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MULTIPLICATION OPERATORS ON WEIGHTED SPACES
OF CONTINUOUS FUNCTIONS

L. Oubbi

Abstract: Let V be a Nachbin family on the Hausdorff completely regular space

X, E a locally convex space, B(E) the algebra of all continuous operators on E and

ψ : X → B(E) a map. We give necessary and sufficient conditions for the induced

linear mapping Mψ : f 7→ ψ( ) (f( )) to be a multiplication operator on a subspace of

the weighted space of E-valued continuous functions CV (X,E). Next, we characterize

the bounded multiplication operators and show that, at least whenever X is a VR-space,
such an operator is precompact if and only if it is trivial.

1 – Introduction

Throughout this paper X will stand for a Hausdorff completely regular space

and E for a Hausdorff locally convex space over the field K (= R or C). We

assume that the topology of E is given by a family P of seminorms. The space of

all continuous E-valued functions on X will be denoted by C(X,E), while B(E)

denotes the algebra of all continuous linear operators on E. If F ⊂ C(X,E)

is a locally convex space (for a given topology), we will call a multiplication

operator on F every continuous linear mapping Mψ from F into itself , where

ψ : X → B(E) is a map andMψ(f)(x) := ψ(x)(f(x)) for every f ∈ F and x ∈ X.

Particularly interesting locally convex spaces contained in C(X,E) are the so-

called weighted spaces, namely CV (X,E) and CV0(X,E), where V is a Nachbin

family on X. These spaces were intensively investigated by many authors (e.g.

[1], [2], [3], [5], [8], [10] and many others). The multiplication operators on the
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weighted spaces CV (X,E) and CV0(X,E) were considered first by R.K. Singh

and S.J. Manhas in [7] in the two particular settings: ψ : X → C and ψ : X → E,

where Mψ(f)(x) := ψ(x)f(x), the multiplication being pointwise. In the latter

case E is assumed to be a locally multiplicatively convex algebra. The authors

gave a necessary and sufficient condition forMψ to be a multiplication operator on

either CV (X,E) and CV0(X,E). The same authors considered in [8] (and [9]) the

general (i.e. operator-valued) case. They asserted (Theorem 2.1 of [8] corrected in

[9]) that if X is a kR-space and ψ a continuous map from X into B(E), endowed

with the topology of uniform convergence on the bounded subsets of E, then Mψ

is a multiplication operator on CV (X,E) if and only if the following condition

holds

∀ v ∈ V ∀P ∈ P, ∃u ∈ V ∃Q ∈ P : v(x)P (ψx(a)) ≤ u(x)Q(a), a∈E, x∈X .

In the present paper we first show by a counter-example (see Example 1. 1) that

the assertion above of [8] is not true in the full generality. However, we show that,

under the additional assumption of essentiality of CV (X,E) the equivalence holds

(see Theorem 5). At this point, notice that CV (X,E) need not be essential even

for relatively nice spaces X and Nachbin families V (see Example 1. 2).

Next, we characterize those maps ψ inducing multiplication operators on a

subspace F of CV (X,E), unifying in this way, the study for a large class of sub-

spaces of CV (X,E) containing, as special ones, CV (X,E) itself and CV0(X,E).

In particular, we get an extention of (the analogous of) the result of [8] to a

large class of completely regular spaces X including the kR-spaces, the sequential
spaces and the pseudocompact ones.

Finally, we characterize the maps ψ for which Mψ is a bounded operator (in

the sense of P. Uss [11]) on a subspace of CV (X,E) and show that, at least when

X is a VR-space without isolated points, Mψ is compact only if it is trivial.

2 – Preliminaries

Henceforth, the space of all continuous and bounded (resp. continuous and

vanishing at infinity, continuous with compact support) E-valued functions on

X will be denoted by Cb(X,E) (resp. C0(X,E), K(X,E)). B(X) and B0(X)

denote respectively the spaces of all bounded K-valued functions and all bounded

K-valued ones vanishing at infinity. A function f : X → K is said to vanish at

infinity if for every ε > 0, there exists a compact set K ⊂ X such that |f(x)| < ε

whenever x ∈ X\K. We will let V be a Nachbin family on X. This is a collection
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of non negative upper semicontinuous (u.s.c.) functions v onX such that for every

v1, v2 ∈ V and λ > 0, there exists v ∈ V with max(λv1, λv2) ≤ v and for every

x ∈ X, v(x) 6= 0 for some v ∈ V . With V we associate the so-called weighted

spaces :

CV (X,E) :=
{
f ∈ C(X,E) : vP (f) ∈ B(X), ∀P ∈ P, ∀ v ∈ V

}
,

CV0(X,E) :=
{
f ∈ CV (X,E) : vP (f) ∈ B0(X), ∀P ∈ P, ∀ v ∈ V

}
,

both equipped with the natural weighted topology τV,P generated by the family

PV := {Pv, P ∈ P, v ∈ V } of seminorms; where

Pv(f) := sup
{
v(x)P (f(x)), x ∈ X

}
, f ∈ CV (X,E) .

For F ⊂ CV (X,E), set coz(F ) := {x ∈ X : f(x) 6= 0, for some f ∈ F} and

BP,v(F ) := BP,v ∩ F with BP,v the closed unit ball of the seminorm Pv in

CV (X,E). If coz(F ) = X, then F is said to be essential. In the scalar case

(i.e. E = K), we will omit the symbols E and P from the notations and then

write CV (X) and CV0(X) instead of CV (X,K) and CV0(X,K) respectively and

τV instead of τV,| |.
A subspace F of CV (X,E) is said to be E-solid (resp. EV -solid) if for every

g ∈ C(X,E), the following condition is satisfied

(ES) g ∈ F ⇐⇒ ∀P ∈ P, ∃Q ∈ P, f ∈ F : P ◦g ≤ Q◦f pointwise on coz(F )

(resp.

(EV S)

g ∈ F ⇐⇒ ∀P ∈ P, v ∈ V, ∃u ∈ V, Q ∈ P, f ∈ F : v.P◦g ≤ u.Q◦f on coz(F )).

The classical solid spaces are nothing but the K-solid ones. Moreover, it is easily

seen that every EV -solid subset of CV (X,E) is E-solid and that every E-solid

F satisfies either Cb(X)F ⊂ F and the condition,

(M) P (f( ))a ∈ F for all P ∈ P, a ∈ E and all f ∈ F .

The spaces CV (X,E), CV0(X,E) and K(X,E) are all EV -solid, while

CV (X,E) ∩ Cb(X,E), CV0(X,E) ∩ Cb(X,E), CV (X,E) ∩ C0(X,E) and

CV0(X,E) ∩ C0(X,E) are E-solid but need not be EV -solid. Actually, C0(R)

and Cb(R) are not CV -solid for V = {λe− 1

n : n ∈ N, λ > 0}.
The algebra of all continuous operators T from a locally convex space E into

another F will be denoted by B(E,F ). If A is a collection of subsets of E, then
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we will mean by BA(E,F ) the subspace of B(E,F ) consisting of those operators

T which are bounded on the members of A, together with the topology τA of

uniform convergence on the elements of A. This topology is generated by the

suprema of finitely many seminorms of the form PA(T ) := sup{P (T (a)), a ∈ A},
A running over A and P over a family of seminorms defining the topology of F .

If A consists of all the finite (resp. bounded) subsets of E, then we will write

Bβ(E) (resp. Bσ(E)) for BA(E,E) and β (resp. σ) for τA.

3 – Multiplication operators on CV (X,E)

We start this section by giving an example in which CV (X,E) is trivial and

another where Mψ is a multiplication operator on CV (X,E) although the condi-

tion of [8] is not satisfied. This shows that the essentiality condition misses really

in [8].

Example 1. 1. Let X be the set of all rationals with the natural topology.

This is of course a metrizable space. Consider on X the Nachbin family consisting

of all non negative continuous functions. We claim that CV (X,E) is reduced to

{0} for every E. Indeed, assume that, for a given E, f(x) 6= 0 for some x ∈ X
and some f ∈ CV (X,E). Since E is Hausdorff, there exists some P ∈ P so that

P (f(x)) 6= 0. With no loss of generality, we assume that P (f(x)) = 1. Then

there exists ε > 0 such that P (f(t)) > 1
2 whenever |t− x| < ε. For an irrational

r with |r − x| < ε, the function t 7→ 1

|t− r| belongs to V and then must verify

sup{v(t)P (f(t)), t ∈ X} < +∞. But this is clearly not true.

2. Set X := [0, 1] ∪ Q[1,2], where Q[1,2] denotes the set of all the rationals

contained in [1, 2]. Consider onX the Nachbin family consisting of all the maxima

of finitely many continuous functions of the form λ vr(x) =
λ

|x− r| , r running

over [1, 2]\Q[1,2] and λ over R+\{0}. If E = C, then CV (X) is nothing but the

Banach algebra C[0, 1] with the uniform norm. For a fixed irrational r0 from

[1, 2], take ψ := vr0 . Then Mψ : f 7→ ψf is obviously a multiplication operator

on CV (X). However, the condition of [8] is not enjoyed by ψ since
1

|x− r0|2
cannot be dominated by a weight from V .

The following lemma shows that the corner stone in (the repaired) Theo-

rem 2.1 of [8] is the continuity of Mψ(f) for every f ∈ CV (X,E). It also shows

what property of CV (X,E) is involved either in the necessity or in the sufficiency.
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Lemma 2. Let ψ : X → B(E) be a map and F a subspace of CV (X,E).

If F is a Cb(X)-module and satisfies the condition (M) and if Mψ is a multipli-

cation operator on F , then the following condition holds

∀v ∈ V, ∀P ∈ P, ∃u ∈ V, ∃Q ∈ P :(1)

v(x)P (ψx(a)) ≤ u(x)Q(a) , a ∈ E, x ∈ coz(F ) .

If in addition F is EV -solid and Mψ(F ) ⊂ C(X,E), then the converse holds as

well.

Proof: Assume that Mψ is a multiplication operator on F . Then for every

v ∈ V and P ∈ P, there exist u ∈ V and Q ∈ P so that Pv(Mψ(f)) ≤ Qu(f),

f running over F . In particular, for every x ∈ coz(F ) and every f ∈ F ,

v(x)P (ψx(f(x))) ≤ sup
{
u(t)Q(f(t)), t ∈ X

}
.(2)

Choose g ∈ F so that g(x) 6= 0. With no loss of generality, we may assume that

Q(g(x)) = 1. Consider then hn ∈ Cb(X) such that hn(x) = 1, 0 ≤ hn ≤ 1 and

hn= 0 outside of Un := {t ∈ X : u(t) < u(x) +
1

n
and Q(g(t)) < 1 +

1

n
}. Now,

for every a ∈ E, put fn := hnQ(g( ))a. This is an element of F , for F is a

Cb(X)-module and enjoies (M). Moreover, applying (2) to fn, we get

v(x)P (ψx(a)) ≤
(
u(x) +

1

n

)(
1 +

1

n

)
Q(a)

which gives (1) since n is arbitrary.

Conversely, assume that (1) is satisfied. Since Mψ(f) is continuous for every

f ∈ F , we only have to show thatMψ(f) belongs to F and thatMψ is continuous.

Let v ∈ V and P ∈ P be given. By (1), there exist u ∈ V and Q ∈ P such that:

v(x)P (ψx(a)) ≤ u(x)Q(a) , ∀ a ∈ E, x ∈ coz(F ) .

In particular,

v(x)P (ψx(f(x)) ≤ u(x)Q(f(x)) , ∀ f ∈ F, x ∈ X .

Since F is EV -solid, Mψ(f) belongs to F and the passage to the supremum, first

on the right hand side and then on the left hand one, yields Pv(Mψ(f)) ≤ Qu(f)

which shows the continuity of Mψ.

The first consequence of Lemma 2 is that ifMψ is a multiplication operator on

CV (X,E), then so is it also on any EV -solid subspace F of CV (X,E). However,

the converse fails to hold in general even in the scalar case. Here is such an

example.
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Example 3. Set again X := [0, 1] ∪ Q[1,2] as above, E := C and ψ = v√2.

For the Nachbin family V consisting of all the positive constant functions on X,

we have CV0(X) = C[0, 1] with the uniform norm, while CV (X) is the algebra

of all continuous and bounded functions on X with the uniform norm. It is easy

to see that Mψ is a multiplication operator on CV0(X) but not on CV (X).

The following theorems yield conditions ensuring the continuity of Mψ(f) for

every f ∈ F so that we can apply Lemma 2.

Theorem 4. Let F be an EV -solid subspace of CV (X,E) and ψ : X→ Bβ(E)

be a continuous function. Suppose that, for every x ∈ X, there exists a neigh-

bourhood Ω of x with ψ(Ω) equicontinuous on E. Then Mψ is a multiplication

operator on F if and only if (1) holds.

Proof: By Lemma 2, we only have to show that Mψ(f) is continuous for

every f ∈ F . Let x0 ∈ X and f ∈ F be given. By assumption, there exists an

open set Ω containing x0 such that {ψx, x ∈ Ω} is equicontinuous on E. Then,

for every P ∈ P, there exist some Q ∈ P and some M > 0 so that

P (ψx(a)) ≤M Q(a) , ∀x ∈ Ω, ∀ a ∈ E .

But f and ψ are continuous at x0. Then, for arbitrary ε>0, there exists a neigh-

bourhood Ω′ of x0 so that Q(f(x)−f(x0)) ≤ ε/(2M) and P{f(x0)}(ψx−ψx0
) ≤ ε/2

for every x ∈ Ω′. Hence, for x ∈ Ω ∩ Ω′, we have

P
(
Mψ(f)(x)−Mψ(f)(x0)

)
≤ P

(
ψx(f(x)− f(x0))

)
+ P

(
(ψx − ψx0

)(f(x0))
)

≤ M Q
(
f(x)− f(x0)

)
+ P{f(x0)}(ψx − ψx0

)

≤ M ε/2M + ε/2 = ε .

This shows the continuity of Mψ(f) at x0. Since the latter is arbitrary in X,

Mψ(f) is continuous on X.

Now, we provide an extension of the result of [8] to a wider class of completely

regular spaces. To this aim, let γ be a property a net (xi)i∈I may satisfy or not.

We will call a γ-net any net enjoying the property γ. A function f : X → Y from

X into a topological space Y will be said to be γ-continuous if, for every x ∈ X
and every γ-net (xi)i∈I of X converging in X to x, (f(xi))i∈I converges to f(x).

The space X is then called a γR-space if every γ-continuous function from X into

the real line (or equivalently into any completely regular space) is continuous on

X. Here are some examples of such a property γ. Let us say that (xi)i∈I is a

s-, k-, c- or b-net if respectively I = N, {xi, i ∈ I} is contained in a compact
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set, {xi, i ∈ I} is countable or {xi, i ∈ I} is bounding (i.e. every continuous

scalar function on X is bounded on {xi, i ∈ I}). In this way, the kR-spaces, in
the present sense, are nothing but the classical ones, every sequential space is a

sR-space and every pseudo-compact space is a bR-space. Moreover, every sR-space
is a kR-space and every kR-space is a bR-space. Finally, if V is a Nachbin family on

X, we will call a V -net any one (xi)i∈I contained in Nv,1 := {x ∈ X : v(x) ≥ 1}
for some v ∈ V . In this way, we get the classical VR-spaces introduced in [1].

Now, if A consists of the γ-nets (xi)i∈I converging in E, then we denote BA(E)

by Bγ(E) and τA by τγ . It is then clear that β is coarser than τs whenever the

constant nets are γ-nets and that σ is finer than τb. Finally, one has τs ≤ τk ≤ τb.

In the following, we will assume that the property γ is preserved by continuous

functions. This is the case for γ ∈ {s, c, k, b}.

Theorem 5. Let F be an EV -solid subspace of CV (X,E), X a γR-space
for some property γ and ψ : X → Bγ(E) a continuous map. Then Mψ is a

multiplication operator on F if and only if (1) holds.

Proof: Here again, we have to show the continuity ofMψ(f) for every f ∈ F .
Since X is a γR-space, it suffices to show that Mψ(f) is γ-continuous. Let then

f ∈ F and x0 ∈ X be given. If (xi)i∈I is a γ-net in X converging to x0, then also

(f(xi))i∈I is a γ-net converging to f(x0). Since ψ is continuous, for every P ∈ P
and ε > 0, there exists a neighbourhood Ω of x0 so that:

P{f(xi),i∈I}(ψy − ψx0
) <

ε

2
, y ∈ Ω .(3)

But there exists i0 ∈ I with xi ∈ Ω whenever i0 ≤ i. Hence (3) gives

sup
{
P
(
(ψxi

− ψx0
)(f(xi))

)
, i ≥ i0

}
< ε/2 .

Moreover, since ψx0
is continuous, there are Q ∈ P and M > 0 such that:

P (ψx0
(a)) ≤M Q(a) , ∀ a ∈ E .

Now, the convergence of (f(xi))i to f(x0) yields some i1 ∈ I so that, whenever

i1≤ i, Q(f(xi)−f(x0))≤ε/(2M). Hence, for i larger than both i0 and i1, we have

P
(
Mψ(f)(xi)−Mψ(f)(x0)

)
≤ P

(
(ψxi

− ψx0
)(f(xi))

)
+ P

(
ψx0

(f(xi)− f(x0)
)

≤ P
(
(ψxi

− ψx0
)(f(xi))

)
+M Q

(
f(xi)− f(x0)

)

≤ 2
ε

2
= ε .

Whence the γ-continuity of Mψ(f) at x0 and then on the whole of X since x0 is

arbitrary.
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As a consequence we get the following corollary including in particular The-

orem 2.1 of [8].

Corollary 6. Let F be a EV -solid subspace of CV (X,E) and ψ : X → Bσ(E)

a continuous map. If X is a bR-space (in particular a kR-space, a sequential space
or a pseudo-compact one), then Mψ is a multiplication operator if and only if (1)

holds.

In the theorems 4 and 5 we assume that ψ is continuous and obtain that

Mψ(F ) ⊂ C(X,E). We bring this section to an end by a kind of converse.

Proposition 7. Let F be a subspace of C(X,E) enjoying (M) and

ψ : X→ B(E) a map. If Mψ(F ) ⊂ C(X,E), then ψ is necessarily continuous on

coz(F ) when B(E) is equipped with the topology β.

Proof: Let x ∈ coz(F ), Q ∈ P and f ∈ F be such that Q(f(x)) = 1. Set

Ω :=

{
t ∈ X : |1−Q(f(t))| < 1

2

}
.

This is an open set containing x and contained in coz(F ). For every P ∈ P, a ∈ E
and ε > 0, since x 7→ ψx(f(x)) is continuous, there exists an open neighbourhood

Ω′ of x so that

P

(
ψt
(
Q(f(t))a

)
− ψx

(
Q(f(x))a

))
<

ε

4
, t ∈ Ω′ .

If P (ψx(a)) = 0, then P (ψt(Q(f(t))a)) < ε
4 for every t ∈ Ω′. If t is also in Ω, we

get P (ψt(a)) <
ε
2 which shows that ψ is continuous at x. Now, if P (ψx(a)) 6= 0,

then put

Ω′′ :=

{
t ∈ X :

∣∣∣∣
1

Q(f(t))
− 1

∣∣∣∣ <
ε

2P (ψx(a))

}
.

For t ∈ Ω ∩ Ω′ ∩ Ω′′, we get:

P{a}(ψt − ψx) = P
(
ψt(a)− ψx(a)

)
≤

≤ P

(
ψt(Q(f(t))a)

Q(f(t))
− ψx(Q(f(x))a)

Q(f(t))

)
+ P

(
ψx(Q(f(x))a)

Q(f(t))
− ψx(a)

)

≤ 1

Q(f(t))
P

(
ψt
(
Q(f(t))a

)
− ψx

(
Q(f(x))a

))
+

∣∣∣∣
1

Q(f(t))
− 1

∣∣∣∣P (ψx(a))

≤ 2
ε

4
+

ε

2P (ψx(a))
P (ψx(a)) = ε .

This shows that ψ is β-continuous on coz(F ).
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4 – Compact multiplication operators

In a large class of locally convex spaces of continuous functions the precompact

sets are equicontinuous. This is the case, as shown by K.D. Bierstedt in [1], for

CV (X) whenever X is a VR-space. K.D. Bierstedt’s result was extended in [6]

to the space CVp(X,E) := {f ∈ CV (X,E) : (vf)(X) is precompact in E for

every v ∈ V }. In order to extend this result to CV (X,E), let the subscript c in

Bc(CV (X,E), E) stand for the topology of uniform convergence on precompact

subsets of CV (X,E). While δx denotes the evaluation f 7→ f(x) at the point x,

∆ will be the evaluation map x 7→ δx defined from X into B(CV (X,E), E).

Lemma 8. The evaluation map∆ is continuous fromX into Bc(CV (X,E), E)

if and only if every precompact subset of CV (X,E) is equicontinuous.

Proof: Necessity: Assume that H is precompact in CV (X,E) and let us

show that H is equicontinuous on X. Fix x0 ∈ X, P ∈ P and ε > 0. Since ∆

is continuous at x0, there exists some open set Ω containing x0 such that

∆(Ω) ⊂ δx0
+ εHo

P . Here,

Ho
P :=

{
T ∈ Bc(CV (X,E), E) : PH(T ) := sup

h∈H
P (T (h)) ≤ 1

}
.

Thus suph∈H P (h(x)−h(x0)) ≤ ε for every x ∈ Ω. This shows the equicontinuity

of H at x0. Since x0 is arbitrary, H is equicontinuous on X.

Sufficiency: Let x0 ∈ X and U a neighbourhood of δx0
in Bc(CV (X,E), E) be

given. There exist some ε > 0, P ∈ P and some precompact set H ⊂ CV (X,E)

so that δx0
+ εHo

P ⊂ U . Since H is equicontinuous, there exists some open

set Ω containing x0 with suph∈H P (h(x) − h(x0)) < ε for every x ∈ Ω. Hence

δx− δx0
∈ εHo

P for every x ∈ Ω. This gives ∆(Ω) ⊂ U and then ∆ is continuous

at x0. As x0 is arbitrary, ∆ is continuous on X.

Proposition 9. IfX is a VR-space, then every precompact subset of CV (X,E)

is equicontinuous.

Proof: In view of Lemma 7 and our assumption on X, it suffices to show

that ∆ is continuous on each Nv,1 := {x ∈ X : v(x) ≥ 1}. Let then v ∈ V and

x ∈ Nv,1 be given. If U is a neighbourhood of δx in Bc(CV (X,E), E), then there

exist P ∈P, a precompact set H⊂CV (X,E) and ε>0 such that δx + εHo
P ⊂U .

But there exist hi ∈ H, i ∈ {1, 2, ..., n}, so as H ⊂
n⋃

i=1

(hi +
ε

3
BP,v). Consider a
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neighbourhood Ω of x enjoying, for every i = 1, 2..., n and t ∈ Ω,

P (hi(t) − hi(x)) <
ε
3 . Now, if t ∈ Ω ∩ Nv,1 and h ∈ H, then h = hi + f for

some i ∈ {1, 2, ..., n} and some f ∈ ε
3 Bv,P . Hence

P
(
δt(h)− δx(h)

)
= P

(
h(t)− h(x)

)

≤ P
(
hi(t)− hi(x)

)
+ P

(
f(t)− f(x)

)

≤ P
(
hi(t)− hi(x)

)
+
Pv(f)

v(t)
+
Pv(f)

v(t0)

≤ 3
ε

3
= ε .

Since h is arbitrary in H, PH(∆(t)−∆(x))<ε and thus ∆ is continuous on Nv,1.

Next, we show that the precompact (and then the compact) multiplication

operators are often trivial. For this purpose, we need a further result. Let us

first point out that, if H is a subset of CV (X) such that C+
b (X)H ⊂ H, then

it is easy to show that
1

v(x)
= sup{|f(x)|, f ∈ Bv ∩ H} for every x ∈ coz(H);

Bv standing for the closed unit ball of | |v in CV (X). As a consequence, if G is

a subset of CV (X,E) such that C+
b (X)G ⊂ G, then for every x ∈ coz(G), there

exists P ∈ P with
1

v(x)
= sup{P (f(x)), f ∈ BP,v ∩G}. Here and in the following

we put 1
0 = +∞. If in addition G satifies (M), we get the following

Lemma 10. Let G be a subset of CV (X,E) such that C+
b (X)G ⊂ G and

G satisfies (M). Then for every P ∈ P, v ∈ V and x ∈ coz(G), the equality
1

v(x)
= sup{P (f(x)), f ∈ BP,v ∩G} holds.

Proof: Let x ∈ coz(G), v ∈ V and P ∈ P be given. Then there exist

f ∈ G and Q ∈ P with Q(f(x)) = 1. Consider a ∈ E so that P (a) = 1. If

v(x) = 0, set Un := {t ∈ X: v(t) < 1
n
and 1− 1

n
< Q(f(t)) < 1+ 1

n
} and consider

hn ∈ Cb(X) enjoying 0 ≤ hn ≤ n, hn(x) = n and supphn ⊂ Un. The function

gn :=
n

n+ 1
hnQ(f( ))a belongs to G and

Pv(gn) = sup

{
v(t)

n

n+ 1
hn(t)Q(f(t))P (a), t ∈ X

}

= sup

{
v(t)

n

n+ 1
hn(t)Q(f(t))P (a), t ∈ Un

}

≤ 1

n

n

n+ 1
n

(
1 +

1

n

)
= 1 .



WEIGHTED SPACES OF CONTINUOUS FUNCTIONS 121

Furthermore, sup{P (gn(x)), n ∈ N} = +∞ = 1
v(x) . Now, assume that v(x) 6= 0

and consider for n > 1
v(x) the open set:

Un :=

{
t ∈ X :

v(x)

v(x) + 1
n

< Q(f(t)) <
v(x)

v(x)− 1
n

and v(t) < v(x) +
1

n

}
.

Choose then hn ∈ Cb(X) with 0 ≤ hn ≤
1

v(x) + 1
n

, hn(x) =
1

v(x) + 1
n

and

supphn ⊂ Un. Then gn :=
v(x)− 1

n

v(x)
hnQ(f( ))a belongs to G and

Pv(gn) = sup

{
v(t)

v(x)− 1
n

v(x)
hn(t)Q(f(t))P (a), t ∈ Un

}

≤
(
v(x) +

1

n

)
v(x)− 1

n

v(x)

1

v(x) + 1
n

v(x)

v(x)− 1
n

= 1 .

Finally,

sup
n
P (gn(x)) = sup

n

(
v(x)− 1

n

v(x)

)(
1

v(x) + 1
n

)
=

1

v(x)
.

Recall that a linear mapping T : F ⊂ CV (X,E) → F is said to be bounded

(resp. precompact, compact, equicontinuous) if it maps some 0-neighbourhood

into a bounded (resp. precompact, compact, equicontinuous) subset of F .

Proposition 11. Let F ⊂ CV (X,E) be a Cb(X)-module and ψ : X → B(E)

a map such that Mψ maps F into C(X,E). If X has no isolated points and Mψ

is equicontinuous on F , then Mψ = 0.

Proof: Assume that Mψ is equicontinuous and Mψ(f0) 6= 0 for some f0 ∈ F .
Then there exists x ∈ coz(F ) with ψx(f0(x)) 6= 0. Since Mψ is equicontinuous,

there exist P ∈ P and v ∈ V so that Mψ(BP,v(F )) is equicontinuous on X and

in particular at x. With no loss of generality we assume that f0 ∈ BP,v. Hence,

for every Q ∈ P and ε > 0, there exists a neighbourhood Ω of x such that

Q[ψt(f(t)) − ψx(f(x))] < ε for every t ∈ Ω and f ∈ BP,v(F ). Since x is not

isolated, there exists some t ∈ Ω ∩ coz(F ) with t 6= x. Take then gt ∈ Cb(X)

satisfying gt(x) = 1, gt(t) = 0 and 0 ≤ gt ≤ 1. Then, gtf0 ∈ BP,v(F ) and

then Q[ψx(f0(x))] < ε. Since ε and Q are arbitrary, ψx(f0(x)) = 0. This is a

contradiction.
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Corollary 12. Let F ⊂ CV (X,E) be a Cb(X)-module and ψ : X → B(E)

a map such that Mψ maps F into C(X,E). If X is a VR-space without isolated
points, then Mψ is precompact if and only if Mψ = 0.

Remark. An equicontinuous linear mapping need not be continuous.

Actually, it may even be unbounded on some bounded set. For such an

example, take x0 ∈ βR\R and T : (Cb(R), τc)→ (C(R), τc) with T (f) := f̃(x0) 1.

Here, βR is the Stone–Čech compactification of R, f̃ the Stone extension of f and

τc the compact open topology. The map T is equicontinuous but not bounded

on the bounded set A := {fn, n ∈ N}, where fn(x) := min(|x|, n).

However, we get

Proposition 13. Let ψ : X → B(E) and F ⊂ CV (X,E) be such that

Mψ(F ) ⊂ C(X,E) and F satisfies (M). If Mψ is a bounded multiplication

operator on F , then there exist P ∈ P and v ∈ V such that :

∀u ∈ V, Q ∈ P, ∃λ > 0: u(x)Q(ψx(a)) ≤ λ v(x)P (a), x ∈ coz(F ), a∈E .(4)

If in addition F is EV -solid, then also the converse is true.

Proof: If Mψ is bounded, then it is bounded on BP,v(F ) for some P ∈ P
and some v ∈ V . Then, for every u ∈ V and Q ∈ P, there exists λ > 0 so that

Qu(Mψ(f)) ≤ λ for every f ∈ BP,v(F ). In particular, u(x)Q[ψx(f(x))] ≤ λ;

x running over X. But for f ∈ BP,v(F ) and a ∈ BP , the function P (f( ))a

belongs to BP,v and by (M) to F . Hence P (f(x))Q(ψx(a)) ≤ λ, x ∈ X and

f ∈ BP,v(F ). Using Lemma 4, we get

u(x)Q(ψx(a)) ≤ λ v(x) , x ∈ coz(F ) and a ∈ BP .

Let a ∈ E be arbitrary, if P (a) = 0, then also P (na) = 0 for every n ∈ N and

then u(x)Q(ψx(a)) = 0 for every x ∈ X. Whence u(x)Q(ψx(a)) ≤ λ v(x)P (a),

for every a ∈ E. Assume now that P ∈ P and v ∈ V enjoy (4). We claim that

Mψ(BP,v(F )) is contained and bounded in F . Indeed, for every u ∈ V and Q ∈ P,
there exists, by (4), λ > 0 so that u(x)Q(ψx(a)) ≤ λ v(x)P (a), x ∈ coz(F ) and
a ∈ E. In particular u(x)Q(ψx(f(x))) ≤ λ v(x)P (f(x)), for every f ∈ F and

x ∈ coz(F ). In virtue of (EVS), Mψ(f) ∈ F , and the latter inequality leads

to Qu(Mψ(f)) ≤ λPv(f) for every f ∈ F . This shows that Mψ is bounded on

BP,v(F ).

Now, we examine the cases V = K, the set of all positive multiples of char-

acteristic functions of the compact subsets of X, and V = S, the set of all non

negative u.s.c. functions vanishing at infinity on X.
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Proposition 14. Let ψ : X → B(E) be a map and F a subspace of CV (X,E)

satisfying (M) with V ∈ {K, S}.
1. If Mψ is a bounded multiplication operator on (F, τK,P), then the support

of ψ is contained in K ∪ z(F ) for some compact K ⊂ X. Here, z(F ) :=

X \ coz(F ).
2. If Mψ is a bounded multiplication operator on (F, τS,P), then ψ vanishes

at infinity when B(E) is endowed with the topology β.

Proof: 1. Let K ⊂ X be a compact set and P ∈ P such that, for every

compact H ⊂ X and every Q ∈ P, there exists λ > 0 with

1H(x)Q(ψx(a)) ≤ λ 1K(x)P (a) , a ∈ E, x ∈ coz(E) .

If x /∈ z(F ) ∩K, then taking a compact H containing x and not intersecting K,

we get ψx = 0. This shows that suppψ ⊂ z(F ) ∩K.

2. SinceMψ is bounded, there exist P ∈ P and v ∈ S so that for every Q ∈ P,
there exists λ > 0 with

√
v(x)Q(ψx(a)) ≤ λ v(x)P (a), for every x ∈ coz(F ) and

a ∈ E. This gives Q{a}(ψx) ≤ λP (a)
√
v(x). Since

√
v vanishes at infinity,

Q{a}(ψx) also does. This shows that ψ : X → Bβ(E) vanishes at infinity.

The following example shows that the converse in both 1. and 2. does not

hold.

Example. LetX := N̂ be the one point compactification of N and E := C[0, 1]

the algebra of all continuous functions on [0, 1] equipped with the norm of L1[0, 1].

For every n ∈ N, consider the function gn defined on [0,1] by gn(x) = n
2

3 (1−nx)
if x ≤ 1

n
and gn(x) = 0 otherwise. Then gn ∈ E and gn tends to 0 as n tends to

infinity. For every g ∈ E and x ∈ X, set

ψ(x)(g) =

{
gxg : x ∈ N,
0 : x =∞ ,

Since the multiplication of E is separately continuous, we get a continuous func-

tion ψ from X into Bβ(E). Now, for everym ∈ N, consider a continuous piecewise

linear function hm with hm(t) = m if t ≤ 1
2m , hm(t) = 0 if t ≥ 1

2m+αm, αm being

so chosen that ||hm|| :=
∫ 1
0 |hm(t)| dt ≤ 1. Next, set ϕm the constant function on

X with value hm. Then ϕm belongs to the unit ball B||| ||| of the norm ||| ||| of
CV (X,E), with V = {λ1, λ > 0}. But,

|||Mψ(ϕm)||| = sup
n
||ψn(ϕm(n))|| =
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= sup
n
||gn hm||

= sup
n

∫ 1

0
|gn(t)hm(t)| dt

≥
∫ 1

2m

0
m

5

3 (1−mx) dx

≥ m
2

3

4
.

Hence supϕ∈B||| |||
|||Mψ(ϕ)||| ≥ supm |||Mψ(ϕm)||| ≥ supm

m
2

3

4 = +∞. This

shows that Mψ is not bounded.
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