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Abstract: Let X be a complex manifold, V a smooth involutive submanifold of

T ∗X, M a microdifferential system regular along V , and F an R-constructible sheaf

on X. We study the complex of temperate microfunction solutions of M associated

with F , that is, the complex RHomDX
(M, T µhom(F,OX)). We give a bound to its

micro-support and solve the Cauchy problem under a suitable hyperbolicity assumption.

1 – Introduction

The Cauchy problem for solutions of linear differential operators as well as the

problem of propagation of singularities, are closely related subjects which have

been intensively studied in the 80th. In the analytic case, it is shown in [8] that

these problems may be reduced to purely geometric ones, using sheaf theory, the

only analytic tool being the Cauchy–Kowalevski theorem.

To be more precise, recall that a system of linear partial differential operators

on a complex manifold X is the data of a coherent moduleM over the sheaf of

rings DX of holomorphic differential operators. Let F be a complex of sheaves

Received : December 12, 2000.
1 The first named author benefits from a “Chaire Internationale de Recherche Blaise Pascal

de l’Etat et de la Région d’Ile-de-France, gérée par la Fondation de l’Ecole Normale Supérieure”.
2 Research supported by FCT and Programa Ciência, Tecnologia e Inovação do Quadro

Comunitário de Apoio.



486 M. KASHIWARA, T.M. FERNANDES and P. SCHAPIRA

on X with R-constructible cohomologies (one says an R-constructible sheaf, for
short). The complex of “generalized functions” associated with F is described

by the complex RHom(F,OX), and the complex of solutions of M with values

in this complex is described by the complex

RHomDX

(
M, RHom(F,OX)

)
.

One may also microlocalize the problem by replacing RHom(F,OX) with

µhom(F,OX). In (loc cit) one shows that most of the properties of this complex,

especially those related to propagation or Cauchy problem, are encoded in two

geometric objects, both living in the cotangent bundle T ∗X, the characteristic

variety of the system M, denoted by char(M), and the micro-support of F ,

denoted by SS(F ).

The complex RHom(F,OX) allows us to treat various situations. For example

if M is a real manifold and X is a complexification of M , by taking as F the

dual D′(CM ) of the constant sheaf on M , one obtains the sheaf BM of Sato’s

hyperfunctions. If Z is a complex analytic hypersurface of X and F = CZ [−1] is

the (shifted) constant sheaf on Z, one obtains the sheaf of holomorphic functions

with singularities on Z.

However, the complex RHom(F,OX) does not allow us to treat sheaves as-

sociated with holomorphic functions with temperate growth such as Schwartz’s

distributions or meromorphic functions with poles on Z. To consider such cases,

one has to replace it by the complex T hom(F,OX) of temperate cohomology, in-

troduced in [4] or its microlocalization T µhom(F,OX) constructed by Andronikof

[1]. At this stage, a serious difficulty appears: the geometric methods of [8] do

not apply any more, and indeed, it is a well known fact that to solve for example

the Cauchy problem for distributions requires more informations than the data

of the characteristic variety of the system.

In fact, very little is known concerning the problems of propagation of sin-

gularities and the Cauchy problem in the space of distributions, apart the case

whereM has real simple characteristics (see [2, 10] for a formulation in the lan-

guage of sheaves and D-modules) and some very specific situation (e.g., operators

with constant coefficients on Rn). We refer to [3] for historical and bibliographical

comments.

In this paper we give an estimate for the micro-support of the sheaf of temper-

ate microfunction solutions associated with an R-constructible object F , when
M has regular singularities along an involutive manifold V in the sense of [7].
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More precisely, we prove the estimate

SS
(
RHomDX

(
M, T µhom(F,OX)

))
⊂ ρ−1V

(
CV (SS(F ))

a
)
,(1)

where ρV : V ×T ∗X T
∗(T ∗X)

∼
−→ V ×T ∗X T (T

∗X)→ TV (T
∗X) is the projection

and a is the antipodal map of TV (T
∗X) as a vector bundle over V .

One can translate this result as follows. For a bicharacteristic leaf Σ of V ,

one has Σ ×T ∗X TV (T
∗X) ' T ∗Σ, and Σ ×V CV (SS(F ))

a may be regarded as

a subset of T ∗Σ. Then for any Σ, (1) implies

SS
(
RHomDX

(
M, T µhom(F,OX)

)∣∣∣
Σ

)
⊂ Σ×V CV (SS(F ))

a .(2)

What makes this paper original, in our opinion, is that we treat general

R-constructible sheaves F . Let us illustrate our results by an example.
We consider a smooth morphism f : X → Y , we set V = X ×Y T

∗Y , and we

assume thatM is a coherent module regular along V . Let M be a real analytic

manifold with complexification X, S a closed subanalytic subset ofM . We obtain

the estimate

SS
(
RHomDX

(
M,ΓS(DbM )

))
⊂ V +̂ (SS(CS))

a ,

where DbM denote the sheaf of distributions onM , and the operation +̂ is defined

in [8] and recalled in Section 2.

2 – Notations and main results

We will mainly follow the notations in [8].

Let X be a real analytic manifold. We shall denote by τ : TX → X the

tangent bundle to X and by π : T ∗X → X the cotangent bundle. Set Ṫ ∗X =

T ∗X \X and π̇ : Ṫ ∗X→ X the projection Ṫ ∗X→ X. For a smooth submanifold

Y of X, TYX denotes the normal bundle to Y and T ∗YX the conormal bundle.

In particular, T ∗XX is identified with X, the zero section.

For a submanifold Y of X and a subset S of X, we denote by CY (S) the

normal cone to S along Y , a conic subset of TYX.

If A and B are two conic subsets of T ∗X, the operation A +̂B is defined in

(loc cit) and will be recalled below. The set Aa denotes the image of A by the

antipodal map, (x; ξ) 7→ (x;−ξ).
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For a cone γ ⊂ TX, the polar cone γ◦ to γ is the closed convex cone of T ∗X

defined by

γ◦ =
{
(x; ξ); x ∈ π(γ), 〈v, ξ〉 ≥ 0 for any (x; v) ∈ γ

}
.

Let f : X → Y be a morphism of complex manifolds. One has two natural

morphisms

T ∗X ←−
fd

X ×Y T
∗Y −→

fπ
T ∗Y .

(In [7], fd is denoted by
tf ′.)

We denote by D(CX) (respectively D
b(CX), D

b
R−c(CX)) the derived category

of complexes of sheaves of C-vector spaces (respectively with bounded cohomolo-
gies, with bounded and R-constructible cohomologies).
We denote by D′X the duality functor on D

b(CX), defined by

D′X(F ) = RHom(F,CX) .

If F is an object of Db(CX), SS(F ) denotes its micro-support, a closed

R+-conic involutive subset of T ∗X.
On a complex manifold X we consider the sheaf OX of holomorphic functions,

the sheaf ΘX of holomorphic vector fields, the sheaf DX of linear holomorphic

differential operators of finite order, and its subsheaves DX(m) of operators of

order at most m. We shall also consider the sheaf EX on T
∗X of microdifferen-

tial operators of finite order ([14] and [13] for an exposition) and its subsheaves

EX(m) of operators of order at most m. We denote by Modcoh(DX) (respectively

by Modcoh(EX)) the abelian category of coherent DX -modules (respectively co-

herent EX -modules). We denote by D
b(DX) the bounded derived category of left

DX -modules and by D
b
coh(DX) its full triangulated category consisting of objects

with coherent cohomologies. We define similarly Db(EX) and D
b
coh(EX).

The notion of regularity of an EX -module along an involutive submanifold V

of T ∗X will be recalled in Section 3.

The main purpose of this paper is to prove the three following results.

Let V be an involutive vector subbundle of T ∗X. Let M be a coherent

DX -module regular along V and let F ∈ D
b
R−c(CX).

Theorem 2.1. We have the estimate:

SS
(
RHomDX

(
M, T hom(F,OX)

))
⊂ V +̂SS(F )a .(3)

Note that V +̂SS(F )a coincides with the closure of V+SS(F )a by Lemma 4.1.
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As a particular case of Theorem 2.1, assume that X is the complexification of

a real analytic manifold M and let S be a closed subanalytic subset of M . We

obtain the estimate:

SS

(
RHomDX

(
M,ΓS(DbM )

))
⊂ (SS(CS))

a +̂V .

For a complex submanifold Z of X, we denote byMZ the induced system of

M on Z.

Theorem 2.2. Assume T ∗ZX ∩ ((SSF )
a +̂V ) ⊂ T ∗XX. Then

RHomDX

(
M, T hom(F,OX)

)∣∣∣
Z
' RHomDZ

(
MZ , T hom(FZ ,OZ)

)
.

Let U be a conic open subset of Ṫ ∗X, and let V be a closed smooth conic

regular involutive submanifold in U . We denote by

ρV : V ×T ∗X T ∗(T ∗X)
∼
−→ V ×T ∗X T (T ∗X) −→ TV T

∗X

the canonical projection.

For an R-constructible sheaf F , the cohomology of T µhom(F,OX) is pro-

vided with an action of EX as proved in [1], therefore, when T µhom(F,OX) is

concentrated in a single degree, we regard it as an EX -module.

Theorem 2.3. Let U and V be as above and let M be a coherent

EX -module defined on U and regular along V . Assume that F ∈ D
b
R−c(CX) and

T µhom(F,OX)|U is concentrated in a single degree. Then

SS
(
RHomEX

(
M, T µhom(F,OX)

))
⊂ ρV

−1
(
CV (SS(F ))

a
)
.(4)

For a bicharacteristic leaf Σ of V , one has Σ ×T ∗X TV (T
∗X) ' T ∗Σ, and

Σ×V CV (SS(F ))
a may be regarded as a subset of T ∗Σ.

Corollary 2.4. Let Σ be a bicharacteristic leaf of V . Then one has

SS
(
RHomDX

(
M, T µhom(F,OX)

)∣∣∣
Σ

)
⊂ Σ×V CV (SS(F ))

a .

Proof: The map ρV decomposes as V ×T ∗X T
∗(T ∗X) −→

jd
T ∗V −→

h
TV T

∗X.

Here j : V ↪→ T ∗X is the embedding. Set S = RHomDX
(M, T µhom(F,OX)).

Then the support of S is contained in V , and

SS(S|V ) = jd(SS(S)) ⊂ h−1
(
CV (SS(F ))

a
)
.

Hence the corollary follows from the following lemma.
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Lemma 2.5. Let f : X → Y be a smooth morphism of real analytic mani-

folds. Let T ∗(X/Y ) be the relative cotangent bundle and h : T ∗X → T ∗(X/Y )

be the canonical projection. Let S be a closed conic subset of T ∗(X/Y ), and let

F ∈ Db(CX). Then the following two conditions are equivalent.

(i) SS(F ) ⊂ h−1(S).

(ii) For any y ∈ Y , identifying f−1(y)×X T ∗(X/Y ) with T ∗(f−1(y)),

SS(F |f−1(y)) ⊂ f−1(y)×X S .

Proof: (i)⇒(ii) Since SS(F ⊗ Cf−1(y)) = h−1(SS(F |f−1(y))), it is enough

to show that

SS(F ⊗ Cf−1(y)) ⊂ h−1(S) .

Since SS(F ⊗ Cf−1(y)) ⊂ SS(F ) +̂T
∗
f−1(y)X, we may reduce the assertion to

h−1(S) +̂T ∗f−1(y)X ⊂ h−1(S) .(5)

Let N = X ×Y T
∗Y ⊂ T ∗X. Then T ∗(X/Y ) = T ∗X/N , and T ∗

f−1(y)X ⊂ N .

Hence (5) is a consequence of h−1(S) +̂N = h−1(S) +N (Lemma 4.1 (i)).

(ii)⇒(i) Let us take a coordinate system x = (x1, x2) on X such that f is

given by x 7→ x1. Assume that (x0, ξ0) ∈ T
∗X\h−1S. Set L(z, δ, ε) = {x ∈ X;

δ|x− z| ≤ −〈x− z, ξ0〉 < ε δ}. It is enough to show that

RΓ(X;F ⊗ CL(x,δ,ε)) = 0

for x sufficiently close to x0 and 0 < ε, δ ¿ 1. For any y ∈ Y , RΓ(f−1(y);

F ⊗ CL(x,δ,ε)|f−1(y)) = 0 by the assumption. Hence Rf∗(F ⊗ CL(x,δ,ε)) = 0,

which implies RΓ(X;F ⊗ CL(x,δ,ε)) = 0.

3 – Regularity for D-modules

The results contained in this section are extracted or adapted from [2] and

[5].

Recall that a good filtration on a DX -module M is a sequence of coherent

OX -submodules {Mk}k∈Z satisfying:

(i) DX(l)Mk ⊂Mk+l for any l, k ∈ Z,

(ii) M =
⋃
k

Mk,
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(iii) locally on X, Mk = 0 for k ¿ 0,

(iv) locally on X, DX(l)Mk =Ml+k for k À 0 and any l ≥ 0.

We shall use the following notations. For a coherent DX -moduleM, we denote

by EXM the coherent EX -module EX ⊗
π−1DX

π−1M. For a coherent EX -module

M and a coherent EX(0)-submodule N0 ofM, we set

N0(m) := EX(m)N0 for m ∈ Z .

Lemma 3.1 ([6]). LetM be a coherent DX -module and let N0 be a coherent

EX(0)-submodule of EXM|Ṫ ∗X such that N0 generates EXM on Ṫ ∗X. Set

Mk =
{
u ∈M; (1⊗ u)|Ṫ ∗X ∈ N0(k)

}
for k ≥ 0 ,

Mk = 0 for k < 0 .

ThenMk defines a good filtration onM.

We shall use the notion of regularity along a closed analytic subset V of Ṫ ∗X

due to [7]. Let us denote by JV the subsheaf of EX of microdifferential operators

of order at most 1 whose symbol of order 1 vanishes on V . In particular JV

contains EX(0). Then EV denotes the sub-sheaf of rings of EX generated by JV .

More precisely,

EV =
⋃

m≥0

Jm
V .

Definition 3.2 ([7]). LetM be a coherent EX -module. An EV -lattice inM

is an EV -submodule N0 of M such that N0 is EX(0)-coherent and generates M

over EX .

Definition 3.3 ([7]). A coherent EX -moduleM is called regular along V if

M has an EV -lattice locally on Ṫ
∗X.

Note that if a coherent EX -moduleM is regular along V , its support is con-

tained in V .

If M ∈ Db
coh(EX), one says that M is regular along V if Hk(M) is regular

along V for every k ∈ Z.

Definition 3.4. Let V be a closed analytic subset of T ∗X. A coherent

DX -module M is called regular along V if the characteristic variety of M is

contained in V and if EXM is regular along V̇ := V \ T ∗XX.
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One extends this definition to Db
coh(DX) as in the EX -module case.

The next result follows from [7].

Lemma 3.5. Consider a distinguished triangle M′ →M→M′′ −→
1
in

Db
coh(DX) and assume that two of these three objects are regular along V . Then

so is the third one.

The next lemma gives a characterization of the DX -modules which are regular

along V when V has a special form. If V is an involutive vector subbundle of

T ∗X, then one can find locally on X a smooth morphism f : X → Y such that

V = X ×Y T
∗Y .

Lemma 3.6. Let f : X → Y be a smooth morphism and let V := X×Y T
∗Y .

Let M be a coherent DX -module regular along V . Then, locally on X, M is

the pull-back of a coherent DY -module by f . In particular M admits a finite

resolution locally on X

0→ LN → LN−1 → · · · → L0 →M→ 0 ,

each DX -module L
j being isomorphic to a finite direct sum of the DX -module

DX→Y .

Proof: Since the assertion is local on X we may assume that X = Z×Y and

f is the projection Z × Y → Y . Hence V̇ = Z × Ṫ ∗Y . Let Θf ⊂ ΘX denote the

OX -module of vector fields tangent to the fibers of f . With the above definition,

an EV̇ -lattice for EXM|Ṫ ∗X is a coherent EX(0)-submodule N0 of EXM such

that N0 generates EXM on Ṫ ∗X and such that ΘfN0 ⊂ N0.

Locally on X, there exists a coherent OX -submodule M0 of M such that

M ' DXM0. Let us prove that the coherent EV̇ -module N0 := EV̇M0 is an

EV̇ -lattice in EXM|Ṫ ∗X . SinceM0 generates EXM it is sufficient to prove that

N0 is EX(0)-coherent.

Locally on X, there exists a finite covering of Ṫ ∗X by C×-conic open subsets
Uj and EV̇ -modules Nj such that Nj is an EV̇ -lattice in M on Uj . Hence, for

each j, there exists mj ∈ Z such that N0 is contained in Nj(mj) on Uj .

Consider the increasing sequence {J k
VM0}k≥0 of coherent EX(0)-submodules

of N0. For each j, the restriction of this sequence to Uj is contained in

Nj(mj), which is EX(0)-coherent, hence it is locally stationary. Therefore N0
is EX(0)-coherent.

To summarize, we have constructed an EV̇ -module N0, coherent over

EX(0)-module and which generates M. We may now apply Lemma 3.1 and

consider the good filtrationMk associated to N0.
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By the construction, ΘfMk ⊂ Mk. Setting L = Mk for k À 0, we find a

coherent OX -submodule L of M such that ΘfL ⊂ L and M = DXL. Hence,

locally on X, there is a DX -linear epimorphism ϕ0 : (DX→Y )
N0 →M. Repeat-

ing the same construction with M replaced by ker(ϕ0), we construct an exact

sequence

DN1

X→Y −→ϕ1

DN0

X→Y −→ϕ0

M−→ 0 .

Since

HomDX
(DX→Y ,DX→Y ) ' f−1DY ,

there is a DY -linear morphism ψ : DN1

Y → DN0

Y such that ϕ1 = f−1ψ. Set

N = cokerψ. This is a coherent DY -module and we have an isomorphism

M ' DX→Y ⊗f−1DY
f−1N .

To conclude, we choose a finite resolution of N by finitely free DY -modules, and

tensorize over f−1DY by the flat f
−1DY -module DX→Y .

4 – Review on normal cones

We shall now recall some constructions of [8] which will be useful for the next

steps. To start with, we shall assume that X is a real manifold. Let S1 and S2
be two subsets of X. The normal cone C(S1, S2) is a closed conic subset of TX

which can be described as follows:

Let (x) be a system of local coordinates on X. Then (x0; v0) ∈ C(S1, S2) if

and only if there exists a sequence {(xn, yn, cn)} in S1×S2×R+ such that

xn →
n
x0 , yn →

n
x0 , cn(xn − yn)→

n
v0 .(6)

If A is a conic subset of T ∗X, we denote by A◦ its polar which is a conic subset

in TX. Let A and B be two conic subsets of T ∗X. One defines the sum

A+B =
{
(x; ξ) ∈ T ∗X; ξ = ξ1 + ξ2 for some (x; ξ1) ∈ A and (x; ξ2) ∈ B

}
.

If A and B are two closed conic subsets of T ∗X, one also defines A +̂ B, a

closed conic set containing A + B, which may be described in a local canonical

coordinate system (x; ξ) as follows: (x0; ξ0) belongs to A +̂B if and only if there

exist a sequence {(xn; ξn)}n in A, a sequence {(yn; ηn)}n in B, such that

xn →
n
x0 , yn →

n
x0 , (ξn + ηn)→

n
ξ0 , |xn − yn| |ξn| →

n
0 .(7)
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If A ∩Ba ⊂ T ∗XX, we have

A +̂B = A+B .

Let now Y be a closed submanifold of X and let i : Y → X be the inclusion

morphism. Using the Hamiltonian isomorphism, we get an embedding of T ∗Y

into TT ∗
Y
X(T

∗X). Let A be a conic subset of T ∗X. One sets

i](A) := T ∗Y ∩ CT ∗
Y
X(A) .

This set can be described explicitly by local coordinate systems as follows. Let

(x, y) be a local coordinate system on X such that Y = {x=0}. Then (y0; η0) ∈

i](A) ⇐⇒ there exists a sequence {(xn, yn; ξn, ηn)}n in A such that

xn →
n
0 , yn →

n
y0 , ηn →

n
η0 and |xn| |ξn| →

n
0 .(8)

Lemma 4.1. Let X be an open subset in a finite dimensional real vector

space E with 0 ∈ X. Let Λ be closed conic subset of T ∗X. Let L be a vector

subspace of the dual vector space E∗ and let V = X × L. Then we have

(i) V +̂Λ = V + Λ.

(ii) For any θ ∈ E∗ we have

V + (Λ+̂X × R≤0θ) ∩ X × R≥0θ ⊂ V + Λ .

(iii) Let i : E∗→ T ∗X be the map θ 7→ (0; θ) and assume (0; 0) ∈ Λ. Then,

for any vector subspace N of E∗,

({0} ×N) ∩ (V +̂Λ) ⊂ T ∗XX

if and only if

(N + i−1(Λ)) ∩ L = {0} .

Proof: (i) The inclusion V +̂ Λ ⊂ V + Λ is clear. Conversely, assume that

there are sequences {(xn; ζn)}n ⊂ V and {(yn; ηn)}n ⊂ Λ such that

xn →
n
x , yn →

n
x , ζn + ηn →

n
ξ .

Then the sequence {(yn; ζn)}n is contained in V . Therefore, {(yn; ζn)}n and

{(yn; ηn)}n satisfy (2).



TEMPERATE SOLUTIONS OF REGULAR D-MODULES 495

(ii) Suppose that (z; θ) ∈ V + (Λ +̂X× R≤0θ). Then by (i) there exist sequen-
ces (ζn)n in L, {(yn; ηn)}n in Λ, λn≥0, such that yn→

n
z and (ζn+ηn−λnθ)→

n
θ.

Therefore

ζn + ηn − (λn + 1) θ →
n
0 .

Since λn ≥ 0, we get
ζn + ηn
λn + 1

→
n
θ ,

hence (z; θ) ∈ V + Λ.

(iii) The condition is obviously necessary. Let us now assume that there exists

θ ∈ N , θ 6= 0, such that (0; θ) ∈ V +̂Λ. Then there exist sequences (ζn)n in L and

(yn; ηn)n in Λ such that yn →
n
0 and ζn + ηn →

n
θ. Taking suitable subsequences,

we may assume that ζn/|ζn| converges to l ∈ L, l 6= 0. Suppose that ζn →
n
0.

Then (0; θ)∈Λ, a contradiction. If |ζn| is unbounded we get ζn/|ζn|+ηn/|ζn| →
n
0

hence (0;−l) ∈ L ∩ i−1(Λ), a contradiction. In the other case, we may assume

that ζn →
n
l and setting (0; η) = (0; θ − l) ∈ (N + L) ∩ i−1(Λ), we get η + l = θ,

a contradiction.

5 – Proof of Theorem 2.1

Let X be an open subset of a finite-dimensional real vector space E. For

(x0; ξ0) ∈ T
∗X, ε > 0, δ > 0, an open convex proper cone γ of E and v ∈ γ, we

introduce the following notation:

Lε,ξ0 =
{
y ∈ E; 〈y − x0, ξ0〉 > −ε

}
,

Z(x, γ, ε, ξ0) = (x+ γ) ∩ Lε,ξ0 .

Here γ denotes the closure of γ, The following result is proved in [8].

Lemma 5.1. Let F ∈ Db(CX) and let p = (x0; ξ0) ∈ T
∗X. The conditions

below are equivalent:

(i) p /∈ SS(F ).

(ii) There exists an open neighborhood U of x0 and an open convex proper

subanalytic cone γ ⊂ E such that ξ0 ∈ Int(γ
◦)a, satisfying:

for any x ∈ U and sufficiently small ε > 0, Z(x, γ, ε, ξ0) is contained in

X and
RΓc

(
Z(x, γ, ε, ξ0);F

)
= 0 .(9)
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We can now embark into the proof of Theorem 2.1.

We may assume X= Z×Y , f is the projection, and X, Z, Y are open subsets

of affine complex spaces. Moreover, using the results of §3, we may assume that

M = DX→Y . We shall set for short:

H(F ) := RHomDX

(
M, T hom(F,OX)

)
.

Let θ = (x0; ξ0) /∈ V +̂ (SS(F ))
a. Let us take an open convex proper cone γ

and an open neighborhood U of x0 such that ξ0 ∈ Int(γ◦)a and U × γ◦ ∩ (V +̂

(SS(F ))a) ⊂ T ∗XX. By Lemma 5.1 and keeping its notations, it is enough to

prove

RΓc
(
Z(x, γ, ε, ξ0);H(F )

)
= 0 for any x ∈ U and sufficiently small ε > 0 .

Taking v ∈ γ, set Zδ = Z(x− δv, γ, ε− δ, ξ0) for 0 < δ ¿ ε. Then we have

CZ(x,γ,ε,ξ0) = lim
−→
δ>0

CZδ ,

and hence we obtain

Hj
c

(
Z(x, γ, ε, ξ0);H(F )

)
' lim
−→
δ>0

Hj
c

(
X;H(F )⊗ CZδ

)
.

Set

Z ′δ = (x− δv + γ) ∩
{
y ∈ X; 〈y − x0, ξ0〉 ≥ −ε+ δ

}
.

Then for 0 < δ′ < δ, there is a chain of morphisms

H(F )⊗ CZδ → H(F ⊗ CZ′
δ
) → H(F )⊗ CZδ′

→ H(F ⊗ CZ′
δ′
) .

Therefore we have

lim
−→
δ>0

Hj
c

(
X;H(F )⊗ CZδ

)
' lim
−→
δ>0

Hj
c

(
X;H(F ⊗ CZ′

δ
)
)
.

Since f is proper over the support of CZ′
δ
, we may apply Theorem 7.2 of [9] and

obtain

Hj
c

(
Z(x, γ, ε, ξ0);H(F )

)
' lim
−→
δ>0

Hj
c

(
Y ; T hom

(
Rf !(F ⊗ CZ′

δ
),OY

))
.

Hence, we are reduced to prove

Rf !

(
F ⊗ CZ′(x,γ,ε,ξ0)

)
= 0 ,(10)
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where Z ′(x, γ, ε, ξ0) = (x + γ) ∩ {y ∈ X; 〈y − x0, ξ0〉 ≥ −ε}. In order to prove

this, we shall apply [8, Proposition 5.4.17]. Set Xt = {y ∈ X; 〈y − x0, ξ0〉 ≥ t}.

Then if we prove

(y;−ξ0) /∈
(
SS(F ⊗ C(x+γ)) + V

)
,(11)

for y ∈ U , we have

Rf !(F ⊗ CZ′(x,γ,ε,ξ0)) = Rf !(F ⊗ C(x+γ)∩Xt
) .

Hence taking t > 0, we obtain the desired result (10).

Thus the proof is reduced to (11). We have

SS(C(x+γ)) ⊂ X× γ◦a .

Hence we have

SS(F ⊗ C(x+γ)) ⊂ SS(F ) +̂ (X× γ◦a) .

Since SS(F ) ∩ (X× γ◦) ⊂ T ∗XX, we get

SS(F ) + (X× γ◦) = SS(F ) +̂ (X× γ◦)

and

SS(F ⊗ C(x+γ)) ⊂ SS(F ) + (X× γ◦a) .

On the other hand, by the choice of γ, we have

(X × γ◦) ∩ (SS(F ) + V ) ⊂ T ∗XX .

Hence

(X× γ◦) ∩
(
SS(F ) + (X× γ◦a) + V

)
⊂ T ∗XX

and we obtain

(X × Int(γ◦)) ∩
((
SS(F ) +̂ (X × γ◦a)

)
+ V

)
= ∅ .

Then the desired result follows from −ξ0 ∈ Int(γ
◦).

6 – Proof of Theorem 2.2

We shall now embark in the proof of Theorem 2.2. Since the question is local

on X, by Lemma 3.6 we may assume thatM is isomorphic to DX→Y . By (7.5)

of [9], if d denotes the codimension of Z, we have a natural isomorphism

RHomDZ

(
MZ , T hom(FZ ,OZ)

)
' RHomDX

(
M, T hom(FZ ,OX)

)∣∣∣
Z
[2d].(12)
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With this isomorphism in hand, Theorem 2.2 will be a consequence of the next

Lemma for a real submanifold.

If Z is a real submanifold of a complex manifold X, we still denote by T ∗ZX

the conormal bundle to Z of the real underlying manifold XR .

Lemma 6.1. Let Z be a real analytic closed submanifold ofX of codimension

d ≥ 1 and assume that

T ∗ZX ∩ (V +̂SS(F )
a) ⊂ T ∗XX .

LetM be a regular DX -module along V . Then the following natural morphism

is an isomorphism:

RHomDX

(
M, T hom(F,OX)

)∣∣∣
Z
→ RHomDX

(
M, T hom(FZ ,OX)

)∣∣∣
Z
[d].(13)

Proof: Since T ∗ZX∩V ⊂ T
∗
XX, there exists a coordinate system (y1, ..., yN ) on

Y as a real analytic manifold and a coordinate system (f1, ..., fm, y1 ◦f, ..., yN ◦f)

of X such that Z is defined by the equations f1 = · · · = fd = 0. We shall argue

by induction on d.

(i) Let us prove the result for d = 1. Assume that Z is a real analytic hyper-

surface defined by the equation f(z) = 0, and set

Z+ =
{
z ∈ X; f(z) ≥ 0

}
, Z− =

{
z ∈ X; f(z) ≤ 0

}
.

Assume that df,−df /∈ V +̂SS(F )a. We shall show that the morphism

RHomDX

(
M, T hom(F,OX)

)∣∣∣
Z
→ RHomDX

(
M, T hom(FZ ,OX)

)∣∣∣
Z
[1](14)

is an isomorphism. The morphism (14) is given by

F −→ FZ+ ⊕ FZ− −→ FZ
+1
−→ .

Therefore to obtain (14) it is enough to prove that

RHomDX

(
M, T hom(FZ± ,OX)

)∣∣∣
Z
= 0 .

Since

SS(FZ±) ⊂ SS(F ) +̂ (X× R≥0(±df)) ,

±df ∈ V +̂SS(FZ±)
a implies ±df ∈ V +̂SS(F )a by Lemma 4.1 (ii), which con-

tradicts the assumption. Hence

±df /∈ V +̂SS(FZ±)
a .
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Denoting

S± = HomDX

(
M, T hom(FZ± ,OX)

)
,

then, by Theorem 2.1, ±df /∈ SS(S±) hence S±|Z = RΓZ±(S±)|Z = 0.

(ii) In the general case, assume that Z is defined by x1 = · · · = xd = 0.

Let us set Z1 = {x1= 0} and Z2 = {x2= · · ·=xd=0}. Since

T ∗Z2
X ∩

(
V +̂ (SS(F )a)

)
⊂ T ∗XX

in a neighborhood of Z, the hypothesis of induction implies

RHomDX

(
M, T hom(F,OX)

)∣∣∣
Z
' RHomDX

(
M, T hom(FZ2

,OX)
)∣∣∣

Z
[d−1] .

On the other hand, SS(FZ2
) ⊂ SS(F ) +̂T ∗Z2

X. Hence by (i)

RHomDX

(
M, T hom(F,OX)

)∣∣∣
Z
' RHomDX

(
M, T hom(FZ2

,OX)
)∣∣∣

Z
[d−1]

' RHomDX

(
M, T hom(FZ ,OX)

)∣∣∣
Z
[d] .

This ends the proof of (13).

7 – Proof of Theorem 2.3

We start by recalling the functor of tempered microlocalization.

7.1. Review on T µhom

We shall recall the construction of the functor T νhom(·,OX) of tempered

specialization of ([1]).

Let X̃C be the complex normal deformation of X×X along the diagonal ∆

which we identify with X by the first projection p1. We may then identify TX

with the normal bundle T∆(X×X).

Let t : X̃C → C and p : X̃C → X×X be the canonical maps, let Ω̃ be

t−1(C − {0}) and Ω = t−1(R+) ⊂ Ω̃. Let p2 : X×X → X be the second pro-

jection.

Consider the following diagram of morphisms:

TX ' T∆(X×X)
i
↪→ X̃C j

←↩ Ω = t−1(R+) .(15)
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Let p̃ : Ω̃→ X×X, be the restriction of p. Finally denote by p1 the composition

p1◦ p and by p2 the composition p2 ◦ p.

Under these notations, T νhom(F,OX) is defined by

T νhom(F,OX) = i−1RHomD
X̃C

(
DX̃C→

p1

X , T hom
(
p−12 F ⊗ CΩ, OX̃C

))
.

LetDb
R+(CTX) (resp.D

b
R+(CT ∗X)) be the derived category of complexes of sheaves

on TX (resp. T ∗X) with conic cohomologies. We denote by the symbol ̂ the
Fourier–Sato Transform from Db

R+(CTX) to D
b
R+(CT ∗X). Then by definition,

T µhom(F,OX) = T νhom(F,OX )̂ . Let us recall that under the identification

of T ∗(TX) with T ∗(T ∗X) by the Hamiltonian isomorphism we have SS(F ) =

SS(F )̂ for any F ∈ Db
R+(CTX).

Remark that for any coherent DX -moduleM, one has

RHomπ−1DX

(
π−1M, T µhom(F,OX)

)
'(16)

' RHomτ−1DX

(
τ−1M, T νhom(F,OX)

)̂
.

The proof of Theorem 2.3 will be performed in two steps.

7.2. First reduction

First of all remark that the statement of Theorem 2.3 is local on T ∗X and

invariant by local canonical transformation as proved in [1], 5.5. Therefore,

since V is regular involutive, locally in Ṫ ∗X, we may choose a canonical coordi-

nate system (x; ξ), x = (x1, ..., xn), ξ = (ξ1, ..., ξn), such that V = {(x; ξ) ∈ Ṫ
∗X;

ξ1= 0, ..., ξd = 0}, in other words, locally on X, we have X ' Z×Y where Y is an

open subset of Cn−d and V = X×
Y
T ∗Y , is associated to the projection f : X→ Y .

By the results of [7], we have an exact sequence of coherent EX -modules

0 → N →

(
EX/

(
EXDx1 + EXDx2 + · · ·+ EXDxd

))N
→ M → 0(17)

where N is still regular along V .

By “devissage” thanks to (17), we may then assume that M = EX/(EXDx1+

EXDx2 + ...+ EXDxd) = EX→Y .

Hence from now on we will assume M = EX→Y . Of course, in that case,

M' EX ⊗π−1DX
π−1DX→Y .
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7.3. End of the proof

Having (16) in mind, we are bound to prove the analogue of (4) with

T µhom(F,OX) replaced by T νhom(F,OX). We have

RHomτ−1DX

(
τ−1M, T νhom(F,OX)

)
'

' i−1RHomD
X̃

(
DX̃C→

h
Y , T hom

(
p−12 F ⊗ CΩ,OX̃C

))

where h = f ◦ p1 is a smooth morphism since f and p1 are smooth.

By Proposition 6.6.2 of [8], we have an inclusion

SS

(
i−1RHomDC

X̃

(
DX̃C→

h
Y , T hom

(
p−12 F ⊗ CΩ,OX̃C

)))
⊂(18)

⊂ i]
(
SS

(
RHomD

X̃C

(
DX̃C→

h
Y , T hom

(
p−12 F ⊗ CΩ,OX̃C

))))
.

Therefore it is enough to consider the case of the partial De Rham system DX̃C→
h
Y .

Let us take a local coordinate system (x) = (x1, x2) onX such that f : X → Y

is by (x1, x2) 7→ x1. Then V = X×Y T
∗Y is given by V = {(x1, x2; ξ1, ξ2); ξ2 = 0}.

Endow X×X with the system of local coordinates (x, x′), so that ∆ ⊂ X×X is

defined by x = x′. Under the change of coordinates: x, y = x − x′, ∆ will be

defined by y = 0. Using (x, y), X̃C is endowed with the coordinates (t, x, y), and

p(t, x, y) = (x, x− ty) , p1(t, x, y) = x and p2(t, x, y) = x− ty .(19)

Let (t, x, y; τ, ξ, η) be the associated coordinates of T ∗(X̃C).

Let Ṽ be the submanifold p1d(X̃
C×

Y
T ∗Y ) of T ∗X̃C, which is explicitly given

by

Ṽ =
{
(t, x, y; τ, ξ, η); τ = 0, η = 0, (x; ξ) ∈ V

}
.

By Theorem 2.1 we have the following estimate:

SS

(
RHomD

X̃C

(
DX̃C→

h
Y , T hom

(
p−12 F ⊗ CΩ,OX̃C

)))
⊂(20)

⊂ Ṽ +̂SS(p−12 F ⊗ CΩ)a .

By (18) and (20) we get

SS

(
RHomτ−1DX

(
τ−1M, T νhom(F,OX)

))
⊂ i]

(
Ṽ +̂SS(p−12 F ⊗ CΩ)a

)
.(21)
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Therefore it is enough to prove the inclusion

i]
(
Ṽ +̂SS(p−12 F ⊗ CΩ)a

)
⊂ C(V, SS(F )) .

More precisely, since SS(p−12 F ⊗ CΩ) ⊂ SS(p−12 F ) +̂SS(CΩ) we shall prove the
inclusion

i]
(
Ṽ +̂

(
SS( p−12 F )a +̂SS(CΩ)a

))
⊂ C(V, SS(F )) .

We have

SS(CΩ) =
{
(t, x, y; τ, ξ, η); ξ = 0, η = 0, Im t = 0, Re t ≥ 0, Re τ = 0

}
(22)

∪
{
(t, x, y; τ, ξ, η); ξ = 0, η = 0, t = 0, Re τ ≤ 0

}
,

and since p2 is smooth,

SS(p−12 F ) = p2,d p
−1
2,π(SS(F ))(23)

=
{
(t, x, y; τ, ξ, η); (x−ty; ξ) ∈ SS(F ), η=−t ξ, τ=−〈ξ, y〉

}
.

Hence SS(p−12 F )a ∩ SS(CΩ) ⊂ T ∗XX, which implies

SS(p−12 F )a +̂ SS(CΩ)a = SS(p−12 F )a + SS(CΩ)a .

Remark that the identification T ∗(TX) with T (T ∗X) is described by

T ∗(TX) 3 (x, y; ξ, η) ←→ (x, η; y, ξ) ∈ T (T ∗X) .

Let (x0, y0; ξ0, η0) ∈ T
∗(TX) and assume that

(x0, y0; ξ0, η0) ∈ i]
(
Ṽ +̂

(
SS( p−12 F )a+SS(CΩ)a

))
.

Then there exist sequences {(tn, xn, yn; 0, ξn, 0)}n in Ṽ , {(t
′
n, x

′
n, y

′
n; τ

′
n, ξ

′
n, η

′
n)}n

in SS(p−12 F )a and {(t′′n, x
′′
n, y

′′
n; τ

′′
n , 0, 0)}n in SS(CΩ)a such that

(i) tn →
n
0, t′n →n

0, t′′n →n
0, t′n, t

′′
n ≥ 0.

(ii) xn →
n
x0, x

′
n →n

x0, x
′′
n →n

x0.

(iii) yn →
n
y0, y

′
n →n

y0, y
′′
n →n

y0.

(iv) τ ′n + τ
′′
n →n

0.

(v) ξn + ξ
′
n →n

ξ0.

(vi) η′n →n
η0 (hence t

′
nξ
′
n →n

−η0 and t′nξn →n
η0 by (v)).
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By (vi), there exists a sequence of positive numbers (an)n such that an →
n
0

and anξn →
n
η0. Consider the sequence {(x′n− t′ny

′
n;−anξ

′
n)}n in SS(F ) and

{(x′n + (an− t
′
n)y

′
n; anξn)}n in V . Then

(x′n − t
′
ny
′
n;−anξ

′
n) →n

(x0; η0) , (x′n + (an− t
′
n)y

′
n; anξn) →n

(x0; η0)

and

an
−1
((
x′n+(an− t

′
n)y

′
n, anξn

)
− (x′n− t

′
ny
′
n,−anξ

′
n)

)
= (y′n, ξn+ξ

′
n) →n

(y0, ξ0) .

Hence one has (x0, η0; y0, ξ0) ∈ C(V, SS(F )).

Since C(V, SS(F )) = ρV
−1(CV (SS(F ))

a), we finally obtain

SS

(
RHomπ−1DX

(
π−1M, T µhom(F,OX)

))
⊂ ρV

−1
(
CV (SS(F ))

a
)

as asserted.
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