + b gx (mod p)

Cristian Cobeli, Marian Vâjâitu and Alexandru Zaharescu

Abstract: Given nonzero integers a, b we prove an asymptotic result for the dis-

tribution function of the set a x+ b gx (mod p), as p goes to infinity and g is a primitive

root mod p.

1 – Introduction

Various aspects of the distribution of powers of a primitive root g modulo a

large prime number p have been investigated by a number of authors (see for

example [2], [3], [4], [6], [7], [8]). In this paper we fix nonzero integers a, b and

study the distribution function of the set a x+ b gx (mod p), as p goes to infinity

and g is a primitive root mod p. In particular we are interested in the distance

between x and gx as x runs over the set {1, 2, ..., p−1}. Throughout this paper

gx means the least positive residue of gx mod p. We also consider a short interval

version of the problem, more precisely we fix two intervals I, J and work only

with those integers x ∈ I for which gx (mod p) belongs to J . In the following we

let I = {0, 1, ..., M−1}, J = {0, 1, ..., N−1} with M, N positive integers ≤ p

and denoteM = {x ∈ I : gx ∈ J , a x + b gx < t}. The distribution function is

given by D(t) = D(a, b, p, g, I,J , t) = #M. Replacing if necessary a, b and t by

−a,−b and −t respectively, we may assume in the following that b > 0. We now

introduce a function G(t, a, b, M, N) which will appear in the estimation of D(t).
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If a > 0 we set

G(t, a, b, M, N) =



























































0, if t < 0,

t2

2 a b
, if 0 ≤ t < U ,

U2

2 a b
+

U(t− U)

a b
, if U≤ t < V ,

MN −
(a M + b N − t)2

2 a b
, if V ≤ t < aM + bN ,

MN, if aM + bN ≤ t ,

where U = min{aM, bN} and V = max{aM, bN}. If a < 0 then we let

G(t, a, b, M, N)=



























































0, if t < aM ,

−
(t− a M)2

2 a b
, if aM≤ t≤W ,

(

MN+
(W− aM)2

a b

)

t−W

Z−W
−

(W− aM)2

2 a b
, if W < t < Z,

MN +
(t− b N)2

2 a b
, if Z≤ t < bN ,

MN, if bN ≤ t ,

where W = min{0, bN+ aM} and Z = max{0, bN+ aM}. We will prove the

following

Theorem 1. For any a, b, p, g, I, J , t as above one has

D(a, b, p, g, I,J , t) =
G(t, a, b, M, N)

p
+ Oa,b(p

1/2 log3 p) .

It is well established that the discrete exponential map x 7→ gx mod p is a

“random” map, and this is used by random number generators which use the

linear congruential method [1]. There are various ways to check this randomness.

For instance, if we count those x ∈ {1, 2, ..., p−1} for which gx< x, respectively

those x for which gx> x there should be no bias towards any one of these inequal-

ities, in other words one would expect that about half of the x’s are larger than

gx and half of the x’s are smaller than gx. We can actually prove this statement

by using Theorem 1.



ON THE SET ax + bgx (mod p) 197

Corollary 1. One has

∣

∣

∣

∣

#
{

0 ≤ x ≤ p−1: x > gx
}

−
p

2

∣

∣

∣

∣

≤ 7 p1/2(1 + log p)3 .

As another application of Theorem 1 we have the following asymptotic result

for all even moments of the distance between x and gx.

Corollary 2. Let k be a positive integer. Then we have

M(p, g, 2 k) :=
p−1
∑

x=0

(gx− x)2k =
p2k+1

(k + 1) (2 k + 1)
+ Ok(p

2k+1/2 log3 p) .

In particular, for k = 1 one has

M(p, g, 2) =
p3

6
+ O(p5/2 log3 p) .

This says that in quadratic average |gx− x| is ∼ p√
6
.

2 – Setting the problem

We will need a bound for the exponential sum

S(m, n, g, p) =
p−1
∑

z=0

ep(m z + n gz) ,

where m, n are integers and ep(t) = e
2πit
p . This problem was handled by Mordell

[5].

Lemma 1 (Mordell). Let p be a prime, g a primitive root mod p and m, n

integers, not both multiples of p. Then

|S(m, n, g, p)| < 2 p1/2(1 + log p) .

The next lemma allows us to compute quite general sums involving x and gx.
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Lemma 2. Let U , V be subsets of {0, 1, ..., p−1}, let f be a complex valued

function defined on U×V and consider the transform

f̌(m, n) =
∑

(x,y)∈U×V
f(x, y) ep(m x + n y) .

Then

∑

(x,y)∈U×V
y≡ gx (mod p)

f(x, y) =
1

p2

p−1
∑

m=0

p−1
∑

n=0

f̌(m, n) S(−m,−n, g, p) .

Proof: Using the definition, the right hand side can be written as

1

p2

p−1
∑

m=0

p−1
∑

n=0

f̌(m, n)S(−m,−n, g, p) =

=
1

p2

p−1
∑

m=0

p−1
∑

n=0

∑

(x,y)∈U×V
f(x, y) ep(mx + ny)

p−1
∑

z=0

ep(−m z − n gz)

=
1

p2

∑

(x,y)∈U×V
f(x, y)

p−1
∑

z=0

p−1
∑

m=0

ep(m(x− z))
p−1
∑

n=0

ep(n(y − gz)) .

Here the sum over n is zero unless y ≡ gz (mod p) when it equals p. Similarly,

since 0 < x, z ≤ p−1 the sum over m is zero unless x = z when it equals p. Thus

the sum over z is zero if y 6≡ gx (mod p) and it equals p2 if y ≡ gx (mod p), which

proves the statement of the lemma.

We will apply Lemma 2 with U = I, V = J and

f(x, y) = f(t, x, y, a, b) =

{

1, if a x + b y < t,

0, if a x + b y ≥ t .
(1)

Then the distribution function is given by

D(t) =
∑

(x,y)∈I×J
y≡gx (mod p)

f(x, y)(2)

and this is a sum as in Lemma 2. The coefficients f̌(m, n) can be estimated

accurately, as we will see in the next section.
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3 – Proof of Theorem 1

In what follows we assume that 0 ≤ m, n ≤ p−1. We find an upper bound for

f̌(m, n) = f̌(t, m, n, a, b) which is independent of t and then calculate explicitly

f̌(0, 0), which gives the main term of D(t). There are four cases.

I. m = 0, n 6= 0. We have

f̌(t, 0, n, a, b) =
∑

(x,y)∈I×J
f(x, y) ep(n y) .

By the definition of f(x, y) it follows that for each x ∈ I we have a sum of ep(ny)

with y running in a subinterval of J , that is a sum of a geometric progression with

ratio ep(n). The absolute value of such a sum is ≤ 2

|ep(n)−1|
and consequently

|f̌(t, 0, n, a, b)| ≤ |I|
2

|ep(n)− 1|
=

M

sin nπ
p

≤
M

2
∥

∥

∥

n
p

∥

∥

∥

,(3)

where ‖ · ‖ denotes the distance to the nearest integer.

II. m 6= 0, n = 0. Similarly, as in case I, we have

|f̌(t, m, 0, a, b)| ≤
N

2
∥

∥

∥

m
p

∥

∥

∥

.(4)

III. m 6= 0, n 6= 0. We need the following lemma.

Lemma 3. Let h, k 6≡ 0 (mod p), L, T and u ≥ 0 be integers. Let S =
∑L

x=0

∑ux+T
y=0 ep(hx) ep(ky). Then one has

|S| ≤
1

4
∥

∥

∥

k
p

∥

∥

∥

min

{

L,
1

2
∥

∥

∥

h+u k
p

∥

∥

∥

}

+
1

4
∥

∥

∥

k
p

∥

∥

∥

·
1

2
∥

∥

∥

h
p

∥

∥

∥

.

The proof is left to the reader. We now return to the estimation of f̌(m, n).

Writing

f̌(m, n) =
∑

(x,y)∈I×J
ax+by < t

ep(m x + n y)
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as a sum of b sums according to the residue of x modulo b, one arrives at sums

as in Lemma 3, with h = m b, k = n, u = −a. It follows that

|f̌(t, m, n, a, b)| ¿a,b
1

2
∥

∥

∥

n
p

∥

∥

∥

min

{

M,
1

2
∥

∥

∥

mb−an
p

∥

∥

∥

}

+
1

2
∥

∥

∥

n
p

∥

∥

∥

·
1

2
∥

∥

∥

mb
p

∥

∥

∥

.(5)

IV. m, n = 0. By definition, we have

f̌(t, 0, 0, a, b) =
∑

(x,y)∈I×J
f(t, x, y, a, b) .

Let D be the set of real points from the rectangle [0, M)× [0, N) which lie below

the line a x + b y = t. Then f̌(t, 0, 0, a, b) equals the number of integer points

from D. Therefore

f̌(t, 0, 0, a, b) = Area(D) + O(length(∂D)) .

An easy computation shows that Area(D) equals the expression G(t, a, b, M, N)

defined in the Introduction, while the length of the boundary ∂D is ≤ 2M+2N≤

4 p. Hence

f̌(t, 0, 0, a, b) = G(t, a, b, M, N) + O(p) .

By (2) and Lemma 2 we know that
∣

∣

∣

∣

D(t)−
1

p2
f̌(0, 0)S(0, 0, g, p)

∣

∣

∣

∣

≤ D1 + D2 + D3 ,

where

D1 =
1

p2

p−1
∑

m=1

|f̌(m, 0)| |S(m, 0, g, p)| , D2 =
1

p2

p−1
∑

n=1

|f̌(0, n)| |S(0, n, g, p)|

and

D3 =
1

p2

p−1
∑

m=1

p−1
∑

n=1

|f̌(m, n)| |S(m, n, g, p)| .

One has

1

p2
f̌(0, 0)S(0, 0, g, p) =

f̌(0, 0)

p
=

G(t, a, b, M, N)

p
+ O(1) .

Next, since S(m, 0, g, p) =
∑p−1

x=0 ep(mx) = 0 for 1 ≤ m ≤ p− 1, it follows that

D1= 0. By (3) and Lemma 1 we have

D2 ≤
1

p2

p−1
∑

n=1

M
∥

∥

∥

n
p

∥

∥

∥

p1/2(1 + log p) = 2M p−3/2(1 + log p)

p−1

2
∑

n=1

p

n

≤ 2 p1/2(1 + log p)2 .
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In order to estimate D3 we first use Lemma 1 and (5) to obtain

D3 ¿a,b
log p

p3/2

p−1
∑

m=1

p−1
∑

n=1

1
∥

∥

∥

n
p

∥

∥

∥

min

{

M,
1

‖mb−an
p ‖

}

+
log p

p3/2

p−1
∑

m=1

p−1
∑

n=1

1
∥

∥

∥

n
p

∥

∥

∥

·
1

∥

∥

∥

mb
p

∥

∥

∥

.(6)

The first double sum in (6) is

p−1
∑

m=1

p−1
∑

n=1

1
∥

∥

∥

n
p

∥

∥

∥

min

{

M,
1

∥

∥

∥

mb− an
p

∥

∥

∥

}

≤

≤
p−1
∑

n=1

1
∥

∥

∥

n
p

∥

∥

∥

p−1
∑

m=1
mb−an≡0 (mod p)

p +
p−1
∑

n=1

1
∥

∥

∥

n
p

∥

∥

∥

p−1
∑

m=1
mb−an6≡0 (mod p)

1
∥

∥

∥

mb− an
p

∥

∥

∥

≤ p

p−1

2
∑

n=1

p

n
+

p−1
∑

n=1

1
∥

∥

∥

n
p

∥

∥

∥

p−1
∑

m′=1

1
∥

∥

∥

m′

p

∥

∥

∥

≤ p2(1 + log p) + 4 p2(1 + log p)2 ,

while the second double sum is

p−1
∑

m=1

p−1
∑

n=1

1
∥

∥

∥

n
p

∥

∥

∥

·
1

∥

∥

∥

mb
p

∥

∥

∥

= 4

p−1

2
∑

m=1

p

m

p−1

2
∑

n=1

p

n
≤ 4 p2(1 + log p)2 .

Hence D3 ¿a,b p1/2 log3 p. Putting all these together, Theorem 1 follows.

4 – Proof of the Corollaries

For the proof of the first Corollary, let us notice that

#
{

0 ≤ x ≤ p− 1: x > gx
}

= D(a=−1, b=1, p, g, I,J , t = 0)

with I = J = {0, 1, ..., p−1}. Here M = N = p, W = Z = 0 and so

G(t=0, a=−1, b=1, M=p, N=p) = −
(a M − t)2

2 a b
=

p2

2
.

Thus

#
{

0 ≤ x ≤ p− 1: x > gx
}

=
p

2
+ O(p

1

2 log3 p) .

One obtains the more precise upper bound 7 p
1

2 log3 p for the error term by

following the proof of Theorem 1 in this particular case.
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To prove Corollary 2 note that

M(p, g, 2k) =
p−1
∑

x=0

(gx − x)2k

=
∑

−p<t<p
t2k #

{

0 ≤ x, y ≤ p−1: y ≡ gx (mod p), y − x = t
}

.

This equals
∑

−p<t<p
t2k
(

D(t + 1)−D(t)
)

= D(p) (p− 1)2k +
∑

−p<t<p
D(t)

(

(t− 1)2k − t2k
)

where D(t) = D(a=−1, b=1, p, g, I,J , t) with I = J = {0, 1, ..., p−1}. From

Theorem 1 it follows that

M(p, g, 2k) = p2k−1 G(p,−1, 1, p, p) +
1

p

∑

−p<t<p
G(t,−1, 1, p, p)

(

(t− 1)2k − t2k
)

+ Ok

(

p2k+ 1

2 log3 p
)

+ O

(

p1/2 log3 p
∑

−p<t<p

∣

∣

∣(t− 1)2k− t2k
∣

∣

∣

)

.

Since (t − 1)2k− t2k = −2 k t2k−1+ Ok(p
2k−2) and 0 ≤ G(t,−1, 1, p, p) ≤ p2 we

derive

M(p, g, 2k) = p2k−1 G(p,−1, 1, p, p)

−
2 k

p

∑

−p<t<p
t2k−1 G(t,−1, 1, p, p) + Ok

(

p2k+ 1

2 log3 p
)

.

From the definition of G we see that

G(t,−1, 1, p, p) =







































0, if t < −p,

(p + t)2

2
, if −p ≤ t ≤ 0,

p2 −
(p− t)2

2
, if 0 < t < p,

p2, if p ≤ t .

Using the fact that for any positive integer r one has
∑

−p<t<p tr= 2 pr+1

r+1 +Or(p
r)

if r is even and
∑

−p<t<p tr= 0 if r is odd, the statement of Corollary 2 follows

after a straightforward computation.
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