MULTIPLICATION OPERATORS ON WEIGHTED SPACES OF CONTINUOUS FUNCTIONS

L. Oubbi

Abstract

Let V be a Nachbin family on the Hausdorff completely regular space X, E a locally convex space, $\mathcal{B}(E)$ the algebra of all continuous operators on E and $\psi: X \rightarrow \mathcal{B}(E)$ a map. We give necessary and sufficient conditions for the induced linear mapping $M_{\psi}: f \mapsto \psi()(f())$ to be a multiplication operator on a subspace of the weighted space of E-valued continuous functions $C V(X, E)$. Next, we characterize the bounded multiplication operators and show that, at least whenever X is a $V_{\mathbb{R}}$-space, such an operator is precompact if and only if it is trivial.

1 - Introduction

Throughout this paper X will stand for a Hausdorff completely regular space and E for a Hausdorff locally convex space over the field $\mathbb{K}(=\mathbb{R}$ or $\mathbb{C})$. We assume that the topology of E is given by a family \mathbb{P} of seminorms. The space of all continuous E-valued functions on X will be denoted by $C(X, E)$, while $\mathcal{B}(E)$ denotes the algebra of all continuous linear operators on E. If $F \subset C(X, E)$ is a locally convex space (for a given topology), we will call a multiplication operator on F every continuous linear mapping M_{ψ} from F into itself, where $\psi: X \rightarrow \mathcal{B}(E)$ is a map and $M_{\psi}(f)(x):=\psi(x)(f(x))$ for every $f \in F$ and $x \in X$. Particularly interesting locally convex spaces contained in $C(X, E)$ are the socalled weighted spaces, namely $C V(X, E)$ and $C V_{0}(X, E)$, where V is a Nachbin family on X. These spaces were intensively investigated by many authors (e.g. [1], [2], [3], [5], [8], [10] and many others). The multiplication operators on the

[^0]weighted spaces $C V(X, E)$ and $C V_{0}(X, E)$ were considered first by R.K. Singh and S.J. Manhas in [7] in the two particular settings: $\psi: X \rightarrow \mathbb{C}$ and $\psi: X \rightarrow E$, where $M_{\psi}(f)(x):=\psi(x) f(x)$, the multiplication being pointwise. In the latter case E is assumed to be a locally multiplicatively convex algebra. The authors gave a necessary and sufficient condition for M_{ψ} to be a multiplication operator on either $C V(X, E)$ and $C V_{0}(X, E)$. The same authors considered in [8] (and [9]) the general (i.e. operator-valued) case. They asserted (Theorem 2.1 of $[8]$ corrected in [9]) that if X is a $k_{\mathbb{R}}$-space and ψ a continuous map from X into $\mathcal{B}(E)$, endowed with the topology of uniform convergence on the bounded subsets of E, then M_{ψ} is a multiplication operator on $C V(X, E)$ if and only if the following condition holds
$\forall v \in V \forall P \in \mathbb{P}, \exists u \in V \exists Q \in \mathbb{P}: \quad v(x) P\left(\psi_{x}(a)\right) \leq u(x) Q(a), a \in E, x \in X$.
In the present paper we first show by a counter-example (see Example 1.1) that the assertion above of $[8]$ is not true in the full generality. However, we show that, under the additional assumption of essentiality of $C V(X, E)$ the equivalence holds (see Theorem 5). At this point, notice that $C V(X, E)$ need not be essential even for relatively nice spaces X and Nachbin families V (see Example 1. 2).

Next, we characterize those maps ψ inducing multiplication operators on a subspace F of $C V(X, E)$, unifying in this way, the study for a large class of subspaces of $C V(X, E)$ containing, as special ones, $C V(X, E)$ itself and $C V_{0}(X, E)$. In particular, we get an extention of (the analogous of) the result of $[8]$ to a large class of completely regular spaces X including the $k_{\mathbb{R}^{-}}$-spaces, the sequential spaces and the pseudocompact ones.

Finally, we characterize the maps ψ for which M_{ψ} is a bounded operator (in the sense of P . Uss [11]) on a subspace of $C V(X, E)$ and show that, at least when X is a $V_{\mathbb{R}}$-space without isolated points, M_{ψ} is compact only if it is trivial.

2 - Preliminaries

Henceforth, the space of all continuous and bounded (resp. continuous and vanishing at infinity, continuous with compact support) E-valued functions on X will be denoted by $C_{b}(X, E)$ (resp. $C_{0}(X, E), \mathcal{K}(X, E)$). $B(X)$ and $B_{0}(X)$ denote respectively the spaces of all bounded \mathbb{K}-valued functions and all bounded \mathbb{K}-valued ones vanishing at infinity. A function $f: X \rightarrow \mathbb{K}$ is said to vanish at infinity if for every $\epsilon>0$, there exists a compact set $K \subset X$ such that $|f(x)|<\epsilon$ whenever $x \in X \backslash K$. We will let V be a Nachbin family on X. This is a collection
of non negative upper semicontinuous (u.s.c.) functions v on X such that for every $v_{1}, v_{2} \in V$ and $\lambda>0$, there exists $v \in V$ with $\max \left(\lambda v_{1}, \lambda v_{2}\right) \leq v$ and for every $x \in X, v(x) \neq 0$ for some $v \in V$. With V we associate the so-called weighted spaces :

$$
\begin{aligned}
C V(X, E) & :=\{f \in C(X, E): v P(f) \in B(X), \forall P \in \mathbb{P}, \forall v \in V\} \\
C V_{0}(X, E) & :=\left\{f \in C V(X, E): v P(f) \in B_{0}(X), \forall P \in \mathbb{P}, \forall v \in V\right\}
\end{aligned}
$$

both equipped with the natural weighted topology $\tau_{V, \mathbb{P}}$ generated by the family $\mathbb{P}_{V}:=\left\{P_{v}, P \in \mathbb{P}, v \in V\right\}$ of seminorms; where

$$
P_{v}(f):=\sup \{v(x) P(f(x)), x \in X\}, \quad f \in C V(X, E) .
$$

For $F \subset C V(X, E)$, set $\operatorname{coz}(F):=\{x \in X: f(x) \neq 0$, for some $f \in F\}$ and $B_{P, v}(F):=B_{P, v} \cap F$ with $B_{P, v}$ the closed unit ball of the seminorm P_{v} in $C V(X, E)$. If $\operatorname{coz}(F)=X$, then F is said to be essential. In the scalar case (i.e. $E=\mathbb{K}$), we will omit the symbols E and \mathbb{P} from the notations and then write $C V(X)$ and $C V_{0}(X)$ instead of $C V(X, \mathbb{K})$ and $C V_{0}(X, \mathbb{K})$ respectively and τ_{V} instead of $\tau_{V, \mid}$.

A subspace F of $C V(X, E)$ is said to be E-solid (resp. $E V$-solid) if for every $g \in C(X, E)$, the following condition is satisfied
$(E S) \quad g \in F \Longleftrightarrow \forall P \in \mathbb{P}, \exists Q \in \mathbb{P}, f \in F: P \circ g \leq Q \circ f$ pointwise on $\operatorname{coz}(F)$
(resp.
($E V S$)
$g \in F \Longleftrightarrow \forall P \in \mathbb{P}, v \in V, \exists u \in V, Q \in \mathbb{P}, f \in F: v . P \circ g \leq u . Q \circ f$ on $\operatorname{coz}(F))$.

The classical solid spaces are nothing but the \mathbb{K}-solid ones. Moreover, it is easily seen that every $E V$-solid subset of $C V(X, E)$ is E-solid and that every E-solid F satisfies either $C_{b}(X) F \subset F$ and the condition,

$$
\begin{equation*}
P(f()) a \in F \quad \text { for all } P \in \mathbb{P}, \quad a \in E \text { and all } f \in F \tag{M}
\end{equation*}
$$

The spaces $C V(X, E), C V_{0}(X, E)$ and $\mathcal{K}(X, E)$ are all $E V$-solid, while $C V(X, E) \cap C_{b}(X, E), \quad C V_{0}(X, E) \cap C_{b}(X, E), \quad C V(X, E) \cap C_{0}(X, E)$ and $C V_{0}(X, E) \cap C_{0}(X, E)$ are E-solid but need not be $E V$-solid. Actually, $C_{0}(\mathbb{R})$ and $C_{b}(\mathbb{R})$ are not $\mathbb{C} V$-solid for $V=\left\{\lambda e^{-\frac{1}{n}}: n \in \mathbb{N}, \lambda>0\right\}$.

The algebra of all continuous operators T from a locally convex space E into another F will be denoted by $\mathcal{B}(E, F)$. If \mathcal{A} is a collection of subsets of E, then
we will mean by $\mathcal{B}_{\mathcal{A}}(E, F)$ the subspace of $\mathcal{B}(E, F)$ consisting of those operators T which are bounded on the members of \mathcal{A}, together with the topology $\tau_{\mathcal{A}}$ of uniform convergence on the elements of \mathcal{A}. This topology is generated by the suprema of finitely many seminorms of the form $P_{A}(T):=\sup \{P(T(a)), a \in A\}$, A running over \mathcal{A} and P over a family of seminorms defining the topology of F. If \mathcal{A} consists of all the finite (resp. bounded) subsets of E, then we will write $\mathcal{B}_{\beta}(E)\left(\right.$ resp. $\left.\mathcal{B}_{\sigma}(E)\right)$ for $\mathcal{B}_{\mathcal{A}}(E, E)$ and β (resp. σ) for $\tau_{\mathcal{A}}$.

3 - Multiplication operators on $C V(X, E)$

We start this section by giving an example in which $C V(X, E)$ is trivial and another where M_{ψ} is a multiplication operator on $C V(X, E)$ although the condition of [8] is not satisfied. This shows that the essentiality condition misses really in [8].

Example 1. 1. Let X be the set of all rationals with the natural topology. This is of course a metrizable space. Consider on X the Nachbin family consisting of all non negative continuous functions. We claim that $C V(X, E)$ is reduced to $\{0\}$ for every E. Indeed, assume that, for a given $E, f(x) \neq 0$ for some $x \in X$ and some $f \in C V(X, E)$. Since E is Hausdorff, there exists some $P \in \mathbb{P}$ so that $P(f(x)) \neq 0$. With no loss of generality, we assume that $P(f(x))=1$. Then there exists $\epsilon>0$ such that $P(f(t))>\frac{1}{2}$ whenever $|t-x|<\epsilon$. For an irrational r with $|r-x|<\epsilon$, the function $t \mapsto \frac{1}{|t-r|}$ belongs to V and then must verify $\sup \{v(t) P(f(t)), t \in X\}<+\infty$. But this is clearly not true.
2. Set $X:=[0,1] \cup Q_{[1,2]}$, where $Q_{[1,2]}$ denotes the set of all the rationals contained in $[1,2]$. Consider on X the Nachbin family consisting of all the maxima of finitely many continuous functions of the form $\lambda v_{r}(x)=\frac{\lambda}{|x-r|}, r$ running over $[1,2] \backslash Q_{[1,2]}$ and λ over $\mathbb{R}^{+} \backslash\{0\}$. If $E=\mathbb{C}$, then $C V(X)$ is nothing but the Banach algebra $C[0,1]$ with the uniform norm. For a fixed irrational r_{0} from $[1,2]$, take $\psi:=v_{r_{0}}$. Then $M_{\psi}: f \mapsto \psi f$ is obviously a multiplication operator on $C V(X)$. However, the condition of $[8]$ is not enjoyed by ψ since $\frac{1}{\left|x-r_{0}\right|^{2}}$ cannot be dominated by a weight from V. \square

The following lemma shows that the corner stone in (the repaired) Theorem 2.1 of [8] is the continuity of $M_{\psi}(f)$ for every $f \in C V(X, E)$. It also shows what property of $C V(X, E)$ is involved either in the necessity or in the sufficiency.

Lemma 2. Let $\psi: X \rightarrow \mathcal{B}(E)$ be a map and F a subspace of $C V(X, E)$. If F is a $C_{b}(X)$-module and satisfies the condition (M) and if M_{ψ} is a multiplication operator on F, then the following condition holds

$$
\begin{align*}
& \forall v \in V, \quad \forall P \in \mathbb{P}, \quad \exists u \in V, \quad \exists Q \in \mathbb{P}: \tag{1}\\
& v(x) P\left(\psi_{x}(a)\right) \leq u(x) Q(a), \quad a \in E, x \in \operatorname{coz}(F) .
\end{align*}
$$

If in addition F is $E V$-solid and $M_{\psi}(F) \subset C(X, E)$, then the converse holds as well.

Proof: Assume that M_{ψ} is a multiplication operator on F. Then for every $v \in V$ and $P \in \mathbb{P}$, there exist $u \in V$ and $Q \in \mathbb{P}$ so that $P_{v}\left(M_{\psi}(f)\right) \leq Q_{u}(f)$, f running over F. In particular, for every $x \in \operatorname{coz}(F)$ and every $f \in F$,

$$
\begin{equation*}
v(x) P\left(\psi_{x}(f(x))\right) \leq \sup \{u(t) Q(f(t)), t \in X\} . \tag{2}
\end{equation*}
$$

Choose $g \in F$ so that $g(x) \neq 0$. With no loss of generality, we may assume that $Q(g(x))=1$. Consider then $h_{n} \in C_{b}(X)$ such that $h_{n}(x)=1,0 \leq h_{n} \leq 1$ and $h_{n}=0$ outside of $U_{n}:=\left\{t \in X: u(t)<u(x)+\frac{1}{n}\right.$ and $\left.Q(g(t))<1+\frac{1}{n}\right\}$. Now, for every $a \in E$, put $f_{n}:=h_{n} Q(g()) a$. This is an element of F, for F is a $C_{b}(X)$-module and enjoies (M). Moreover, applying (2) to f_{n}, we get

$$
v(x) P\left(\psi_{x}(a)\right) \leq\left(u(x)+\frac{1}{n}\right)\left(1+\frac{1}{n}\right) Q(a)
$$

which gives (1) since n is arbitrary.
Conversely, assume that (1) is satisfied. Since $M_{\psi}(f)$ is continuous for every $f \in F$, we only have to show that $M_{\psi}(f)$ belongs to F and that M_{ψ} is continuous. Let $v \in V$ and $P \in \mathbb{P}$ be given. By (1), there exist $u \in V$ and $Q \in \mathbb{P}$ such that:

$$
v(x) P\left(\psi_{x}(a)\right) \leq u(x) Q(a), \quad \forall a \in E, \quad x \in \operatorname{coz}(F)
$$

In particular,

$$
v(x) P\left(\psi_{x}(f(x)) \leq u(x) Q(f(x)), \quad \forall f \in F, \quad x \in X\right.
$$

Since F is $E V$-solid, $M_{\psi}(f)$ belongs to F and the passage to the supremum, first on the right hand side and then on the left hand one, yields $P_{v}\left(M_{\psi}(f)\right) \leq Q_{u}(f)$ which shows the continuity of M_{ψ}.

The first consequence of Lemma 2 is that if M_{ψ} is a multiplication operator on $C V(X, E)$, then so is it also on any $E V$-solid subspace F of $C V(X, E)$. However, the converse fails to hold in general even in the scalar case. Here is such an example.

Example 3. Set again $X:=[0,1] \cup Q_{[1,2]}$ as above, $E:=\mathbb{C}$ and $\psi=v_{\sqrt{2}}$. For the Nachbin family V consisting of all the positive constant functions on X, we have $C V_{0}(X)=C[0,1]$ with the uniform norm, while $C V(X)$ is the algebra of all continuous and bounded functions on X with the uniform norm. It is easy to see that M_{ψ} is a multiplication operator on $C V_{0}(X)$ but not on $C V(X)$. व

The following theorems yield conditions ensuring the continuity of $M_{\psi}(f)$ for every $f \in F$ so that we can apply Lemma 2.

Theorem 4. Let F be an $E V$-solid subspace of $C V(X, E)$ and $\psi: X \rightarrow \mathcal{B}_{\beta}(E)$ be a continuous function. Suppose that, for every $x \in X$, there exists a neighbourhood Ω of x with $\psi(\Omega)$ equicontinuous on E. Then M_{ψ} is a multiplication operator on F if and only if (1) holds.

Proof: By Lemma 2, we only have to show that $M_{\psi}(f)$ is continuous for every $f \in F$. Let $x_{0} \in X$ and $f \in F$ be given. By assumption, there exists an open set Ω containing x_{0} such that $\left\{\psi_{x}, x \in \Omega\right\}$ is equicontinuous on E. Then, for every $P \in \mathbb{P}$, there exist some $Q \in \mathbb{P}$ and some $M>0$ so that

$$
P\left(\psi_{x}(a)\right) \leq M Q(a), \quad \forall x \in \Omega, \quad \forall a \in E
$$

But f and ψ are continuous at x_{0}. Then, for arbitrary $\epsilon>0$, there exists a neighbourhood Ω^{\prime} of x_{0} so that $Q\left(f(x)-f\left(x_{0}\right)\right) \leq \epsilon /(2 M)$ and $P_{\left\{f\left(x_{0}\right)\right\}}\left(\psi_{x}-\psi_{x_{0}}\right) \leq \epsilon / 2$ for every $x \in \Omega^{\prime}$. Hence, for $x \in \Omega \cap \Omega^{\prime}$, we have

$$
\begin{aligned}
P\left(M_{\psi}(f)(x)-M_{\psi}(f)\left(x_{0}\right)\right) & \leq P\left(\psi_{x}\left(f(x)-f\left(x_{0}\right)\right)\right)+P\left(\left(\psi_{x}-\psi_{x_{0}}\right)\left(f\left(x_{0}\right)\right)\right) \\
& \leq M Q\left(f(x)-f\left(x_{0}\right)\right)+P_{\left\{f\left(x_{0}\right)\right\}}\left(\psi_{x}-\psi_{x_{0}}\right) \\
& \leq M \epsilon / 2 M+\epsilon / 2=\epsilon
\end{aligned}
$$

This shows the continuity of $M_{\psi}(f)$ at x_{0}. Since the latter is arbitrary in X, $M_{\psi}(f)$ is continuous on X.

Now, we provide an extension of the result of [8] to a wider class of completely regular spaces. To this aim, let γ be a property a net $\left(x_{i}\right)_{i \in I}$ may satisfy or not. We will call a γ-net any net enjoying the property γ. A function $f: X \rightarrow Y$ from X into a topological space Y will be said to be γ-continuous if, for every $x \in X$ and every γ-net $\left(x_{i}\right)_{i \in I}$ of X converging in X to $x,\left(f\left(x_{i}\right)\right)_{i \in I}$ converges to $f(x)$. The space X is then called a $\gamma_{\mathbb{R}}$-space if every γ-continuous function from X into the real line (or equivalently into any completely regular space) is continuous on X. Here are some examples of such a property γ. Let us say that $\left(x_{i}\right)_{i \in I}$ is a s-, k-, c - or b-net if respectively $I=\mathbb{N},\left\{x_{i}, i \in I\right\}$ is contained in a compact
set, $\left\{x_{i}, i \in I\right\}$ is countable or $\left\{x_{i}, i \in I\right\}$ is bounding (i.e. every continuous scalar function on X is bounded on $\left\{x_{i}, i \in I\right\}$). In this way, the $k_{\mathbb{R}}$-spaces, in the present sense, are nothing but the classical ones, every sequential space is a $s_{\mathbb{R}^{-}}$-space and every pseudo-compact space is a $b_{\mathbb{R}}$-space. Moreover, every $s_{\mathbb{R}}$-space is a $k_{\mathbb{R}^{-}}$-space and every $k_{\mathbb{R}^{\mathbb{R}}}$-space is a $b_{\mathbb{R}^{-}}$-space. Finally, if V is a Nachbin family on X, we will call a V-net any one $\left(x_{i}\right)_{i \in I}$ contained in $N_{v, 1}:=\{x \in X: v(x) \geq 1\}$ for some $v \in V$. In this way, we get the classical $V_{\mathbb{R}}$-spaces introduced in [1]. Now, if \mathcal{A} consists of the γ-nets $\left(x_{i}\right)_{i \in I}$ converging in E, then we denote $\mathcal{B}_{\mathcal{A}}(E)$ by $\mathcal{B}_{\gamma}(E)$ and $\tau_{\mathcal{A}}$ by τ_{γ}. It is then clear that β is coarser than τ_{s} whenever the constant nets are γ-nets and that σ is finer than τ_{b}. Finally, one has $\tau_{s} \leq \tau_{k} \leq \tau_{b}$.

In the following, we will assume that the property γ is preserved by continuous functions. This is the case for $\gamma \in\{s, c, k, b\}$.

Theorem 5. Let F be an $E V$-solid subspace of $C V(X, E), X$ a $\gamma_{\mathbb{R}}$-space for some property γ and $\psi: X \rightarrow \mathcal{B}_{\gamma}(E)$ a continuous map. Then M_{ψ} is a multiplication operator on F if and only if (1) holds.

Proof: Here again, we have to show the continuity of $M_{\psi}(f)$ for every $f \in F$. Since X is a $\gamma_{\mathbb{R}}$-space, it suffices to show that $M_{\psi}(f)$ is γ-continuous. Let then $f \in F$ and $x_{0} \in X$ be given. If $\left(x_{i}\right)_{i \in I}$ is a γ-net in X converging to x_{0}, then also $\left(f\left(x_{i}\right)\right)_{i \in I}$ is a γ-net converging to $f\left(x_{0}\right)$. Since ψ is continuous, for every $P \in \mathbb{P}$ and $\epsilon>0$, there exists a neighbourhood Ω of x_{0} so that:

$$
\begin{equation*}
P_{\left\{f\left(x_{i}\right), i \in I\right\}}\left(\psi_{y}-\psi_{x_{0}}\right)<\frac{\epsilon}{2}, \quad y \in \Omega . \tag{3}
\end{equation*}
$$

But there exists $i_{0} \in I$ with $x_{i} \in \Omega$ whenever $i_{0} \leq i$. Hence (3) gives

$$
\sup \left\{P\left(\left(\psi_{x_{i}}-\psi_{x_{0}}\right)\left(f\left(x_{i}\right)\right)\right), i \geq i_{0}\right\}<\epsilon / 2
$$

Moreover, since $\psi_{x_{0}}$ is continuous, there are $Q \in \mathbb{P}$ and $M>0$ such that:

$$
P\left(\psi_{x_{0}}(a)\right) \leq M Q(a), \quad \forall a \in E
$$

Now, the convergence of $\left(f\left(x_{i}\right)\right)_{i}$ to $f\left(x_{0}\right)$ yields some $i_{1} \in I$ so that, whenever $i_{1} \leq i, Q\left(f\left(x_{i}\right)-f\left(x_{0}\right)\right) \leq \epsilon /(2 M)$. Hence, for i larger than both i_{0} and i_{1}, we have

$$
\begin{aligned}
P\left(M_{\psi}(f)\left(x_{i}\right)-M_{\psi}(f)\left(x_{0}\right)\right) & \leq P\left(\left(\psi_{x_{i}}-\psi_{x_{0}}\right)\left(f\left(x_{i}\right)\right)\right)+P\left(\psi_{x_{0}}\left(f\left(x_{i}\right)-f\left(x_{0}\right)\right)\right. \\
& \leq P\left(\left(\psi_{x_{i}}-\psi_{x_{0}}\right)\left(f\left(x_{i}\right)\right)\right)+M Q\left(f\left(x_{i}\right)-f\left(x_{0}\right)\right) \\
& \leq 2 \frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Whence the γ-continuity of $M_{\psi}(f)$ at x_{0} and then on the whole of X since x_{0} is arbitrary.

As a consequence we get the following corollary including in particular Theorem 2.1 of [8].

Corollary 6. Let F be a $E V$-solid subspace of $C V(X, E)$ and $\psi: X \rightarrow \mathcal{B}_{\sigma}(E)$ a continuous map. If X is a $b_{\mathbb{R}}$-space (in particular a $k_{\mathbb{R}}$-space, a sequential space or a pseudo-compact one), then M_{ψ} is a multiplication operator if and only if (1) holds.

In the theorems 4 and 5 we assume that ψ is continuous and obtain that $M_{\psi}(F) \subset C(X, E)$. We bring this section to an end by a kind of converse.

Proposition 7. Let F be a subspace of $C(X, E)$ enjoying (M) and $\psi: X \rightarrow \mathcal{B}(E)$ a map. If $M_{\psi}(F) \subset C(X, E)$, then ψ is necessarily continuous on $\operatorname{coz}(F)$ when $\mathcal{B}(E)$ is equipped with the topology β.

Proof: Let $x \in \operatorname{coz}(F), Q \in \mathbb{P}$ and $f \in F$ be such that $Q(f(x))=1$. Set

$$
\Omega:=\left\{t \in X:|1-Q(f(t))|<\frac{1}{2}\right\}
$$

This is an open set containing x and contained in $\operatorname{coz}(F)$. For every $P \in \mathbb{P}, a \in E$ and $\epsilon>0$, since $x \mapsto \psi_{x}(f(x))$ is continuous, there exists an open neighbourhood Ω^{\prime} of x so that

$$
P\left(\psi_{t}(Q(f(t)) a)-\psi_{x}(Q(f(x)) a)\right)<\frac{\epsilon}{4}, \quad t \in \Omega^{\prime}
$$

If $P\left(\psi_{x}(a)\right)=0$, then $P\left(\psi_{t}(Q(f(t)) a)\right)<\frac{\epsilon}{4}$ for every $t \in \Omega^{\prime}$. If t is also in Ω, we get $P\left(\psi_{t}(a)\right)<\frac{\epsilon}{2}$ which shows that ψ is continuous at x. Now, if $P\left(\psi_{x}(a)\right) \neq 0$, then put

$$
\Omega^{\prime \prime}:=\left\{t \in X:\left|\frac{1}{Q(f(t))}-1\right|<\frac{\epsilon}{2 P\left(\psi_{x}(a)\right)}\right\}
$$

For $t \in \Omega \cap \Omega^{\prime} \cap \Omega^{\prime \prime}$, we get:

$$
\begin{aligned}
P_{\{a\}}\left(\psi_{t}\right. & \left.-\psi_{x}\right)=P\left(\psi_{t}(a)-\psi_{x}(a)\right) \leq \\
& \leq P\left(\frac{\psi_{t}(Q(f(t)) a)}{Q(f(t))}-\frac{\psi_{x}(Q(f(x)) a)}{Q(f(t))}\right)+P\left(\frac{\psi_{x}(Q(f(x)) a)}{Q(f(t))}-\psi_{x}(a)\right) \\
& \leq \frac{1}{Q(f(t))} P\left(\psi_{t}(Q(f(t)) a)-\psi_{x}(Q(f(x)) a)\right)+\left|\frac{1}{Q(f(t))}-1\right| P\left(\psi_{x}(a)\right) \\
& \leq 2 \frac{\epsilon}{4}+\frac{\epsilon}{2 P\left(\psi_{x}(a)\right)} P\left(\psi_{x}(a)\right)=\epsilon
\end{aligned}
$$

This shows that ψ is β-continuous on $\operatorname{coz}(F)$.

4 - Compact multiplication operators

In a large class of locally convex spaces of continuous functions the precompact sets are equicontinuous. This is the case, as shown by K.D. Bierstedt in [1], for $C V(X)$ whenever X is a $V_{\mathbb{R}}$-space. K.D. Bierstedt's result was extended in [6] to the space $C V_{p}(X, E):=\{f \in C V(X, E):(v f)(X)$ is precompact in E for every $v \in V\}$. In order to extend this result to $C V(X, E)$, let the subscript c in $\mathcal{B}_{c}(C V(X, E), E)$ stand for the topology of uniform convergence on precompact subsets of $C V(X, E)$. While δ_{x} denotes the evaluation $f \mapsto f(x)$ at the point x, Δ will be the evaluation map $x \mapsto \delta_{x}$ defined from X into $\mathcal{B}(C V(X, E), E)$.

Lemma 8. The evaluation map Δ is continuous from X into $\mathcal{B}_{c}(C V(X, E), E)$ if and only if every precompact subset of $C V(X, E)$ is equicontinuous.

Proof: Necessity: Assume that H is precompact in $C V(X, E)$ and let us show that H is equicontinuous on X. Fix $x_{0} \in X, P \in \mathbb{P}$ and $\epsilon>0$. Since Δ is continuous at x_{0}, there exists some open set Ω containing x_{0} such that $\Delta(\Omega) \subset \delta_{x_{0}}+\epsilon H_{P}^{o}$. Here,

$$
H_{P}^{o}:=\left\{T \in \mathcal{B}_{c}(C V(X, E), E): P_{H}(T):=\sup _{h \in H} P(T(h)) \leq 1\right\} .
$$

Thus $\sup _{h \in H} P\left(h(x)-h\left(x_{0}\right)\right) \leq \epsilon$ for every $x \in \Omega$. This shows the equicontinuity of H at x_{0}. Since x_{0} is arbitrary, H is equicontinuous on X.

Sufficiency: Let $x_{0} \in X$ and U a neighbourhood of $\delta_{x_{0}}$ in $\mathcal{B}_{c}(C V(X, E), E)$ be given. There exist some $\epsilon>0, P \in \mathbb{P}$ and some precompact set $H \subset C V(X, E)$ so that $\delta_{x_{0}}+\epsilon H_{P}^{o} \subset U$. Since H is equicontinuous, there exists some open set Ω containing x_{0} with $\sup _{h \in H} P\left(h(x)-h\left(x_{0}\right)\right)<\epsilon$ for every $x \in \Omega$. Hence $\delta_{x}-\delta_{x_{0}} \in \epsilon H_{P}^{o}$ for every $x \in \Omega$. This gives $\Delta(\Omega) \subset U$ and then Δ is continuous at x_{0}. As x_{0} is arbitrary, Δ is continuous on X.

Proposition 9. If X is a $V_{\mathbb{R}}$-space, then every precompact subset of $C V(X, E)$ is equicontinuous.

Proof: In view of Lemma 7 and our assumption on X, it suffices to show that Δ is continuous on each $N_{v, 1}:=\{x \in X: v(x) \geq 1\}$. Let then $v \in V$ and $x \in N_{v, 1}$ be given. If U is a neighbourhood of δ_{x} in $\mathcal{B}_{c}(C V(X, E), E)$, then there exist $P \in \mathbb{P}$, a precompact set $H \subset C V(X, E)$ and $\epsilon>0$ such that $\delta_{x}+\epsilon H_{P}^{o} \subset U$. But there exist $h_{i} \in H, i \in\{1,2, \ldots, n\}$, so as $H \subset \bigcup_{i=1}^{n}\left(h_{i}+\frac{\epsilon}{3} B_{P, v}\right)$. Consider a
neighbourhood Ω of x enjoying, for every $i=1,2 \ldots, n$ and $t \in \Omega$, $P\left(h_{i}(t)-h_{i}(x)\right)<\frac{\epsilon}{3}$. Now, if $t \in \Omega \cap N_{v, 1}$ and $h \in H$, then $h=h_{i}+f$ for some $i \in\{1,2, \ldots, n\}$ and some $f \in \frac{\epsilon}{3} B_{v, P}$. Hence

$$
\begin{aligned}
P\left(\delta_{t}(h)-\delta_{x}(h)\right) & =P(h(t)-h(x)) \\
& \leq P\left(h_{i}(t)-h_{i}(x)\right)+P(f(t)-f(x)) \\
& \leq P\left(h_{i}(t)-h_{i}(x)\right)+\frac{P_{v}(f)}{v(t)}+\frac{P_{v}(f)}{v\left(t_{0}\right)} \\
& \leq 3 \frac{\epsilon}{3}=\epsilon .
\end{aligned}
$$

Since h is arbitrary in $H, P_{H}(\Delta(t)-\Delta(x))<\epsilon$ and thus Δ is continuous on $N_{v, 1}$.
Next, we show that the precompact (and then the compact) multiplication operators are often trivial. For this purpose, we need a further result. Let us first point out that, if H is a subset of $C V(X)$ such that $C_{b}^{+}(X) H \subset H$, then it is easy to show that $\frac{1}{v(x)}=\sup \left\{|f(x)|, f \in B_{v} \cap H\right\}$ for every $x \in \operatorname{coz}(H)$; B_{v} standing for the closed unit ball of $\left|\left.\right|_{v}\right.$ in $C V(X)$. As a consequence, if G is a subset of $C V(X, E)$ such that $C_{b}^{+}(X) G \subset G$, then for every $x \in \operatorname{coz}(G)$, there exists $P \in \mathbb{P}$ with $\frac{1}{v(x)}=\sup \left\{P(f(x)), f \in B_{P, v} \cap G\right\}$. Here and in the following we put $\frac{1}{0}=+\infty$. If in addition G satifies (M), we get the following

Lemma 10. Let G be a subset of $C V(X, E)$ such that $C_{b}^{+}(X) G \subset G$ and G satisfies (M). Then for every $P \in \mathbb{P}, v \in V$ and $x \in \operatorname{coz}(G)$, the equality $\frac{1}{v(x)}=\sup \left\{P(f(x)), f \in B_{P, v} \cap G\right\}$ holds.

Proof: Let $x \in \operatorname{coz}(G), v \in V$ and $P \in \mathbb{P}$ be given. Then there exist $f \in G$ and $Q \in \mathbb{P}$ with $Q(f(x))=1$. Consider $a \in E$ so that $P(a)=1$. If $v(x)=0$, set $U_{n}:=\left\{t \in X: v(t)<\frac{1}{n}\right.$ and $\left.1-\frac{1}{n}<Q(f(t))<1+\frac{1}{n}\right\}$ and consider $h_{n} \in C_{b}(X)$ enjoying $0 \leq h_{n} \leq n, h_{n}(x)=n$ and $\operatorname{supp} h_{n} \subset U_{n}$. The function $g_{n}:=\frac{n}{n+1} h_{n} Q(f()) a$ belongs to G and

$$
\begin{aligned}
P_{v}\left(g_{n}\right) & =\sup \left\{v(t) \frac{n}{n+1} h_{n}(t) Q(f(t)) P(a), t \in X\right\} \\
& =\sup \left\{v(t) \frac{n}{n+1} h_{n}(t) Q(f(t)) P(a), t \in U_{n}\right\} \\
& \leq \frac{1}{n} \frac{n}{n+1} n\left(1+\frac{1}{n}\right)=1
\end{aligned}
$$

Furthermore, $\sup \left\{P\left(g_{n}(x)\right), n \in \mathbb{N}\right\}=+\infty=\frac{1}{v(x)}$. Now, assume that $v(x) \neq 0$ and consider for $n>\frac{1}{v(x)}$ the open set:

$$
U_{n}:=\left\{t \in X: \frac{v(x)}{v(x)+\frac{1}{n}}<Q(f(t))<\frac{v(x)}{v(x)-\frac{1}{n}} \text { and } v(t)<v(x)+\frac{1}{n}\right\} .
$$

Choose then $h_{n} \in C_{b}(X)$ with $0 \leq h_{n} \leq \frac{1}{v(x)+\frac{1}{n}}, h_{n}(x)=\frac{1}{v(x)+\frac{1}{n}}$ and $\operatorname{supp} h_{n} \subset U_{n}$. Then $g_{n}:=\frac{v(x)-\frac{1}{n}}{v(x)} h_{n} Q(f()) a$ belongs to G and

$$
\begin{aligned}
P_{v}\left(g_{n}\right) & =\sup \left\{v(t) \frac{v(x)-\frac{1}{n}}{v(x)} h_{n}(t) Q(f(t)) P(a), t \in U_{n}\right\} \\
& \leq\left(v(x)+\frac{1}{n}\right) \frac{v(x)-\frac{1}{n}}{v(x)} \frac{1}{v(x)+\frac{1}{n}} \frac{v(x)}{v(x)-\frac{1}{n}}=1 .
\end{aligned}
$$

Finally,

$$
\sup _{n} P\left(g_{n}(x)\right)=\sup _{n}\left(\frac{v(x)-\frac{1}{n}}{v(x)}\right)\left(\frac{1}{v(x)+\frac{1}{n}}\right)=\frac{1}{v(x)} .
$$

Recall that a linear mapping $T: F \subset C V(X, E) \rightarrow F$ is said to be bounded (resp. precompact, compact, equicontinuous) if it maps some 0-neighbourhood into a bounded (resp. precompact, compact, equicontinuous) subset of F.

Proposition 11. Let $F \subset C V(X, E)$ be a $C_{b}(X)$-module and $\psi: X \rightarrow \mathcal{B}(E)$ a map such that M_{ψ} maps F into $C(X, E)$. If X has no isolated points and M_{ψ} is equicontinuous on F, then $M_{\psi}=0$.

Proof: Assume that M_{ψ} is equicontinuous and $M_{\psi}\left(f_{0}\right) \neq 0$ for some $f_{0} \in F$. Then there exists $x \in \operatorname{coz}(F)$ with $\psi_{x}\left(f_{0}(x)\right) \neq 0$. Since M_{ψ} is equicontinuous, there exist $P \in \mathbb{P}$ and $v \in V$ so that $M_{\psi}\left(B_{P, v}(F)\right)$ is equicontinuous on X and in particular at x. With no loss of generality we assume that $f_{0} \in B_{P, v}$. Hence, for every $Q \in \mathbb{P}$ and $\epsilon>0$, there exists a neighbourhood Ω of x such that $Q\left[\psi_{t}(f(t))-\psi_{x}(f(x))\right]<\epsilon$ for every $t \in \Omega$ and $f \in B_{P, v}(F)$. Since x is not isolated, there exists some $t \in \Omega \cap \operatorname{coz}(F)$ with $t \neq x$. Take then $g_{t} \in C_{b}(X)$ satisfying $g_{t}(x)=1, g_{t}(t)=0$ and $0 \leq g_{t} \leq 1$. Then, $g_{t} f_{0} \in B_{P, v}(F)$ and then $Q\left[\psi_{x}\left(f_{0}(x)\right)\right]<\epsilon$. Since ϵ and Q are arbitrary, $\psi_{x}\left(f_{0}(x)\right)=0$. This is a contradiction.

Corollary 12. Let $F \subset C V(X, E)$ be a $C_{b}(X)$-module and $\psi: X \rightarrow \mathcal{B}(E)$ a map such that M_{ψ} maps F into $C(X, E)$. If X is a $V_{\mathbb{R}}$-space without isolated points, then M_{ψ} is precompact if and only if $M_{\psi}=0$.

Remark. An equicontinuous linear mapping need not be continuous. Actually, it may even be unbounded on some bounded set. For such an example, take $x_{0} \in \beta \mathbb{R} \backslash \mathbb{R}$ and $T:\left(C_{b}(\mathbb{R}), \tau_{c}\right) \rightarrow\left(C(\mathbb{R}), \tau_{c}\right)$ with $T(f):=\tilde{f}\left(x_{0}\right) 1$. Here, $\beta \mathbb{R}$ is the Stone-Čech compactification of \mathbb{R}, \tilde{f} the Stone extension of f and τ_{c} the compact open topology. The map T is equicontinuous but not bounded on the bounded set $A:=\left\{f_{n}, n \in \mathbb{N}\right\}$, where $f_{n}(x):=\min (|x|, n)$. व

However, we get
Proposition 13. Let $\psi: X \rightarrow \mathcal{B}(E)$ and $F \subset C V(X, E)$ be such that $M_{\psi}(F) \subset C(X, E)$ and F satisfies (M). If M_{ψ} is a bounded multiplication operator on F, then there exist $P \in \mathbb{P}$ and $v \in V$ such that :
(4) $\forall u \in V, Q \in \mathbb{P}, \exists \lambda>0: u(x) Q\left(\psi_{x}(a)\right) \leq \lambda v(x) P(a), x \in \operatorname{coz}(F), a \in E$.

If in addition F is $E V$-solid, then also the converse is true.
Proof: If M_{ψ} is bounded, then it is bounded on $B_{P, v}(F)$ for some $P \in \mathbb{P}$ and some $v \in V$. Then, for every $u \in V$ and $Q \in \mathbb{P}$, there exists $\lambda>0$ so that $Q_{u}\left(M_{\psi}(f)\right) \leq \lambda$ for every $f \in B_{P, v}(F)$. In particular, $u(x) Q\left[\psi_{x}(f(x))\right] \leq \lambda$; x running over X. But for $f \in B_{P, v}(F)$ and $a \in B_{P}$, the function $P(f()) a$ belongs to $B_{P, v}$ and by (M) to F. Hence $P(f(x)) Q\left(\psi_{x}(a)\right) \leq \lambda, x \in X$ and $f \in B_{P, v}(F)$. Using Lemma 4, we get

$$
u(x) Q\left(\psi_{x}(a)\right) \leq \lambda v(x), \quad x \in \operatorname{coz}(F) \text { and } a \in B_{P}
$$

Let $a \in E$ be arbitrary, if $P(a)=0$, then also $P(n a)=0$ for every $n \in \mathbb{N}$ and then $u(x) Q\left(\psi_{x}(a)\right)=0$ for every $x \in X$. Whence $u(x) Q\left(\psi_{x}(a)\right) \leq \lambda v(x) P(a)$, for every $a \in E$. Assume now that $P \in \mathbb{P}$ and $v \in V$ enjoy (4). We claim that $M_{\psi}\left(B_{P, v}(F)\right)$ is contained and bounded in F. Indeed, for every $u \in V$ and $Q \in \mathbb{P}$, there exists, by (4), $\lambda>0$ so that $u(x) Q\left(\psi_{x}(a)\right) \leq \lambda v(x) P(a), x \in \operatorname{coz}(F)$ and $a \in E$. In particular $u(x) Q\left(\psi_{x}(f(x))\right) \leq \lambda v(x) P(f(x))$, for every $f \in F$ and $x \in \operatorname{coz}(F)$. In virtue of (EVS), $M_{\psi}(f) \in F$, and the latter inequality leads to $Q_{u}\left(M_{\psi}(f)\right) \leq \lambda P_{v}(f)$ for every $f \in F$. This shows that M_{ψ} is bounded on $B_{P, v}(F)$.

Now, we examine the cases $V=\mathcal{K}$, the set of all positive multiples of characteristic functions of the compact subsets of X, and $V=S$, the set of all non negative u.s.c. functions vanishing at infinity on X.

Proposition 14. Let $\psi: X \rightarrow \mathcal{B}(E)$ be a map and F a subspace of $C V(X, E)$ satisfying (M) with $V \in\{\mathcal{K}, S\}$.

1. If M_{ψ} is a bounded multiplication operator on $\left(F, \tau_{\mathcal{K}, \mathbb{P}}\right)$, then the support of ψ is contained in $K \cup z(F)$ for some compact $K \subset X$. Here, $z(F):=$ $X \backslash \operatorname{coz}(F)$.
2. If M_{ψ} is a bounded multiplication operator on $\left(F, \tau_{S, \mathbb{P}}\right)$, then ψ vanishes at infinity when $\mathcal{B}(E)$ is endowed with the topology β.

Proof: 1. Let $K \subset X$ be a compact set and $P \in \mathbb{P}$ such that, for every compact $H \subset X$ and every $Q \in \mathbb{P}$, there exists $\lambda>0$ with

$$
1_{H}(x) Q\left(\psi_{x}(a)\right) \leq \lambda 1_{K}(x) P(a), \quad a \in E, \quad x \in \operatorname{coz}(E)
$$

If $x \notin z(F) \cap K$, then taking a compact H containing x and not intersecting K, we get $\psi_{x}=0$. This shows that $\operatorname{supp} \psi \subset z(F) \cap K$.
2. Since M_{ψ} is bounded, there exist $P \in \mathbb{P}$ and $v \in S$ so that for every $Q \in \mathbb{P}$, there exists $\lambda>0$ with $\sqrt{v(x)} Q\left(\psi_{x}(a)\right) \leq \lambda v(x) P(a)$, for every $x \in \operatorname{coz}(F)$ and $a \in E$. This gives $Q_{\{a\}}\left(\psi_{x}\right) \leq \lambda P(a) \sqrt{v(x)}$. Since \sqrt{v} vanishes at infinity, $Q_{\{a\}}\left(\psi_{x}\right)$ also does. This shows that $\psi: X \rightarrow \mathcal{B}_{\beta}(E)$ vanishes at infinity.

The following example shows that the converse in both 1 . and 2 . does not hold.

Example. Let $X:=\widehat{\mathbb{N}}$ be the one point compactification of \mathbb{N} and $E:=C[0,1]$ the algebra of all continuous functions on $[0,1]$ equipped with the norm of $L^{1}[0,1]$. For every $n \in \mathbb{N}$, consider the function g_{n} defined on $[0,1]$ by $g_{n}(x)=n^{\frac{2}{3}}(1-n x)$ if $x \leq \frac{1}{n}$ and $g_{n}(x)=0$ otherwise. Then $g_{n} \in E$ and g_{n} tends to 0 as n tends to infinity. For every $g \in E$ and $x \in X$, set

$$
\psi(x)(g)=\left\{\begin{aligned}
g_{x} g: & x \in \mathbb{N} \\
0: & x=\infty
\end{aligned}\right.
$$

Since the multiplication of E is separately continuous, we get a continuous function ψ from X into $\mathcal{B}_{\beta}(E)$. Now, for every $m \in \mathbb{N}$, consider a continuous piecewise linear function h_{m} with $h_{m}(t)=m$ if $t \leq \frac{1}{2 m}, h_{m}(t)=0$ if $t \geq \frac{1}{2 m}+\alpha_{m}, \alpha_{m}$ being so chosen that $\left\|h_{m}\right\|:=\int_{0}^{1}\left|h_{m}(t)\right| d t \leq 1$. Next, set φ_{m} the constant function on X with value h_{m}. Then φ_{m} belongs to the unit ball $B_{|||| |}$of the norm ||| ||| of $C V(X, E)$, with $V=\{\lambda 1, \lambda>0\}$. But,

$$
\left\|\left\|M_{\psi}\left(\varphi_{m}\right)\right\|\right\|=\sup _{n}\left\|\psi_{n}\left(\varphi_{m}(n)\right)\right\|=
$$

$$
\begin{aligned}
& =\sup _{n}\left\|g_{n} h_{m}\right\| \\
& =\sup _{n} \int_{0}^{1}\left|g_{n}(t) h_{m}(t)\right| d t \\
& \geq \int_{0}^{\frac{1}{2 m}} m^{\frac{5}{3}}(1-m x) d x \\
& \geq \frac{m^{\frac{2}{3}}}{4}
\end{aligned}
$$

Hence $\sup _{\varphi \in B_{\| \|}| | \mid}| |\left|M_{\psi}(\varphi)\right|| | \geq \sup _{m}| |\left|M_{\psi}\left(\varphi_{m}\right)\right|| | \geq \sup _{m} \frac{m^{\frac{2}{3}}}{4}=+\infty$. This shows that M_{ψ} is not bounded. \square

REFERENCES

[1] Bierstedt, K.D. - Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt, I. J. Reine u Angew. Math., 259 (1973), 186-210.
[2] Bierstedt, K.D. - Tensor products of weighted spaces, Bonner Math. Schriften, 81 (1975), 25-58.
[3] Bonet, J. - On weighted inductive limits of spaces of continuous functions, Math. Z., 192 (1986), 9-20.
[4] Oubbi, L. - Algèbres A-convexes à poids, Rev. Real Acad. Cie. Exact. Fis. Nat. Madrid, 79(1-2) (1995), 99-110.
[5] Prolla, J.B. - Weighted spaces of vector-valued continuous functions, Ann. Mat. Pura Appl., 89 (1971), 145-158.
[6] Ruess, W.M. and Summers, W.H. - Compactness in spaces of vector valued continuous functions and assymptotic almost periodicity, Math. Nachr., 135 (1988), 7-33.
[7] Singh, R.K. and Manhas, J.S. - Multiplication operators on weighted spaces of vector-valued continuous functions, J. Austral. Math. Soc. (Serie A), 50 (1991), 98-107.
[8] Singh, R.K. and Manhas, J.S. - Multiplication operators and dynamical systems, J. Austral. Math. Soc. (Serie A), 53 (1992), 92-102.
[9] Singh, R.K. and Manhas, J.S. - Corrigendum to Multiplication operators and dynamical systems, J. Austral. Math. Soc. (Serie A), 58 (1995), 142-142.
[10] Summers, W.H. - Dual spaces of weighted spaces, Trans. Amer. Math. Soc., 151 (1970), 2323-333.
[11] Uss, P. - Sur les opérateurs bornés dans les espaces localement convexes, Studia Math., 37 (1971), 139-158.

L. Oubbi,

Department of Mathematics, Ecole Normale Supérieure de Rabat, B.P. 5118, Rabat 10105 - MOROCCO

E-mail: l_oubbi@hotmail.com

[^0]: Received: March 20, 2000; Revised: June 18, 2001.
 AMS Subject Classification: 47B38, 46E10, 46E25.
 Keywords: multiplication operator; Nachbin family; weighted space.

