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Abstract: Let B be a ring with 1, G a finite automorphism group of B, C the

center of B, BG the set of elements in B fixed under each element in G. When B is

a DeMeyer–Kanzaki Galois extension of BG with Galois group G, it was shown that a

separable subring S of B over BG is equal to BK for some subgroup K of G if and only if

CJ
(S)
g is a faithful C-module for each g 6∈ K where J

(S)
g = {s − g(s) | s ∈ S}. Moreover,

the invariant subrings of C over CG (i.e., S = CK for some subgroup K of G) and of

B ∗ G over (B ∗ G)Ḡ are characterized in terms of the faithful B-module BJ
(S)
g and the

faithful CG-module CGJ
(S)
g respectively for g ∈ G.

1 – Introduction

Throughout this paper, B will represent a ring with 1, G a finite automorphism

group of B, C the center of B, BG the set of elements in B fixed under each

element in G, B ∗ G a skew group ring over B in which the multiplication is

given by gb = g(b)g for b ∈ B and g ∈ G, and Ḡ the inner automorphism group

of B ∗ G induced by G, that is, ḡ(f) = gfg−1 for each f ∈ B ∗ G and g ∈ G.

We note that Ḡ restricted to B is G.

Following the notations and facts in [5], B is called a Galois extension of BG

with Galois group G if there exist elements {ci, di in B, i = 1, 2, ...,m} for some

integer m such that
∑m

i=1 ci g(di) = δ1,g for each g ∈ G. Such a set {ci, di} is
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called a G-Galois system for B. B is called a center Galois extension of BG if C is

a Galois algebra over CG with Galois group G|C ∼= G. Let A be a subring of a ring

B with the same identity 1. VB(A) denotes the commutator subring of A in B.

We call B a separable extension of A if there exist {ai, bi in B, i = 1, 2, ...,m

for some integer m} such that
∑

aibi = 1, and
∑

bai ⊗ bi =
∑

ai ⊗ bib for all b

in B where ⊗ is over A, and an Azumaya algebra is a separable extension of its

center. B is called a DeMeyer–Kanzaki Galois extension with Galois group G if

B is an Azumaya C-algebra and a center Galois extension with Galois group G.

A ring F is called a H-separable extension of B if F ⊗B F is isomorphic to

a direct summand of a finite direct sum of F as a F -bimodule. S is called a

D-S-separable extension of A in B if S is a separable extension of A in B

and a direct summand of a finite direct sum of B as a bimodule over S ([3]).

We denote {s − g(s) | s ∈ S} by J
(S)
g and the A-module generated by J

(S)
g by

AJ
(S)
g for g ∈ G.

The fundamental theorem for Galois extensions of a field or a commutative

ring with no idempotents but 0 and 1 states that there exists a one-to-one cor-

respondence between the set of subgroups of the Galois group G and the set of

separable subrings of the Galois extension ([1], Chapter 3). In general, there

exists no such a correspondence for Galois extensions of rings although there are

some kind of correspondeces between certain sets of separable extensions of rings

([2]). For a Galois extension B it is easy to see that the map from the set of

subgroups of G to the set of separable extensions of BG in B given by K → BK

is one-to-one but not necessarily onto. So it is interesting to know what kind of

separable subrings of B is invariant under a subgroup K of G. The purpose of

the present paper is to characterize for a DeMeyer–Kanzaki Galois extension B

the invariant separable subrings S of B over BG, of C over CG, and of B ∗G over

(B ∗G)Ḡ respectively.

2 – Main results

In this section, we first characterize for a DeMeyer–Kanzaki Galois extension

B the invariant separable subrings S of B over BG, and then characterize for

a center Galois extension B the invariant separable subrings S of C over CG

and of B ∗G over (B ∗G)Ḡ respectively. Consequently, results are derived for a

DeMeyer–Kanzaki Galois extension B of BG. We first give three lemmas.
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Lemma 1. Let B be a ring. Then, BJ
(C)
g is a faithful B-module for each

g 6= 1 if and only if VB∗G(C) = B where J
(C)
g = {c− g(c) | s ∈ C} and VB∗G(C)

is the commutator subring of C in B ∗G.

Proof: (⇒) Clearly, B⊂VB∗G(C). Let
∑

g∈G bgg inVB∗G(C) for some bg∈B.

Then c(
∑

g∈G bgg) = (
∑

g∈G bgg)c for each c in C, so cbg = bgg(c), that is,

bg(c − g(c)) = 0 for each g ∈ G and c ∈ C. Since BJ
(C)
g is a faithful B-module

for each g 6= 1, bg = 0 for each g 6= 1. But then
∑

g∈G bgg = b1 ∈ B. Hence

VB∗G(C) ⊆ B, and so VB∗G(C) = B.

(⇐) By the above argument, we have that VB∗G(C)={
∑

g∈G bgg | bgJ
(C)
g ={0}

for each g ∈ G}. Thus, VB∗G(C) = B implies that BJ
(C)
g is a faithful B-module

for each g 6= 1.

Lemma 2. Let B be a ring such that B = BGC, S a subring of B over BG,

and K = {g ∈ G | g(s) = s for all s ∈ S}. Then CJ
(S)
g is a faithful C-module for

each g 6∈ K if and only if VB∗G(S) = C ∗K.

Proof: By hypothesis, B = BGC. So VB(B
G) = VB(B

GC) = VB(B) = C.

Hence VB∗G(B
G) = VB(B

G)∗G = C∗G. But BG⊂S, so VB∗G(S) ⊂ VB∗G(B
G) =

C ∗G. Thus, VB∗G(S) = VC∗G(S). By a direct computation, VC∗G(S) = C ∗K ⊕
∑

g 6∈K Igg where Ig = {c ∈ C | c(s− g(s)) = 0 for each s ∈ S} = AnnC(J
(S)
g ), the

annihilator of the C-module CJ
(S)
g . Therefore, CJ

(S)
g is a faithful C-module for

each g 6∈ K if and only if VB∗G(S) = C ∗K.

Lemma 3. Assume that B is a ring such that B = BGC and BJ
(C)
g is

a faithful B-module for each g 6= 1. Let S be a subring of B over BG and

K = {g ∈ G | g(s) = s for all s ∈ S}. Then, S = BK and C ∗ K satisfies the

double centralizer property in B ∗G if and only if CJ
(S)
g is a faithful C-module

for each g 6∈ K and S satisfies the double centralizer property in B ∗G.

Proof: (⇐) Since CJ
(S)
g is a faithful C-module for each g 6∈K, VB∗G(S)=C∗K

by Lemma 2. Hence VB∗G(VB∗G(S)) = VB∗G(C ∗ K) = (VB∗G(C))K̄ = BK by

Lemma1 (for BJ
(C)
g is a faithful B-module for each g 6=1). But VB∗G(VB∗G(S))=S

by hypothesis, so S = BK , and VB∗G(VB∗G(C ∗K)) = VB∗G(S) = C ∗K.

(⇒) By hypothesis, BJ
(C)
g is a faithful B-module for each g 6=1, so VB∗G(C)=B

by Lemma 1. Hence VB∗G(C ∗K) = (VB∗G(C))K̄ = BK = S by hypothesis. Thus

VB∗G(S) = VB∗G(VB∗G(C ∗K)) = C ∗K. Therefore, CJ
(S)
g is a faithful C-module

for each g 6∈ K by Lemma 2. Moreover, VB∗G(VB∗G(S)) = VB∗G(C ∗ K) = S.

This completes the proof.
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We now show a characterization for an invariant separable subring S of B

over BG for a DeMeyer–Kanzaki Galois extension.

Theorem 4. If B is a DeMeyer–Kanzaki Galois extension of BG with Galois

group G, S a separable subring of B over BG, and K = {g ∈G | g(s) = s for all

s ∈ S}. Then, S = BK if and only if CJ
(S)
g is a faithful C-module for each g 6∈ K.

Proof: Since B is a DeMeyer–Kanzaki Galois extension of BG with Galois

group G, B is an Azumaya C-algebra and B is a center Galois extension of BG.

Hence, by Theorem 3.2 and Lemma 3.1 in [5], VB∗G(B) = C, so VB∗G(B ∗G) =

(VB∗G(B))Ḡ = CG, that is, CG is the center of B ∗G. Since B is a center Galois

extension of BG again, B ∗G is H-separable over B and C is separable over CG.

Hence, B ∗ G is separable over CG by the transitivity of separable extensions.

Thus, B ∗ G is an Azumaya CG-algebra. Since S is a separable extension over

BG which is separable over CG, S is a separable CG-subalgebra of the Azumaya

algebra B ∗ G by the transitivity of separabe extensions. Hence S satisfies the

double centralizer property in B ∗ G ([1], Theorem 4.3, page 57). On the other

hand, by definition of the DeMeyer–Kanzaki Galois extension, C is a commutative

Galois extension of CG with Galois group G, so for any subgroup K of G, C is a

Galois extension of CK with Galois group K with the same Galois system. Hence

C ∗K is an Azumaya CK-algebra and CK is separable over CG, and so C ∗K

is separable over CG by the transitivity of separabe extensions. Thus, C ∗ K

also satisfies the double centralizer property in B ∗ G for B ∗ G is an Azumaya

CG-algebra. Moreover, since B is a center Galois extension of BG with Galois

group G, by Theorem 3.2 in [5], B = BGC and BJ
(C)
g = B, which is a faithful

B-module, for each g 6= 1 in G. Therefore, Theorem 4 holds by Lemma 3.

To characterize for a center Galois extension B the invariant separable sub-

rings S of C over CG and of B ∗G over (B ∗G)Ḡ respectively, Theorem 1 in [3]

plays an important role. For convenient, we state it here as a proposition.

Proposition 5. ([3], Theorem 1) Let A be a H-separable extension of E.

Then if A is left or right E-finitely generated projective, there exists a one-to-one

correspondence V : S → VA(S) such that V 2 is an identity between the set of

D-S-separable extensions of E in A and the set of Z(A)-separable subalgebras of

VA(E) where Z(A) is the center of A.

Theorem 6. Let B be a center Galois extension of BG, S a separable

extension of CG in C and K = {g ∈ G | g(s) = s for all s ∈ S}. Then, S = CK

if and only if BJ
(S)
g is a faithful B-module for each g 6∈ K.
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Proof: (⇐) By a direct computation, we have VB∗G(S) = B ∗K⊕
∑

g 6∈K Ig g

where Ig = AnnB(BJ
(S)
g ). But, BJ

(S)
g is a faithful B-module for each g 6∈ K, so

Ig = {0} for each g 6∈ K; and so VB∗G(S) = B ∗ K. Hence, VB∗G(VB∗G(S)) =

VB∗G(B ∗K) = (VB∗G(B))K̄ = CK . Next, we prove that S satisfies the double

centralizer property in B ∗G; and so S = VB∗G(VB∗G(S)) = CK . In fact, since B

is a center Galois extension of BG, B = BJ
(C)
g for each g 6= 1 in G ([5], Theorem

3.2). Hence, B ∗G is H-separable over B and B-finitely generated projective ([5],

Lemma 3.1-(3)). Moreover, by Lemma 3.1-(4) in [5], VB∗G(B) = C. Therefore,

S is a separable CG-subalgebra of VB∗G(B)(= C). Thus, VB∗G(VB∗G(S)) = S by

Proposition 5.

(⇒) By the above argument, VB∗G(B) = C and VB∗G(S) = B∗K⊕
∑

g 6∈K Ig g.

Hence, to show that BJ
(S)
g is a faithful B-module for each g 6∈ K, that is, Ig = {0}

for each g 6∈ K, it suffices to show that VB∗G(S) = B ∗ K. Since S = CK ,

VB∗G(S) = VB∗G(C
K) = VB∗G((VB∗G(B))K̄) = VB∗G(VB∗G(B ∗K)). Therefore,

we only need to show that B ∗K satifies the double centralizer property in B ∗G.

Since B ∗ G is H-separable over B and B-finitely generated projective again,

VB∗G(S) is a D-S-separable extension of B in B ∗ G by Proposition 5 (for S is

a separable CG-subalgebra of C(= VB∗G(B))). Next we claim that B ∗ K is a

D-S-separable extension of B in B ∗G, and so VB∗G(VB∗G(B ∗K)) = B ∗K by

Proposition 5. In fact, since C is a Galois extension of CG, C is a Galois extension

of CK with the same Galois system. Hence B ∗K is separable over B by Lemma

3.1-(3) in [5]. Moreover, Since VB∗G(S) is a direct summand of a finite direct

sum of B ∗ G as a bimodule over VB∗G(S) and VB∗G(S) = B ∗ K ⊕
∑

g 6∈K Ig g,

B ∗ K will be a direct summand of a finite direct sum of B ∗ G as a bimodule

over B ∗K if we can show that
∑

g 6∈K Igg is a B ∗K-bimodule. In fact, for any

b ∈ B and k ∈ K and for any bg ∈ Ig with g 6∈ K, (bk)(bgg) = bk(bg)(kg).

Since k ∈ K and g 6∈ K, kg 6∈ K. Moreover, for any s ∈ S, (bk(bg)) (s −

(kg)(s)) = bk(bg) (k(s) − (kg)(s)) = bk(bg(s − g(s)) = 0 since bg ∈ Ig. Hence

bk(bg) ∈ Ikg, and so bk(bg)(kg) ∈
∑

h6∈K Ih h. Thus
∑

h6∈K Ih h is a left B ∗ K-

module. Similarly, (bgg)(bk) = (bgg(b))(gk) with gk 6∈ K and for any s ∈ S,

(bg) g(b) (s − (gk)(s)) = bg g(b) (s − g(s)) = (bg(s − g(s)) g(b) = 0 since bg ∈ Ig.

Hence (bg g(b)) ∈ Igk, and so (bg g)(bk) ∈
∑

h6∈K Ih h. Thus
∑

h6∈K Ih h is a right

B ∗ K-module. Therefore,
∑

g 6∈K Ig g is a B ∗ K-bimodule. This completes the

proof.

Corollary 7. Let B be a DeMeyer–Kanzaki Galois extension of BG, S a

separable extension of CG in C and K = {g ∈ G | g(s) = s for all s ∈ S}. Then,

S = CK if and only if BJ
(S)
g is a faithful B-module for each g 6∈ K.
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Proof: Since a DeMeyer–Kanzaki Galois extension is a center Galois exten-

sion, the Corollary is an immediate consequence of Theorem 6.

Corollary 8. Let C be a commutative Galois extension of CG, S a separable

extension of CG in C and K = {g ∈ G | g(s) = s for all s ∈ S}. Then, S = CK

if and only if CJ
(S)
g is a faithful C-module for each g 6∈ K.

Proof: Let B = C in Theorem 6 or Theorem 4.

Next, we give a characterization for an invariant separable subring of B ∗ G

over (B ∗G)Ḡ for some subgroup K of G.

Theorem 9. Let B be a center Galois extension of BG with Galois group G

of order n invertible in B, S a D-S-separable extension of (B ∗G)Ḡ in B ∗G, and

K = {g ∈ G | ḡ(s) = s for all s ∈ S}. Then, S = (B ∗G)K̄ if and only if CGJ
(S)
g

is a faithful CG-module for each g 6∈ K.

Proof: (⇒) Since B is a Galois extension of BG, B ∗G is a Galois extension

of (B ∗G)Ḡ with the same Galois system for B. Hence B ∗G is right (B ∗G)Ḡ-

finitely generated projective. Moreover, since elements in Ḡ are inner, B ∗ G is

H-separable over (B ∗G)Ḡ by Corollary 3 in [4]. Noting that K is a subgroup of

G, we have that CGK ⊂ CGG ⊂ VB∗G(VB∗G(C
GG)) = VB∗G((B ∗G)Ḡ). Hence,

CGK is a separable CG-subalgebra of VB∗G((B ∗G)Ḡ). Thus CGK satisfies the

double centralizer property in B ∗G by Proposition 5. Now, since S = (B ∗G)K̄ ,

VB∗G(S) = VB∗G((B ∗G)K̄) = VB∗G(VB∗G(C
GK)) = CGK. For any c ∈ CG such

that cJ
(S)
g = {0}, we have cs = cg(s), and so s(cg) = (sc)g = csg = cg(s)g =

(cg)s for all s ∈ S. Hence cg ∈ VB∗G(S). But VB∗G(S) = CGK, so c = 0 for each

g 6∈ K. This implies that CGJ
(S)
g is a faithful CG-module for each g 6∈ K.

(⇐) By the above argument, B ∗ G is H-separable over (B ∗ G)Ḡ and right

(B ∗ G)Ḡ-finitely generated projective. Since S is a D-S-separable extension

of (B ∗ G)Ḡ in B ∗ G, S satisfies the double centralizer property in B ∗ G by

Proposition 5. Since B is a center Galois extension of BG, VB∗G(B) = C, so

VB∗G(B ∗G) = (VB∗G(B))Ḡ = CG, that is, CG is the center of B ∗G. But, n is

invertible in CG, so CGG is CG-separable subalgebra of VB∗G((B ∗G)Ḡ). Hence

VB∗G(VB∗G(C
GG)) = CGG by Proposition 5. Now, by hypothesis, (B ∗G)Ḡ ⊂ S.

Hence VB∗G(S) ⊂ VB∗G((B ∗ G)Ḡ) = VB∗G(VB∗G(C
GG)) = CGG. Therefore,

VB∗G(S) = VCGG(S) = CGK ⊕
∑

g 6∈K Ig g where Ig = AnnCG(J
(S)
g ). Since J

(S)
g

is a faithful CG-module for each g 6∈ K, VB∗G(S) = CGK. Therefore, S =

VB∗G(VB∗G(S)) = VB∗G(C
GK) = (B ∗G)K̄ . This completes the proof.
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3 – Examples

In this section, we give two examples to demonstrate our results and show

that Theorem 4 does not hold for a center Galois extension B in general.

Example 1. Let Q be the rational field, C = Q ⊕ Q ⊕ Q ⊕ Q ⊕ Q ⊕ Q,

B = C[i, j, k] the quaternion algebra over C, and G = 〈g〉, the cyclic group gen-

erated by g, where g(a1, a2, a3, a4, a5, a6) = (a2, a3, a4, a5, a6, a1) for ai ∈ Q and

g(c1+c2i+c3j+c4k) = g(c1)+g(c2)i+g(c3)j+g(c4)k for c1+c2i+c3j+c4k ∈ B.

Then

(1) The center of B is C.

(2) CG = {(a, a, a, a, a, a)| a ∈ Q} ∼= Q.

(3) BG = CG[i, j, k] ∼= Q[i, j, k].

(4) B is an Azumaya C-algebra.

(5) C is a Galois extension of CG with Galois group G|C ∼= G with a Galois

system {el,
1
6el| l = 1, 2, 3, 4, 5, 6} where el is the element in C with lth

component 1 and elsewhere 0.

(6) By (4) and (5), B is a DeMeyer–Kanzaki Galois extension of BG with

Galois group G.

(7) The nontrivial subgroups of G are K1 = {1, g
3} and K2 = {1, g

2, g4}.

(8) BK1 = CK1 [i, j, k] where CK1 = {(a1, a2, a3, a1, a2, a3)| a1, a2, a3 ∈ Q}

and BK2 = CK2 [i, j, k] where CK2 = {(a1, a2, a1, a2, a1, a2)| a1, a2 ∈ Q}.

(9) J
(BK1 )
g = J

(BK1 )
g2 = J

(BK1 )
g4 = J

(BK1 )
g5 = BK1 = CK1 [i, j, k] are faithful

C-modules. J
(BK2)
g =J

(BK2 )
g3 =J

(BK2 )
g5 ={(b,−b, b,−b, b,−b)| b∈Q[i, j, k]}

are faithful C-modules.

(10) Let S = {(b1, b1, b2, b1, b1, b2)| b ∈ Q[i, j, k]}. Then S(∼= (Q⊕Q)[i, j, k])

is separable over BG(∼= Q[i, j, k]), K = {g ∈ G | g(s) = s for all s ∈ S} =

K1 = {1, g
3}, and S 6= BK1 and J

(S)
g = {(b, 0,−b, b, 0,−b)| b ∈ Q[i, j, k]}

is not a faithful C-module.

Example 2. Let Q, C, and G acts on C as given in Example 1. Let

A2(Q) = {( q1 q2

0 q3
)| q1, q2, q3 ∈ Q}, the ring of all 2 by 2 upper triangular matrices

over Q, B = {( c1 c2
0 c3

)| c1, c2, c3 ∈ C} (∼= A2(Q)⊗QC), and g( c1 c2
0 c3

) = ( g(c1) g(c2)
0 g(c3)

)
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for all ( c1 c2
0 c3

) ∈ B. Then

(1) The center of B is {( c 0
0 c

) | c ∈ C} ∼= C.

(2) CG = {(a, a, a, a, a, a)| a ∈ Q} ∼= Q as given in Example 1-(2).

(3) C is a Galois extension of CG with Galois group G|C ∼= G as shown in

Example 1-(5). Hence B is a center Galois extension.

(4) By the argument in Example 4.3-(8) in [6], B is not an Azumaya

C-algebra. Hence B is not a DeMeyer–Kanzaki Galois extension of

BG with Galois group G.

(5) BG = {( c1 c2
0 c3

)| c1, c2, c3 ∈ CG} ∼= A2(Q).

(6) Let SC ={(q1, 2q1, q2, q1, 2q1, q2)| q1, q2 ∈ Q} (∼= Q⊕Q) and S={( c1 c2
0 c3

)|

c1, c2, c3 ∈ SC} (∼= A2(Q) ⊗Q (Q ⊕ Q)). Then S is separable over BG,

K = {g ∈ G | g(s) = s for all s ∈ S} = {1, g3}, S 6= BK = {( c1 c2
0 c3

)|

c1, c2, c3 ∈ CK} ( ∼= A2(Q) ⊗Q (Q ⊕ Q ⊕ Q)) where CK = {(q1, q2, q3,

q1, q2, q3)| q1, q2, q3 ∈ Q} ∼= (Q⊕Q⊕Q). But J
(S)
g = J

(S)
g2 = J

(S)
g4 = J

(S)
g5 =

{( c1 c2
0 c3

)| c1, c2, c3 ∈ JC} where JC ={(a, b,−a−b, a, b,−a−b)| a, b ∈ Q},

so CJ
(S)
g = CJ

(S)
g2 = CJ

(S)
g4 = CJ

(S)
g5 = B are faithful C-modules even

through S 6= BK . Hence Theorem 4 does not hold for a center Galois

extension B in general.
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