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ALMOST PERIODIC SOLUTIONS FOR SOME

LINEAR FORCED DIFFERENTIAL EQUATIONS

Philippe Cieutat and Alain Haraux

Abstract: We study the existence of almost periodic solutions of some linear

evolution equation u′ + A(t)u = f . To obtain these results, we establish an alterna-

tive concerning an almost periodic contraction process on RN . Then we apply these

results to a class of second order differential equations.

1 – Introduction

In this paper we study the existence of almost periodic solutions of some linear

evolution systems with almost periodic forcing of the form

(1.1) u′(t) +A(t)u(t) = f(t) ,

where u = (u1, ..., uN ), f : R → RN is almost periodic, A : R → L(RN ) is an

almost periodic operator-valued function and A(t) ≥ 0 for all t ∈ R. We give a
necessary and sufficient condition for the equation (1.1) to have an exponentially

sable almost periodic solution. In particular if the almost periodic operator-

valued function A(t) is symmetric, for all t ∈ R, this condition is equivalent to
positive definiteness of the averageM{A(t)}t. We also give an application of this

result to the nonlinear differential equation

(1.2) u′(t) +∇Φu(t) = f(t) ,

where ∇Φ denotes the gradient of a C1 convex function Φ: RN → R.

Received : June 26, 2000; Revised : April 2, 2001.



142 PHILIPPE CIEUTAT and ALAIN HARAUX

To obtain the condition for equation (1.1), we shall establish, for any almost

periodic linear contraction process on RN in the sense of Dafermos [6] the fol-

lowing alternative: either there is a complete trajectory with constant positive

norm, or this process is exponentially damped.

Then we give a necessary and sufficient condition on the almost periodic forc-

ing term for equation (1.1) to generate at least one almost periodic solution

(Fredholm alternative-type condition).

At the end we apply these results to the second order differential system

(1.3) u′(t) + Lu(t) +B(t)u′(t) = f(t) ,

where L is a fixed positive definite symmetric operator on RN and B : R → L(RN )

is an almost periodic operator-valued function with B(t) symmetric and B(t) ≥ 0.

The existence of almost periodic solutions like (1.1) has been studied exten-

sively in recent years. For example Aulbach and Minh, Minh, Minh and Naiton,

Palmer, Seifert, Trachenko ([2], [12], [13], [14], [15], [16]) have given important

contributions to the solution of this problem.

For a nonlinear differential equation in a Banach space, Aulbach and Minh in

[2] give sufficient conditions for the existence of almost periodic solutions. For

that they use the theory of semigroups of linear and nonlinear operators. In the

case of linear equations, they establish necessary and sufficient conditions for the

homogeneous equation

(1.4) u′(t) +A(t)u(t) = 0

to have an exponential dichotomy. In [12], Minh studies the existence of bounded

solutions by the same method.

For the equation (1.1) when A(t) is a possibly unbounded linear operator in

a Banach space, Seifert [15] gives sufficient conditions for the existence of almost

periodic solutions.

In [16], Trachenko studies the existence of almost periodic solutions of (1.4),

when A(t) is a skew symmetric matrix.

For almost periodic contraction processes, the question of existence of almost

periodic complete trajectories has been studied by Dafermos [6], then Ishii [11].

In the special case of equation (1.1) when A(t) ≥ 0, the main result of Ishii ([11],

Theorem 1) ensures the existence of some almost periodic solution of (1.1) if this

equation admits a bounded solution on R+.
In section 3, we will compare firstly some results of Aulbach and Minh in [2],

secondly those of Seifert in [15], with our results.
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The paper is organized as follows: in Section 2 we recall some notation and

definitions. The results are announced and discussed in Section 3 and compared

with those of the above quoted authors when related. In Section 4 we prove

Theorem 3.4. In Section 5 we deduce Theorem 3.1 and give the proofs of Propo-

sition 3.3, 3.8, Theorem 3.6 and Corollary 3.2, 3.5, 3.7.

2 – Notation and definitions

The numerical space RN is endowed with its standard inner product (x, y) :=
∑N

k=1 xy yk, and ‖·‖ denotes the associated euclidian norm. We denote by L(RN )

the set of endomorphisms of RN .

A continuous function u(·) : R → RN is called almost periodic if for any

sequence (σn)n of R, there exists a subsequence (σ′n)n of (σn)n such that the
sequence (u(t + σ′n))n is uniformly convergent in RN . Every function u almost

periodic possesses a time mean

M{u(t)}t := lim
T→+∞

1

T

∫ T

0
u(t) dt

and for ω ∈ R
a(u, ω) :=M{u(t) e−iωt}t

is the Fourier–Bohr coefficient of u associated at ω (cf. [1]). We denote

Λ(u) :=
{

ω ∈ R; a(u, ω) 6= 0
}

the set of exponents of u. The module of u denoted by mod(u), is the additive

group generated by Λ(u).

Recall that the linear system (1.4) has an exponential dichotomy if there exist

C > 0, α > 0 and P a projection in RN such that

‖X(t)P X−1(s)‖ ≤ C exp
(

−α (t− s)
)

for t ≥ s

and

‖X(t) (I − P )X−1(s)‖ ≤ C exp
(

−α (s− t)
)

for s ≥ t ,

where X(t) denotes the fundamental matrix for (1.4) such that X(0) = I. In the

case where A(t) ≥ 0 the linear system (1.4) has an exponential dichotomy if and

only if X(t) is exponentially damped, which means: there exist C > 0, α > 0

such that

‖X(t)X−1(s)‖ ≤ C exp
(

−α (t− s)
)

for t ≥ s .
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Following [6] we introduce some classes of process. A process on RN is a two

parameter family of maps U(t, τ) : RN→ RN defined for (t, τ) ∈ R×R+ satisfying

(i) ∀ t ∈ R, ∀x ∈ RN , U(t, 0)x = x ;

(ii) ∀ (t, σ, τ) ∈ R×R+×R+, ∀x ∈ RN , U(t, σ+ τ)x = U(t+ τ, σ)U(t, τ)x ;

(iii) ∀ τ ∈ R+, the one parameter family of maps U(t, τ) : RN → RN with

parameter t ∈ R is equicontinuous.

A process U on RN is said to be contractive if

∀ (t, τ) ∈ R×R+, ∀ (x, y) ∈ RN×RN , ‖U(t, τ)x− U(t, τ) y‖ ≤ ‖x− y‖ .

We define the σ-translate Uσ by Uσ(t, τ) = U(t+σ, τ). A process U on RN is

called almost periodic if for any sequence (σn)n of R, there exists a subsequence
(σ′n)n of (σn)n such that the sequence (Uσ′

n
(t, τ)x)n converges to some V (t, τ)x

in RN uniformly in t ∈ R and pointwise in (τ, x) ∈ R+×RN .

We denote by H(U) the hull of U the set of all processes V on RN for which

there exists a sequence (σn)n of R such that Uσn(t, τ)x→ V (t, τ)x uniformly in

t ∈ R and pointwise in (τ, x) ∈ R+×RN .

Let U a process on RN .

The positive trajectory trough (t, x) ∈ R×RN is the map U(t, ·)x : R+ → RN .

A complete trajectory through (t, x) ∈ R×RN is a map u(·) : R → RN such

that u(t) = x and

∀ (s, τ) ∈ R×R+ , u(s+ τ) = U(s, τ)u(s) .

3 – Statement of the results

In the case of the simple first order system (1.1) with A(t) symmetric, A(t) ≥ 0

and A(t) periodic in t, the first author has announced, without proof, in [4], and

has established in ([5], Theorem 4, p. 48) the existence of a unique exponentially

stable almost periodic solution for any almost periodic forcing term f it the

average M{A(t)}t is positive definite. However if N = 1, a trivial calculation

indicates that this result remains valid in the general almost periodic case. In

this paper we prove the following generalization for any dimension N ≥ 1.

Theorem 3.1. Assume that A : R → L(RN ) is an almost periodic operator-

valued function, such that for all t ∈ R, A(t) is symmetric and A(t) ≥ 0. If the
average M{A(t)}t is positive definite (i.e. KerM{A(t)}t = {0}), then for each
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almost periodic forcing term f : R → RN there exists a unique, exponentially

stable almost periodic solution u of (1.1). In addition we have

mod(u) ⊂ mod(A, f) ⊂ mod(A) + mod(f) .

Remark. KerM{A(t)}t =
⋂

t∈RKerA(t) ([5], Theorem 3, p. 30).

Theorem 3.1 will be a consequence of the general result: Theorem 3.4.

If the kernel ofM{A(t)}t is not trivial, we shall study the conditions on the

almost periodic term f , to obtain the existence of almost periodic solutions of

(1.1). If u is an almost periodic solution of (1.1), then for all c ∈ KerM{A(t)}t,

we have (f(t), c) = d
dt
(u(t), c), therefore [t →

∫ t
0(f(s), c) ds] is almost periodic.

We shall prove that this condition is sufficient. Recall that the set of almost

periodic solutions of homogeneous equation (1.4) is the set of constant functions

u(·) ≡ c with c ∈ KerM{A(t)}t ([4], Corollary 2 or [5], Theorem 1, p. 35). The

existence of almost periodic solutions of (1.1) is established by Proposition 3.3.

Before we give an application of Theorem 3.1 to the nonlinear differential

equation (1.2) by the inverse mapping theorem. This result can be viewed as a

property of structural stability of almost periodic solutions.

Corollary 3.2. Let Φ ∈ C2(RN ,R) a convex mapping. Let u0 an almost
periodic solution of (1.2) with some almost periodic forcing term f = f0. If the

averageM{∇2Φ(u0(t))}t is positive definite (∇
2Φ denotes the Hessian operator

of Φ), then there exists ε > 0 such that for each almost periodic forcing term

f : R → RN satisfying supt∈R ‖f(t)− f0(t)‖ < ε, the equation (1.2) has one and

only one almost periodic solution.

Proposition 3.3. Let f : R → RN an almost periodic function. Assume

that A : R → L(RN ) is an almost periodic operator-valued function, such that

for all t ∈ R, A(t) is symmetric and A(t) ≥ 0.
The equation (1.1) has at least one almost periodic solution, if and only if for

all c ∈ KerM{A(t)}t the function [t→
∫ t
0(f(s), c) ds] is almost periodic.

The following result extends to a nonautonomous almost periodic framework

a well-known alternative concerning contraction semigroups, cf. e.g. [9], [10].

Theorem 3.4. Let U = U(t, τ) be an almost periodic linear contraction

process on RN . Then one of the following alternative is fullfilled:

(i) There is a complete trajectory z = z(s) of U with constant positive norm.
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(ii) There are two constants C ≥ 0, δ > 0 such that ‖U(t, τ)‖L(RN ) ≤ C e−δτ ,

for all t ∈ R and τ > 0.

Theorem 3.4 is applicable to any equation of the form (1.1) with A(t) ≥ 0

(we don’t assume that A(t) is symmetric). We denote by

S(t) :=
1

2

(

A(t) +A∗(t)
)

and K(t) :=
1

2

(

A(t)−A∗(t)
)

.

The following result is a direct consequence of Theorem 3.4.

Corollary 3.5. Assume that A : R → L(RN ) is an almost periodic operator-

valued function, such that for all t ∈ R, A(t) ≥ 0. Then one of the following
alternative is fullfilled:

(i) There is a solution v = v(t) 6≡ 0 of

(3.1) v′(t) +K(t) v(t) = 0

on R with S(t) v(t)≡0. In this case u(t)= t v(t) is an unbounded solution
of (1.1) with f = v. Therefore (1.1) has no bounded solution for f = v.

(ii) There is no solution v = v(t) 6≡ 0 of (3.1) with S(t) v(t)≡0. In this case

(1.1) has a unique exponentially stable almost periodic solution for any

almost periodic f .

When A(t) ≥ 0, our aim is to study necessary and sufficient conditions on the

almost periodic forcing term f , for the existence of almost periodic solutions of

(1.1). If u is an almost periodic solution of (1.1), then for any almost periodic

solution v of (3.1) with S(t) v(t) ≡ 0 on R, we have
(

f(t), v(t)
)

=
(

u′(t) +A(t)u(t), v(t)
)

=
(

u′(t), v(t)
)

+
(

u(t), v′(t)
)

=
d

dt

(

u(t), v(t)
)

therefore [t →
∫ t
0(f(s), v(s)) ds] is almost periodic. In the case where K(t) is

periodic, we shall prove that this condition is sufficient; for that, we use Propo-

sition 3.3.

Theorem 3.6. Let f : R → RN an almost periodic function. Assume that

A : R → L(RN ) is an almost periodic operator-valued function, such that for all

t ∈ R, A(t) ≥ 0. We also assume that K : R → L(RN ) is periodic.
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The equation (1.1) has at least one almost periodic solution, if and only if for

all solution v of (3.1) with S(t) v(t) ≡ 0 on R, the function
[

t →
∫ t

0

(

f(s), v(s)
)

ds

]

is almost periodic.

In particular, the last result is applicable to the following second order dif-

ferential system (1.3) where L is a fixed positive definite symmetric operator,

B : R → L(RN ) is an almost periodic operator-valued function with B(t) sym-

metric and B(t) ≥ 0, we obtain the following result:

Corollary 3.7. Let f : R → RN an almost periodic function. The equation

(1.3) has at least one almost periodic solution, if and only if for all solution z of

z′′(t) + Lz(t) = 0 with B(t) z′(t) ≡ 0 on R, the function
[

t →
∫ t

0

(

f(s), z′(s)
)

ds

]

is almost periodic.

In addition we can distinguish the following two cases:

(i) There is a solution z = z(t) 6≡ 0 of z′′+Lz(t) = 0 on R with B(t) z′(t) ≡ 0
on R. In this case v(t) = t z(t) is an unbounded solution of (1.3) with

f(t) = 2 z′(t)+B(t) z(t). Therefore (1.3) has no almost periodic solution

for f = 2 z′ +B(t) z.

(ii) There is no solution z=z(t) 6≡0 of z′′+Lz(t)=0 on R with B(t) z′(t)≡0.
In this case (1.3) has a unique exponentially stable almost periodic solu-

tion for any almost periodic f .

It is natural comparing with problem (1.1), to wander whether it is sufficient,

in order for (ii) to happen, to assume that the averageM{B(t)}t of the almost

periodic operator-valued function B(t) is positive definite. The situation is in

fact more complicated. We shall prove the following.

Proposition 3.8.

(i) If N=1 and the averageM{B(t)}t of B(t) is positive, (1.3) has a unique

exponentially stable almost periodic solution for any almost periodic f .

(ii) If N ≥ 2, in order for (1.3) to have an almost periodic solution for any

almost periodic f , it is not sufficient that the average M{B(t)}t of the

almost periodic operator-valued function B(t) be positive definite.
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To close this section we compare our results (Theorem 3.1 and Corollary 3.5)

first with some results of Aulbach and Minh in [2], then with Seifert [15].

Remark 3.9. Aulbach and Minh in [2] give necessary and sufficient condi-

tions for the equation (1.4) to have an exponential dichotomy ([2], Proposition 4

and Corollary 1). This result is as follows: let A ∈ AP 0(L(RN )) and let T h, h > 0

be the evolution operators associated with equation (1.4) acting on AP 0(RN ), i.e.

T hu(t) = X(t)X−1(t− h)u(t− h) for all t ∈ R and u ∈ AP 0(RN ) where X(t)

denotes the fundamental matrix for (1.4) such that X(0) = I. Then the equation

(1.4) has an exponential dichotomy if and only if for some h > 0, the evolution

operator T h is hyperbolic, i.e. if λ ∈ sp(T h) (spectrum of T h), then |λ| 6= 1, and

if and only if the difference equation u(t) = X(t)X−1(t− h)u(t− h) + f(t− h)

have a unique solution in AP 0(RN ) for every f ∈ AP 0(RN ). To compare this re-

sult with ours, we suppose that A(t) ≥ 0 for all t ∈ R. With this assumption the
equation (1.4) have an exponential dichotomy if and only if X(t) is exponentially

damped. By definition of T h, we have

‖T h‖ = sup

{

sup
t∈R

‖X(t)X−1(t− h) v(t− h)‖; v ∈ AP 0(RN ) et ‖v‖∞ ≤ 1

}

,

then ‖T h‖ = supt∈R ‖X(t)X
−1(t− h)‖. With the assumption A(t) ≥ 0, we have

‖T h‖ ≤ 1, then the equation (1.4) have an exponential dichotomy if and only if

there exists h > 0 such that

sup
t∈R

‖X(t)X−1(t− h)‖ < 1 .

If we use this latter result to establish Theorem 3.1 and Corollary 3.5, we

must prove that the condition: for all h > 0

sup
t∈R

‖X(t)X−1(t− h)‖ = 1

implies the existence of a solution u of (1.4) such that ‖u(t)‖ is constant. This is

in fact exactly the object of our Lemma 4.1, therefore the result of [2] is of no help

for us. Moreover, our results are a consequence of the more general Theorem 3.3

valid for all almost periodic linear contraction processes on RN .

Remark 3.10. For the equation (1.1) when A(t) is a possibly unbounded

linear operator in a Banach space, Seifert gives sufficient conditions for the exis-

tence of almost periodic solutions. When A : R → L(RN ) is an almost periodic

operator such that A(t) ≥ 0 for all t ∈ R, the result of Seifert ([15], Theorem 4)
becomes
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“if A satisfies the following condition:

(C) there exists ω : R → R almost periodic such thatM{ω(t)}t < 0 and for

all t ∈ R, and for all x ∈ RN such that x 6= 0, one has

lim
θ→0+

‖x‖ − ‖x+ θ A(t)x‖

θ ‖x‖
≤ ω(t) ,

then (1.1) has a unique almost periodic solution for any almost periodic forcing

term f”.

To compare this resut with ours, we must study the condition (C). It is easily

checked that

lim
θ→0+

‖x‖ − ‖x+ θ A(t)x‖

θ ‖x‖
= −

(A(t)x, x)

‖x‖2
.

Recall that

inf
x6=0

〈A(t)x | x〉

|x|2
= λ(t) ,

where λ(t) denotes the smallest eigenvalue of S(t) := 1
2(A(t) + A

∗(t)). Moreover

λ is almost periodic, then the condition (C) becomes

M{λ(t)}t > 0 .

Using the fact that a solution v of (3.1) satisfies ‖v(t)‖ ≡ constant, and

〈S(t) v(t) | v(t)〉 ≥ λ(t) ‖v(t)‖2, we deduce that the condition (C) implies there is

no solution v = v(t) 6≡ 0 of (3.1) with S(t) v(t) ≡ 0. Now, if

S(t) :=

(

cos2(t) sin(t) cos(t)

sin(t) cos(t) sin2(t)

)

and

K(t) :=

(

0 −1
1 0

)

,

our Corollary 3.5 gives the existence of almost periodic solutions, because there

is no solution v = v(t) 6≡ 0 of (3.1) with S(t) v(t) ≡ 0, but since λ(t) ≡ 0 we

cannot conclude with the result of Seifert.

Even in the case where A(t) is symmetric, the condition (C) becomes
⋂

t∈R
KerA(t) = {0} ,

therefore KerM{A(t)}t = {0} (cf. the remark of Theorem 3.1). If

A(t) = S(t) :=

(

cos2(t) sin(t) cos(t)

sin(t) cos(t) sin2(t)

)
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our Theorem 3.1 gives the existence of almost periodic solutions sinceM{A(t)}t =
1
2 I2, but we cannot conclude with the result of Seifert because λ(t) ≡ 0.

As a conclusion, when A : R → L(RN ) is an almost periodic operator such

that A(t) ≥ 0 for all t ∈ R, our results are systematically better.

4 – Proof of Theorem 3.4

The object of this section is to prove Theorem 3.4. We start by the following

lemma.

Lemma 4.1. Let U= U(t, τ) be an almost periodic linear contraction process

on RN . Then one of the following alternatives is fullfilled: either there is some

τ0 > 0 for which

(4.1) sup
t∈R

‖U(t, τ0)‖L(RN ) < 1

or there is a complete trajectory z = z(s) of U with constant positive norm.

Proof of Lemma 4.1: Let us recall that, if U is an almost periodic linear

contraction process on RN , then

∀ τ ≥ 0 , sup
t∈R

‖U(t, τ)‖L(RN ) ≤ 1 .

Assuming that (4.1) is not satisfied for any τ > 0, there exists a sequence (tn)n
of real numbers and a sequence of vectors (xn)n in RN such that

∀n ∈ N∗ , ‖xn‖ = 1 and lim
n→+∞

‖U(tn, n)xn‖ = 1 .

Assuming in addition (up to a subsequence) that (xn)n converges to a limit

x ∈ RN . It follows from

∀ τ ∈ R+ , U(tn, n)xn = U(tn + τ, n− τ)U(tn, τ)xn

the inequalities

‖U(tn, n)xn‖ ≤ ‖U(tn, τ)xn‖ ≤ ‖xn‖ = 1 ,

therefore

‖xn‖ = 1 and ∀ τ ≥ 0 lim
n→+∞

‖U(tn, τ)xn‖ = 1 .
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Using inequalities

‖U(tn, τ)xn‖ ≤ ‖xn − x‖+ ‖U(tn, τ)x‖ ≤ ‖xn − x‖+ 1 ,

we obtain

‖x‖ = 1 and ∀ τ ≥ 0 lim
n→+∞

‖U(tn, τ)x‖ = 1 .

Passing again to a subsequence, we may assume that ∀ τ ∈ R, U(tn + s, τ)x

converges to V (s, τ)x uniformly in s ∈ R for some V ∈ H(U). Then we have

(4.2) ‖x‖ = 1 and ∀ τ ≥ 0 ‖V (0, τ)x‖ = 1 .

By using Corollary 3.5 and Lemma 3.6 of ([6], p. 49) we deduce the existence of a

sequence (an)n of positive real numbers tending to infinity such that V (an+t, τ) y

converges to U(t, τ) y uniformly in t ∈ R and pointwise (τ, y) ∈ R+×RN .

By Lemma 3.7 of ([6], p. 50), there is a subsequence of (an)n, denoted again

by (an)n such that V (0, an+ s)x converges for all s ∈ R to a complete trajectory
z(s) of U . With the relation (4.2), we deduce

∀ s ∈ R ‖z(s)‖ = 1 .

Proof of Theorem 3.4: We introduce

ρ := sup
t∈R

‖U(t, τ0)‖L(RN ) .

According to the result of Lemma 4.1, if (i) is not fullfilled we have 0 ≤ ρ < 1.

Let now t ∈ R be arbitrary and τ > 0. We set τ = n τ0 + σ with n ∈ N and

0 ≤ σ < τ0. We obtain

U(t, τ) = U(t+ n τ0, σ)
n−1
∏

j=0

U(t+ j τ0, τ0) ,

therefore

‖U(t, τ)‖L(RN ) ≤

∥

∥

∥

∥

n−1
∏

j=0

U(t+ j τ0, τ0)

∥

∥

∥

∥

L(RN )
≤ ρn .

The case ρ = 0 is trivial. If ρ is positive, we have

‖U(t, τ)‖L(RN ) ≤ C e−δτ , with C :=
1

ρ
and δ :=

1

τ0
ln

(

1

ρ

)

,
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hence (ii) is fullfilled. Moreover if z is a complete trajectory, then

∀ τ > 0 z(τ) = U(0, τ) z(0) ,

and if (ii) is fullfilled, then

∀ τ > 0 ‖z(τ)‖ ≤ C ‖z(0)‖ e−δτ ,

therefore (i) and (ii) are compatible, this concludes the proof of Theorem 3.4.

5 – Consequences of Theorem 3.4

The object of this section is to prove Theorems 3.1, 3.6, propositions 3.3, 3.8

and Corollary 3.2, 3.5, 3.7. In the proof of Theorem 3.1 a crucial role will be

played by the following lemma.

Lemma 5.1. Let A ∈ C([0, T ];L(RN )) be such that A(t) is symmetric and

A(t) ≥ 0 for all t ∈ [0, T ]. We assume that

(5.1) Ker

{
∫ T

0
A(t) dt

}

= {0} .

Then any solution y of homogeneous equation (1.4) on [0, T ] with y(0) 6= 0 is

such that: ‖y(T )‖ < ‖y(0)‖.

Proof of Lemma 5.1: Assuming ‖y(T )‖ = ‖y(0)‖, since

d

dt

(

1

2
‖y(t)‖2

)

=
(

y′(t), y(t)
)

= −
(

A(t) y(t), y(t)
)

≤ 0 ,

we have ‖y(t)‖ = ‖y(0)‖ for all t ∈ [0, T ] and therefore (A(t) y(t), y(t)) ≡ 0 on

[0, T ]. Since (A(t))∗ = A(t) ≥ 0, we have A(t) y(t) ≡ 0, which implies in fact

y′(t) ≡ 0. Hence y(t) ≡ y(0) on [0, T ] and in particular

{
∫ T

0
A(t) dt

}

y(0) = 0 ,

which by hypothesis (5.1) implies y(0) = 0.

Proof of Theorem 3.1: Let f : R → RN an almost periodic function. For

any (t, τ) ∈ R×R+, let V (t, τ) denote the solution operator which assigns to each
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x ∈ RN the value v(t+ τ) at time t+ τ of the unique solution v of (1,1) such that

v(t) = x. By using the inequality for s1 ≤ s2

‖v(s2)‖ ≤ ‖v(s1)‖ +
∫ s2

s1

‖f(σ)‖ dσ

and linear dependence with respect to (x, f) it is easily checked that V is an al-

most periodic process on RN . As a consequence of Corollary 2.9 and Theorem 2.5

of ([6], pp. 46–47) our results will be established if we prove that V has precisely

one complete trajectory with relatively compact range in RN .

For any (s, t) ∈ R×R+, we define the map U(t, τ) : RN → RN by U = V with

f = 0, in other terms we have U(t, τ) = Φ(t+ τ, t) for all (t, τ) ∈ R×R+ where Φ
is the fundamental matrix for (1.4). It is clear that U is an almost periodic linear

contraction process on RN . We shall establish that U is an exponential damped

process, which means:

∃C ≥ 0, ∃ δ > 0, ∀ t ∈ R, ∀ τ ∈ R+ , ‖U(t, τ)‖L(RN ) ≤ C e−δτ .

As a consequence of Theorem 3.4, t is sufficient to show that (i) is impossible.

In order to do that, first we recall that

lim
T→+∞

1

T

∫ T

0
A(t) dt = M{A(t)}t .

In particular there is T > 0 such that

Ker

{
∫ T

0
A(t) dt

}

= {0} .

Then by Lemma 5.1, (i) of Theorem 3.4 is impossible It is now clear that U(t, τ)

is an exponentially damped process.

First U has precisely one complete trajectory u with precompact range: namely

u(s) ≡ 0; this implies the uniqueness of complete trajectory of V with precom-

pact range.

By the relation

V (0, τ) 0 =

∫ τ

0
U(σ, τ − σ) f(σ) dσ

we obtain for all τ ∈ R+

‖V (0, τ) 0‖ ≤
C

δ
sup
s∈R

‖f(s)‖ .
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Hence V has some positive trajectory with precompact range, by Theorem 2.7 of

([6], p. 47), this implies the existence of complete trajectories of V with precom-

pact range.

Therefore for each f bounded on R with values in RN , (1.1) has a unique

bounded complete trajectory u = u(f). When f is almost periodic, so is u(f)

and moreover we have mod(u) ⊂ mod(A, f) ⊂ mod(A)+mod(f). This concludes

the proof of Theorem 3.1.

Proof of Corollary 3.2: We denote by AP 0(RN ) the space of Bohr-almost

periodic functions from R to RN and AP 1(RN ) the space of functions in

AP 0(RN ) ∩ C1(R,RN ) such that their derivatives are in AP 0(RN ). Recall that

AP 0(RN ) (resp. AP 1(RN )) endowed with the norm

‖u‖∞ := sup
t∈R

‖u(t)‖
(

resp. ‖u‖C1 := ‖u‖∞ + ‖u
′‖∞

)

is a Banach space.

Recall also that the Nemitski operator built on ∇Φ is the mapping N∇Φ from

AP 0(RN ) in AP 0(RN ) defined by N∇Φ(u) :=∇Φ ◦ u. Since ∇Φ ∈ C
1(RN ,RN ),

then N∇Φ is of class C
1 on AP 0(RN ) and (DN∇Φ(u)h)(t) = ∇

2Φ(u(t))h(t) for

all t ∈ R, u and h ∈ AP 0(RN ) ([3], Lemma 7).

Now we consider the nonlinear operator F from AP 1(RN ) in AP 0(RN ) de-

fined by F (u) :=u′ + ∇Φ ◦ u. We note that F = D + N∇Φ ∩ I, where D is

the derivative operator from AP 1(RN ) in AP 0(RN ) and I is the canonical injec-

tion from AP 1(RN ) in AP 0(RN ). Since the linear maps D and I are bounded,

and since N∇Φ is of class C
1, we see that F is of class C1, and (DF (u)h)(t) =

h′(t) +∇2Φ(u(t))h(t) for all t ∈ R, u and h ∈ AP 1(RN ). With the assumption

M{∇2Φ(u0(t))}t = {0} and using Theorem 3.1 with A(t) :=∇
2Φ(u0(t)), we see

that for each almost periodic forcing term f , there exists a unique almost periodic

solution h of (1.1), i.e.DF (u0)h=f ; and soDF (u0) ∈ Isom(AP
1(RN ), AP 0(RN )).

Using the inverse mapping theorem, we see that there exists U an open neigh-

bourhood of u0 in AP
1(RN ) such that F : U → F (U) is a C1-diffeomorphism

and F (U) an open neighbourhood of f0 = F (u0) in AP
0(RN ); and so for all f

in the neighbourhood F (U) of f0, the equation (1.2) has at least one almost pe-

riodic solution. Since the set S of almost periodic solutions of (1.2) is convex

([8], Theorem 37, p. 72) and S ∩U contains only one element (local uniqueness of

almost periodic solution), we obtain global uniqueness of almost periodic solution

of (1.2).
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Proof of Proposition 3.3: The sufficiency of the condition remains to be

proved. We denote H1 :=KerM{A(t)}t and H2 the orthogonal of H1 in RN .

Equation (1.1) can be put in the form

(

u′1(t)

u′2(t)

)

+

(

A1,1(t) A1,2(t)

A2,1(t) A2,2(t)

) (

u1(t)

u2(t)

)

=

(

f1(t)

f2(t)

)

by introducing the direct sum RN :=H1 ⊕ H2 and letting u(t) = (u1(t), u2(t))

and f(t) = (f1(t), f2(t)). Since KerM{A(t)}t =
⋂

t∈RKerA(t), one has

A(t) =

(

0 0

0 A2,2(t)

)

and equation (1.1) reduces to

{

u′1(t) = f1(t)

u′2(t) + A2,2(t)u2(t) = f2(t) .

To conclude the proof of Proposition 3.3, we just remark that

∀ c ∈ KerM{A(t)}t ,
∫ t

0

(

f(s), c
)

ds =

(
∫ t

0
f1(s) ds, c

)

then the function [t →
∫ t
0 f1(s) ds] is almost periodic. Moreover A2,2(t) is sym-

metric, A2,2(t) ≥ 0 and KerM{A2,2(t)}t = {0}, by Theorem 3.1, we obtain the

conclusion.

Proof of Corollary 3.5: For any (t, τ) ∈ R×R+, let U(t, τ) denote the
solution operator which assigns to each x ∈ RN the value u(t+ τ) at time t+ τ

of the unique solution u of (1.4) such that u(t) = x; therefore U is an almost

periodic process on RN (see proof of Theorem 3.1).

A solution v of v′(t) + A(t) v(t) = 0 with constant norm satisfies both condi-

tions:

v′(t) +K(t) v(t) + S(t) v(t) = 0 and ‖v(t)‖ = constant .

By differentiating

0 =
d

dt

(

‖v(t)‖2
)

= 2
(

v(t), v′(t)
)

,

the equation gives at once (K(t) v(t)+S(t) v(t), v(t))=0 identically. BecauseK(t)

is skew symmetric, it follows that (S(t) v(t), v(t)) = 0 identically, moreover S(t) is

symmetric and S(t) ≥ 0, then S(t) v(t) = 0, and finally also v′(t)+K(t) v(t) ≡ 0.
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The alternative (i) or (ii) is now an immediate consequence of Theorem 3.4.

To conclude the proof of Corollary 3.5, we just remark that with z as above:

(t v(t))′ +A(t) t v(t) = v(t) .

And clearly, by monotonicity, in such a case (1.1) has no bounded solution for

t ≥ 0.

Proof of Theorem 3.6: The sufficiency of the condition remains to be

proved. Denote by V the fundamental matrix of (3.1) such that V (0) = I.

Because K is periodic and skew symmetric, it follows that V is almost peri-

odic ([7], Theorem 6.13, p. 112). Recall that V ∗(t)V (t) = I, for all t ∈ R. If we
set u = V (t)w, the equation (1.1) is equivalent to the equation

(5.2) w′(t) + V ∗(t)S(t)V (t)w(t) = V ∗(t) f(t) .

V ∗ is also almost periodic, so for f almost periodic, the function g defined by

g(t) = V ∗(t) f(t) is also almost periodic. Moreover

V ∗(·)S(·)V (·) : R → L(RN )

is an almost periodic operator-valued function such that for all t ∈ R,
V ∗(t)S(t)V (t) is symmetric and V ∗(t)S(t)V (t) ≥ 0, it follows

(5.3) KerM{V ∗(t)S(t)V (t)}t =
⋂

t∈R
KerV ∗(t)S(t)V (t)

([5], Theorem 3, p. 30).

The assumption of Theorem 3.6 is equivalent to: for all c ∈
⋂

t∈RKerS(t)V (t)

the function [t→
∫ t
0(f(s), V (s) c) ds] is almost periodic. With

∫ t

0

(

f(s), V (s) c
)

ds =

∫ t

0

(

V ∗(s), f(s) c
)

ds ,

and
⋂

t∈R
KerS(t)V (t) =

⋂

t∈R
KerV ∗(t)S(t)V (t) ,

and (5.3), the assumption of Theorem 3.6 is also equivalent to

∀ c ∈ KerM{V ∗(t)S(t)V (t)}t

the function [t→
∫ t
0 (V (s)

∗ f(s), c) ds] is almost periodic. The existence of an al-

most periodic solution (5.2) is now an immediate consequence of Proposition 3.3;

therefore there exists an almost periodic solution of (1.1).
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Proof of Corollary 3.7: Equation (1.3) can be put in the form (1.1) by

introducing the product space RN×RN ' R2N endowed with the inner product
associated to the quadratic form Φ given by

Φ(u, v) := ‖L
1

2u‖2 + ‖v‖2 ,

and letting v(t)=u′(t), U(t)= (u(t), v(t))= (u(t), u′(t)). In this framework (1.3)

reduces to

U ′ +A(t)U(t) = F (t)

with

F (t) =
(

0, f(t)
)

and A(t) =

(

0 −I
L B(t)

)

.

By computing, we obtain, with the respect of the inner product associated to Φ:

K(t) =

(

0 −I
L 0

)

and S(t) =

(

0 0
0 B(t)

)

.

Moreover S is an almost periodic operator-valued function, such that for all t ∈ R,
S(t) ≥ 0 with respect to the inner product. The conclusion is now an immediate

consequence of Theorem 3.6 and Corollary 3.5.

Proof of Proposition 3.8:

(i) IfN=1, the solutions of z′′+Lz = 0 can be written as z(t) = ρ cos(ωt+ϕ)

with L = ω2 > 0, and we derive

z′(t) = ρω cos(ωt+ ψ)

with ψ :=ϕ + π
2 . In addition here B(t)x = b(t)x for some real-valued function

b(t) ≥ 0. The condition b(t) z′(t) ≡ 0 is here equivalent to ρω b(t) ≡ 0. If

M{b(t)}t > 0, this implies ρ = 0.

(ii) Already for N = 2 there may exist non trivial solutions of z ′′ + Lz = 0,

even whenM{B(t)} > 0. As a simple example we can choose

L =

(

1 0

0 1

)

and B(t) =

(

cos2 t sin t cos t

sin t cos t sin2 t

)

hence

M{B(t)} =

(

1
2 0

0 1
2

)

> 0 .

The solution

Z(t) =
(

z(t), z′(t)
)

=
(

(cos t, sin t); (− sin t, cos t)
)

satisfies all the conditions. The proof of (i) is now complete.
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