PORTUGALIAE MATHEMATICA Vol. 58 Fasc. 4 – 2001 Nova Série

SECTOR ESTIMATES FOR KLEINIAN GROUPS

R. Sharp

Abstract: We study the number of lattice points in a fixed sector for certain Kleinian groups. We show that they are asymptotically distributed according to the Patterson–Sullivan measure.

0 – Introduction

Let Γ be a (non-elementary) group of isometries of the (n+1)-dimensional real hyperbolic space \mathbb{H}^{n+1} . Given a point $x \in \mathbb{H}^{n+1}$, we shall be interested in the behaviour of its orbit Γx under the action of Γ . This orbit accumulates only on the boundary of \mathbb{H}^{n+1} , which we may regard as S^n . We call the set of accumulation points, which is independent of x, the limit set of Γ and denote it by L_{Γ} . The limit set is a closed perfect subset of S^n ; either $L_{\Gamma} = S^n$ or L_{Γ} is nowhere dense in S^n . Write $\mathcal{C}(\Gamma) \subset \mathbb{H}^{n+1} \cup S^n$ for the convex hull of L_{Γ} ; if $\Gamma \setminus (\mathcal{C}(\Gamma) \cap \mathbb{H}^{n+1})$ is compact then we say that Γ is convex co-compact. (Note that this condition is weaker than requiring that Γ be co-compact, i.e., that $\Gamma \setminus \mathbb{H}^{n+1}$ is compact, since co-compact groups have $L_{\Gamma} = S^n$.) In this paper we shall be concerned exclusively with convex co-compact groups.

Given points $p, q \in \mathbb{H}^{n+1}$ we can define the orbital counting function $N_{\Gamma}(p,q,T) = \#\{g \in \Gamma : d(p,gq) \leq T\}$, where $d(\cdot, \cdot)$ denotes distance in \mathbb{H}^{n+1} . A lot of effort has gone into understanding the asymptotic behaviour of this function and it is known that, for convex co-compact Γ , $N_{\Gamma}(p,q,T) \sim \mathcal{C}(p,q,\Gamma)e^{\delta T}$, as $T \to \infty$, where $\mathcal{C}(p,q,\Gamma) > 0$ is a constant and where $0 < \delta \leq n$ is the exponent of convergence of Γ [12]. (A more precise estimate is known under the additional hypothesis that $\delta > n/2$ [7].)

Received: August 4, 2000; Revised: February 7, 2001.

^{*} The author was supported by an EPSRC Advanced Research Fellowship.

A more delicate question is to understand the asymptotics of the number of orbit points lying in a fixed sector. Fix a (closed) ball $B \subset S^n$ and let \widehat{B} denote the sector in \mathbb{H}^{n+1} formed by the set of geodesic rays emanating from p with end-points in B. Define

$$N_{\Gamma}^{B}(p,q,T) \ = \ \# \Big\{ g \in \Gamma \colon d(p,gq) \le T \ \text{ and } \ gq \in \widehat{B} \Big\} \ .$$

The behaviour of this function is closely related to the so-called Patterson– Sullivan measure $\mu_{p,q}$ on S^n . It is known that there exist constants $0 < C_1 < C_2$ (depending only on Γ) such that if the centre of B lies in the limit set of Γ then, for all sufficiently large T,

$$C_1 \mu_{p,q}(B) N_{\Gamma}(p,q,T) \leq N_{\Gamma}^B(p,q,T) \leq C_2 \mu_{p,q}(B) N_{\Gamma}(p,q,T)$$

[8]. Our object in this paper is to obtain a more precise result for certain classes of Kleinian groups; namely groups satisfying the condition defined below.

Definition. A Kleinian group Γ is said to satisfy the even corners condition if Γ admits a fundamental domain R which is a finite sided polyhedron (possibly with infinite volume) such that $\bigcup_{g\in\Gamma} g \,\partial R$ is a union of hyperplanes. (This definition was introduced by Bowen and Series [3] for the case n = 1 and studied by Bourdon [2] for $n \geq 2$.) \Box

Theorem 1. Let Γ be a convex co-compact group acting on \mathbb{H}^{n+1} . If Γ satisfies the even corners condition then for any $p, q \in \mathbb{H}^{n+1}$ and any Borel set $B \subset S^n$ such that $\mu_{p,q}(\partial B) = 0$ we have

$$\lim_{T \to \infty} \frac{N_{\Gamma}^B(p,q,T)}{N_{\Gamma}(p,q,T)} = \mu_{p,q}(B) \ . \ \blacksquare$$

This result is known in certain cases. In particular, it is known if Γ is cocompact [9], [10] (in which case $\mu_{p,q}$ is equivalent to *n*-dimensional Lebesgue measure on S^n) or if Γ is a Schottky group [6].

More generally, Theorem 1 is known to hold if Γ is convex co-compact and the points p and q lie in the convex hull of L_{Γ} [13]. In this case, the result follows from an approach based on an analysis of the orbit structure of hyperbolic flows. More precisely, writing $M = \Gamma \setminus \mathbb{H}^{n+1}$, consider the projection $\pi \colon \mathbb{H}^{n+1} \to M$ and the geodesic flow $\phi_t \colon SM \to SM$ on the unit-tangent bundle of M. The counting function $N_{\Gamma}^B(p, q, T)$ may be reinterpreted as the number of ϕ -orbits, with length not exceeding T, passing from the fibre $S_{\pi(p)}M$ to the fibre $S_{\pi(q)}M$, such that the initial point lies in $B \subset S_{\pi(p)}M$. (It is a standard procedure to identify the

boundary of \mathbb{H}^{n+1} with the fibre $S_{\pi(p)}M$ lying over a fixed base point.) The non-wandering set $\Omega \subset SM$ for ϕ consists of all vectors tangent to the projection $\pi(\mathcal{C}(\Gamma) \cap \mathbb{H}^{n+1})$ and the restriction $\phi_t \colon \Omega \to \Omega$ is a uniformly hyperbolic flow. If $p, q \in \mathcal{C}(\Gamma)$ then $N_{\Gamma}^B(p, q, T)$ counts orbits which lie in Ω and the methods of [13] give the required result. (Roughly speaking, $N_{\Gamma}^B(p, q, T)$ is approximated by functions counting orbits passing from small pieces of unstable manifold to small pieces of stable manifold; these latter quantities admit a symbolic description to which one may apply the techniques of thermodynamic formalism.)

However, if p and q do not lie in $\mathcal{C}(\Gamma)$ then the relevant orbits would lie outside Ω and the above arguments no longer hold. In this paper we impose no restrictions on p and q. Instead of formulating the problem in terms of hyperbolic flows, we shall obtain a symbolic description directly from Γ . The "even corners" property ensures that that this description matches the geometry of the action on \mathbb{H}^{n+1} .

We end the introduction by giving two classes of examples of even cornered groups.

Example 1. Let $K_1, ..., K_{2k}$ be 2k disjoint *n*-dimensional spheres in \mathbb{R}^{n+1} , each meeting S^n at right angles. For i = 1, ..., k, let g_i be the isometry which maps the exterior of K_i onto the interior of K_{k+i} . Then the group Γ generated in this way is called a *Schottky group* and satisfies the even corners condition. Viewed as an abstract group, it is the free group on k generators. In this case, L_{Γ} is a Cantor set. \Box

Example 2. Let R be a polyhedron in \mathbb{H}^{n+1} with a finite number of faces and with interior angles all equal to $\pi/k, k \in \mathbb{N}, k \geq 2$. Let Γ be the Kleinian group generated by reflections in the faces of R. Then Γ satisfies the even corners condition. For instance, let R be a regular tetrahedron in \mathbb{H}^3 with infinite volume and with dihedral angles $\pi/4$. In this case, L_{Γ} is a Sierpiński curve [1], [2]. \Box

The author would like to thank Sanju Velani for introducing him to this question.

1 – Kleinian groups and Patterson–Sullivan measure

Let \mathbb{H}^{n+1} denote the real hyperbolic space of dimension n+1. A convenient model for \mathbb{H}^{n+1} is the open ball $\{x \in \mathbb{R}^{n+1} : ||x||_2 < 1\}$, equipped with the metric

$$ds^{2} = \frac{4(dx_{1}^{2} + \dots + dx_{n+1}^{2})}{(1 - ||x||_{2}^{2})^{2}}$$

(In particular, geodesics passing through 0 are just Euclidean straight lines.) We can then naturally identify the ideal boundary of \mathbb{H}^{n+1} with the *n*-dimensional unit sphere S^n .

A Kleinian group Γ is a discrete group of isometries of \mathbb{H}^{n+1} . (If n=1, we say that Γ is a Fuchsian group.) Its action on \mathbb{H}^{n+1} extends to an action on S^n . We say that Γ is non-elementary if it does not contain a cyclic subgroup of finite index. In this paper we shall only consider non-elementary groups and all statements implicitly assume that Γ is non-elementary. We say that Γ is geometrically finite if there is a fundamental domain for its action on \mathbb{H}^{n+1} which is a polyhedron with finitely many faces; this includes the class of convex co-compact groups. (Note that, for $n \geq 4$, there are other, inequivalent, notions of geometrical finiteness.) If Γ is geometrically finite then it is finitely generated.

One of the most important quantities attached to a Kleinian group is its exponent of convergence. This is the abscissa of convergence of the Dirichlet series $\sum_{g\in\Gamma} e^{-sd(p,gq)}$ (for any $p, q \in \mathbb{H}^{n+1}$) and is denoted by $\delta = \delta(\Gamma)$. We have $0 < \delta \leq n$. If Γ is geometrically finite then δ is also equal to the Hausdorff dimension of L_{Γ} and, furthermore, if $L_{\Gamma} \neq S^n$ then $\delta < n$ (so that, in particular, the *n*-dimensional Lebesgue measure of L_{Γ} is equal to zero) [16], [17].

The limit set of a Kleinian group supports a natural family of equivalent measures $\mu_{p,q}$ $(p,q \in \mathbb{H}^{n+1})$ called Patterson–Sullivan measures [11], [15]. Roughly speaking, $\mu_{p,q}$ is the weak^{*} limit, as $s \to \delta+$, of

$$\frac{\sum_{q \in \Gamma} e^{-sd(p,gq)} D_{gq}}{\sum_{g \in \Gamma} e^{-sd(q,gq)}} ,$$

regarded as measures on $\mathbb{H}^{n+1} \cup S^n$, where D_{gq} denotes the Dirac measure at gq. If Γ is convex co-compact, they are characterized as the unique non-atomic measures supported on L_{Γ} satisfying

(i) for $p_1, p_2 \in \mathbb{H}^{n+1}$,

$$\frac{d\mu_{p_2,q}}{d\mu_{p_1,q}}(\xi) = \left(\frac{P(p_2,\xi)}{P(p_1,\xi)}\right)^{\delta},\,$$

where $P(x,\xi) = (1 - ||x||_2^2)/(||x - \xi||_2^2)$ is the Poisson kernel;

- (ii) $g^*\mu_{p,q} = \mu_{g^{-1}p,q}$, for $g \in \Gamma$;
- (iii) $g^* \mu_{p,q} = |g'|^{\delta} \mu_{p,q}$, for $g \in \Gamma$.

Since p and q are fixed, we shall write $\mu = \mu_{p,q}$. It is a regular Borel measure on S^n .

Remark. In the above, we have used a prime to denote differentiation with respect to the metric obtained by radial projection from p. To mke this more precise, let ψ denote a conformal mapping preserving the unit ball such that $\psi(p) = 0$. For $\xi, \eta \in S^n$, we define $d_p(\xi, \eta) = |\cos^{-1}\psi(\xi) \cdot \psi(\eta)|$ and $|g'(\xi)| = \lim_{\eta \to \xi} d_p(g\xi, g\eta)/d_p(\xi, \eta)$.

2 – Symbolic dynamics

We shall be interested in the action of Γ on S^n . For groups satisfying the even corners condition, it is possible to replace this action with a single piecewiseanalytic expanding map of S^n which has the same orbit structure. This, in turn, may be modeled by a symbolic dynamical system, namely a subshift of finite type $\sigma: X_A \to X_A$. This is a particular case of the strongly Markov coding introduced by Cannon [4], [5]. However, if Γ satisfies the even corners condition then this construction is more closely related to the action of Γ on \mathbb{H}^{n+1} . In [2] and [14] it was shown how to construct a Hölder continuous function $r: X_A \to \mathbb{R}$ which encoded the distances d(p, gq). This facilitated an analysis of the Poincaré series $\sum_{g \in \Gamma} e^{-sd(p,gq)}$ via a family of linear operators acting on a space of Hölder continuous functions defined on X_A .

To begin, we recall the notion of word length: given a (symmetric) generating set S, the word length $|g| = |g|_S$ of an element $g \in \Gamma \setminus \{e\}$ is defined by

$$|g| = \inf \{k \ge 1 \colon g = g_1 \cdots g_k, \ g_i \in \mathcal{S}, \ i = 1, ..., k\}$$

In particular, |g| = 1 if and only if $g \in S$. (By convention, we set |e| = 0.)

Let R be a polyhedron as specified by the even corners condition. Label the faces of R by $\{R_1, ..., R_m\}$ and let $g_i \in \Gamma$ denote the isometry for which $g_i R \cap R = R_i$. Write $S = \{g_1, ..., g_m\}$; then, by the Poincaré Polyhedron Theorem, S generates Γ . For each i = 1, ..., m, R_i extends to a codimension one hyperbolic hyperplane, which divides $\mathbb{H}^{n+1} \cup S^n$ into two half-spaces. Let H_i denote the half-space which does not contain R and let $U_i = H_i \cap S^n$. In general, the U_i 's will overlap; to obtain a partition we let $\mathcal{P} = \{P_1, ..., P_k\}$ denote the sets formed by taking the closure of all possible intersections of the interiors of the U_i 's. Write $\overline{\mathcal{P}} = \bigcup_{i=1}^k P_i$; then $\bigcup_{i=1}^k P_k = S^n$ and $\operatorname{int} P_i \cap \operatorname{int} P_j = \emptyset$ if $i \neq j$.

Choose an arbitrary ordering \prec on S. Let $g \in \Gamma$. If $g = g_{i_0} \cdots g_{i_{n-1}}$ we say that the word $g_{i_0} \dots g_{i_{n-1}}$ is lexically shortest if |g| = n and if, whenever $g = h_{i_0} \cdots h_{i_{n-1}}$ with $h_{i_0}, \dots, h_{i_{n-1}} \in S$, then $g_{i_j} \prec h_{i_j}$, where j is the smallest index at which the terms disagree. Clearly every group element is presented by a unique lexically shortest word.

Define a map $f: \overline{\mathcal{P}} \to S^n$ by $f|_{P_i}(x) = a_i^{-1}x$, where $\operatorname{int} P_i = \operatorname{int} U_{j_1} \cap \cdots \cap \operatorname{int} U_{j_l}$ and where a_i is the \prec -smallest element of $\{g_{j_1}, \dots, g_{j_l}\}$. (Strictly speaking, f is well-defined on the disjoint union $\coprod_{i=1}^k P_i$.) If necessary refining a finite number of times by considering intersections of sets in $\mathcal{P}, f^{-1}\mathcal{P}, \dots, f^{-n}\mathcal{P}$, for some $n \geq 0$, f will satisfy the Markov property: if $f(\operatorname{int} P_i) \cap \operatorname{int} P_j \neq \emptyset$ then $f(P_i) \supset P_j$. We shall now define a graph $\mathcal{G} = (V, E)$, where the set of vertices $V = \{1, \dots, k\}$ and the set of edges E is defined by

$$E = \left\{ (i,j) \in V \times V \colon f(P_i) \supset P_j \right\} \,.$$

If P_i is contained in only one U_j then we call i a pure vertex; there are precisely #S pure vertices. The map $(i_1, ..., i_n) \mapsto a_{i_1} \cdots a_{i_n}$ gives a bijections between the set of paths in \mathcal{G} starting at a pure vertex and Γ . In order that these paths can be written as infinite paths, we shall augment \mathcal{G} by adding an extra vertex 0 and edges (v, 0) for all $v \in V$ to form a new graph \mathcal{G}' . Let A and B denote the incidence matrices of \mathcal{G}' and \mathcal{G} , respectively.

Define the shift space X_A by

$$X_A = \left\{ x \in (V \cup \{0\})^{\mathbb{Z}^+} \colon A(x_n, x_{n+1}) = 1 \ \forall n \ge 0 \right\}$$

and define X_B in a similar way. On each of these spaces, define the shift map σ by $(\sigma x)_n = x_{n+1}$. For notational convenience, we shall use $\dot{0}$ to denote the element of X_A consisting of an infinite sequence of 0's.

For a path $(i_0, i_1, ..., i_n)$ in $\mathcal{G} = (V, E)$, we write

$$P(i_0, i_1, ..., i_n) = \bigcap_{j=0}^n f^{-j} P(i_j) .$$

We call such a set a geometric *n*-cylinder. We shall denote the collection of all geometric *n*-cylinders by \mathcal{P}_n and write $\bar{\mathcal{P}}_n = \bigcup_{P \in \mathcal{P}_n} P$. We have $L_{\Gamma} = \bigcap_{n=1}^{\infty} \bar{\mathcal{P}}_n$.

The map f restricts to a map $f: L_{\Gamma} \to L_{\Gamma}$ which models the action of Γ on L_{Γ} . It is an expanding map in the sense that there exists $n \ge 0$ and $\beta > 1$ such that $|(f^n)'(x)| \ge \beta$ for all $x \in \overline{\mathcal{P}}_n$ and it is locally eventually onto. If $(i_0, i_1, ...)$ is an infinite path in (V, E) then diam $P(i_0, ..., i_n)$ and $\mu(P(i_0, ..., i_n))$ both converge to zero as $n \to \infty$; the latter statement following from the fact that μ is non-atomic and regular. In particular, $\bigcap_{n=0}^{\infty} P(i_0, ..., i_n)$ consists of a single point $x_{i_0, i_1, ..., n}$ say.

There is a natural Hölder continuous semi-conjugacy $\Pi: X_B \to L_{\Gamma}$ between $\sigma: X_B \to X_B$ and $f: L_{\Gamma} \to L_{\Gamma}$, defined by $\Pi(i_0, i_1, ...) = x_{i_0, i_1, ...}$ which is bounded-to-one and one-to-one on a residual set. A particular consequence is that the matrix B is aperiodic.

For each i = 1, ..., k, define $C(i) = \bigcap_{a \in \mathcal{S}(i)} H_a$ and, for $P(i_0, ..., i_n)$, define

$$C(i_0, ..., i_n) = \bigcap_{j=0}^n a_{i_0} \cdots a_{i_{j-1}} C(i_j)$$

We refer to $C(i_0, ..., i_n)$ as the "cap" of $P(i_0, ..., i_n)$. We shall also denote the cap of $P \in \mathcal{P}_n$ by C_P . The following result is immediate from the construction.

Lemma 1. Suppose that $q \in R$. If $gq \in C(i_0, ..., i_n)$ then $g = a_{i_0} \cdots a_{i_n}$ and this is the lexically shortest representation of g.

Remark 1. If $q \notin R$ then the above lemma can be simply amended. However, for simplicity, we shall restrict ourselves to the case $q \in R$.

3 – Approximation

For $g \in \Gamma$, write $\xi(g) \in S^n$ for the (positive) endpoint of the geodesic from p to gq. Then, for any set $F \subset S^n$, we have $N_{\Gamma}^F(p,q,T) = \#\{g \in \Gamma \colon d(p,q) \leq T \text{ and } \xi(g) \in F\}.$

Let $\epsilon > 0$ be given. Then, since $\mu(\partial B) = 0$, we can find *n* sufficiently large and collections $\mathcal{Q} \subset \mathcal{Q}'$ of geometric *n*-cylinders such that

$$\bigcup_{P \in \mathcal{Q}} P \subset B \subset \bigcup_{P \in \mathcal{Q}'} P \cup (S^n \setminus \bar{\mathcal{P}}_n)$$

and

$$\mu(B) - \epsilon \leq \sum_{P \in \mathcal{Q}} \mu(P) \leq \sum_{P \in \mathcal{Q}'} \mu(P) \leq \mu(B) + \epsilon$$

Since we then have

$$\sum_{P \in \mathcal{Q}} N^P_{\Gamma}(p,q,T) \leq N^B_{\Gamma}(p,q,T) \leq \sum_{P \in \mathcal{Q}'} N^P_{\Gamma}(p,q,T) + O(1) \;,$$

it suffices to show that

$$\lim_{T\to\infty} \frac{N^P_\Gamma(p,q,T)}{N_\Gamma(p,q,T)}\,=\,\mu(P)\ ,$$

whenever P is a geometric n-cylinder.

To do this we need to make a second approximation. First we introduce some notation. Let \hat{P} denote the sector formed by geodesic rays emanating from p with endpoints in P and let C denote the cap of P.

Choose $\epsilon > 0$ and let $\mathcal{N}_{\epsilon}(\partial P)$ denote the ϵ -neighbourhood of ∂P in S^n . Since C and \hat{P} are tangent at ∂P , provided T_0 is sufficiently large and $d(p, gq) > T_0$, if $gq \in C \triangle \hat{P}$ then $\xi(g) \in \mathcal{N}_{\epsilon}(\partial P)$. Thus, for $T \geq T_0$,

$$\left|N_{\Gamma}^{P}(p,q,T) - \#\left\{g \in \Gamma \colon d(p,gq) \le T, \ gq \in C\right\}\right| \le N_{\Gamma}^{\mathcal{N}_{\epsilon}(\partial P)}(p,q,T) \ .$$

Since $\mu(\mathcal{N}_{2\epsilon}(\partial P)) \to 0$, as $\epsilon \to 0$, the proof of Theorem 1 will be complete once we have shown the following two results. The proof of Proposition 1 will be given in the next section.

Proposition 1.

$$\lim_{T \to \infty} \frac{1}{N_{\Gamma}(p,q,T)} \# \Big\{ g \in \Gamma \colon d(p,gq) \le T, \ gq \in C \Big\} = \mu(P) \ . \blacksquare$$

Lemma 2.

$$\limsup_{T \to \infty} \frac{N_{\Gamma}^{\mathcal{N}_{\epsilon}(\partial P)}(p,q,T)}{N_{\Gamma}(p,q,T)} \leq C_2 \, \mu(\mathcal{N}_{2\epsilon}(\partial P)) \; .$$

Proof: Choose *m* sufficiently large that if $R \in \mathcal{P}_m$ and $R \cap \mathcal{N}_{\epsilon}(\partial P) \neq \emptyset$ then $R \subset \mathcal{N}_{2\epsilon}(\partial P)$. Set $\mathcal{R} = \{R \in \mathcal{P}_m : R \cap \mathcal{N}_{\epsilon}(\partial P) \neq \emptyset\}$. If $d(p, gq) > T_0$ and $\xi(g) \in \mathcal{N}_{\epsilon}(\partial P)$ then $gq \in C_R$ for some $R \in \mathcal{R}$. Thus

$$\begin{split} \limsup_{T \to \infty} \frac{N_{\Gamma}^{\mathcal{N}_{\epsilon}(\partial P)}(p,q,T)}{N(T)} &\leq \\ &\leq \lim_{T \to \infty} \frac{1}{N(T)} \sum_{R \in \mathcal{R}} \# \Big\{ g \in \Gamma \colon T_{0} < d(p,gq) \leq T, \ gq \in C_{R} \Big\} \\ &= \sum_{R \in \mathcal{R}} \mu(R) \ = \ \mu \left(\bigcup_{R \in \mathcal{R}} R \right) \ \leq \ \mu(\mathcal{N}_{2\epsilon}(\partial P)) \ , \end{split}$$

where we have used Proposition 1. \blacksquare

4 – Poincaré series

In this section we will prove Proposition 1 by considering the analytic domain of a certain function of a complex variable. Before we do this, we need to consider a family of linear operators defined as follows. Note that $X_A \setminus X_B$ consists of all sequences in X_A ending in an infinite string of 0's. Define $r: X_A \setminus X_B \to \mathbb{R}$ by

$$r(i_0, i_1, \dots, i_n, 0) = d(p, a_{i_0} \cdots a_{i_n} q) - d(p, a_{i_1}, \cdots a_{i_n} q) ,$$

so that

$$\sum_{k=0}^{n} r(i_0, ..., i_k, \dot{0}) = d(p, a_{i_0} \cdots a_{i_n} q)$$

This extends to a Hölder continuous function $r: X_A \to \mathbb{R}$ [2], [6], [14].

For $s \in \mathbb{C}$, define $\mathcal{L}_s \colon C^{\alpha}(X_A) \to C^{\alpha}(X_A)$ by

$$\mathcal{L}_s \phi(x) = \sum_{\substack{\sigma y = x \\ y \neq \dot{0}}} e^{-sr(y)} \phi(y) .$$

(Note that this agrees with the usual definition of the Ruelle transfer operator for $x \in X_A \setminus \{\dot{0}\}$.) The following result is well-known.

Proposition 2.

- (i) The restricted operator $\mathcal{L}_{\delta}: C^{\alpha}(X_B) \to C^{\alpha}(X_B)$ has 1 as a simple maximal eigenvalue with a strictly positive associated eigenfunction ψ . The corresponding eigenmeasure ν for \mathcal{L}_{δ}^* satisfies $\Pi_*\nu = \mu$, where μ is the Patterson–Sullivan measure.
- (ii) For s in a neighbourhood of δ , \mathcal{L}_s has a simple eigenvalue $\rho(s)$ which is maximal in modulus such that $s \mapsto \rho(s)$ is analytic and $\rho(\delta) = 1$.
- (iii) For $\Re s = \delta$, $s \neq \delta$, \mathcal{L}_s does not have 1 as an eigenvalue.

Proof: Part (i) follows by a standard calculation because $\log |f'|: L_{\Gamma} \to \mathbb{R}$ pulls back under Π to a function cohomologous to $r: X_B \to \mathbb{R}$ (i.e. $\log |f' \circ \Pi| = r + u \circ \sigma - u$ for some $u \in C(X_B)$). To see this note that it suffices to show that $r^n(x) := \sum_{k=0}^{n-1} r(\sigma^k x) = \sum_{k=0}^{n-1} \log |f'(\Pi(\sigma^k x))|$, whenever $\sigma^n x = x$ is a periodic point for $\sigma: X_B \to X_B$. To every such periodic point, we can associate a conjugacy class in Γ and hence a closed geodesic on $\Gamma \setminus \mathbb{H}^{n+1}$ with length equal to $r^n(x)$. The result now follows as in, for example, Theorem 8 of [6]. Part (ii) is standard. Part (iii) follows from the fact that $N_{\Gamma}(p,q,T) \sim C(p,q,\Gamma) e^{\delta T}$.

It is easy to see that $\mathcal{L}_s \colon C^{\alpha}(X_A) \to C^{\alpha}(X_A)$ and $\mathcal{L}_s \colon C^{\alpha}(X_B) \to C^{\alpha}(X_B)$ have the same isolated eigenvalues of finite multiplicity [14]. In particular, we have $\mathcal{L}_{\delta}\psi = \psi$ for some $\psi \in C^{\alpha}(X_A)$ with $\psi|_{X_B} > 0$.

Lemma 3 ([6]). The extension of ψ to X_A is strictly positive.

A simple argument then shows that the corresponding eigenmeasure can be identified with ν by setting $\nu(X_A \setminus X_B) = 0$.

In view of the above we may write, for s close to δ , $\mathcal{L}_s = \rho(s) \pi_s + Q_s$, where π_s is the projection onto the eigenspace associated to $\rho(s)$ and where the spectral radius of Q_s is bounded away from 1 from above. In particular, $\pi_{\delta}(\phi) = (\int \phi \, d\nu) \psi$.

Let $C = C(i_0, ..., i_m)$. To prove Proposition 1, we shall consider the "restricted Poincaré series"

$$\eta_C(s) = \sum_{\substack{g \in \Gamma \\ gq \in C}} e^{-sd(p,gq)}$$

This converges to an analytic function for $\Re s > \delta$.

It is easy to see that we may rewrite $\eta_C(s)$ in the form

$$\eta_C(s) = \sum_{n=0}^{\infty} \mathcal{L}_s^n \chi(\dot{0}) ,$$

where χ is the characteristic function of $[i_0, ..., i_m] := \{x \in X_A: x_j = i_j, j = 0, ..., m\}$.

Combining these observations, we see that $\eta_C(s)$ has a meromorphic extension to a neighbourhood of $\Re s \ge \delta$, has no poles on $\Re s = \delta$ apart from $s = \delta$, and, for s close to δ , satisfies

$$\eta_C(s) = rac{\int \chi \, d
u \, \psi(\dot{0})}{\delta \int r \, d
u \, (s-\delta)} + \omega(s) \; ,$$

where $\omega(s)$ is analytic. Noting that $\int \chi d\nu = \mu(C)$ and comparing with the Dirichlet series $\sum_{g\in\Gamma} e^{-sd(p,gq)} = \sum_{n=0}^{\infty} \mathcal{L}_s 1(\dot{0})$, allows us to rewrite this last expression as

$$\eta_C(s) = rac{\mathcal{C}(p,q,\Gamma)\,\mu(C)}{s-\delta} + \omega(s)$$

Applying the Ikehara Tauberian Theorem, we obtain that

$$#\left\{g\in\Gamma\colon d(p,gq)\leq T,\ gq\in C\right\} \sim \mathcal{C}(p,q,\Gamma)\,\mu(C)\,e^{\delta T}\;,$$

from which Proposition 1 follows.

Remark. It is straightforward to extend the above analysis to cover the case of a subgroup $\overline{\Gamma} \triangleleft \Gamma$ (of an even cornered Kleinian group Γ) satisfying $\Gamma/\overline{\Gamma} \cong \mathbb{Z}^k$, and obtain

$$\lim_{T \to \infty} \frac{N_{\overline{\Gamma}}^B(p,q,T)}{N_{\overline{\Gamma}}(p,q,T)} = \mu(B) \ .$$

(In this case $N_{\overline{\Gamma}}(p,q,T) \sim \text{const.} e^{\delta T}/T^{k/2}$, as $T \to \infty$.)

REFERENCES

- BENAKLI, N. Polyèdres hyperboliques passage du local au global, Thesis, Orsay, 1992.
- [2] BOURDON, M. Actions quasi-convexes d'un groupe hyperbolique, flot géodésique, Thesis, Orsay, 1993.
- [3] BOWEN, R. and SERIES, C. Markov maps associated with Fuchsian groups, *Publ. Math. IHES*, 50 (1979), 153–170.
- [4] CANNON, J. The combinatorial structure of co-compact discrete hyperbolic groups, *Geom. Dedicata*, 16 (1984), 123–148.
- [5] GHYS, E. and HARPE, P. Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhauser, Basel, 1990.
- [6] LALLEY, S. Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations, and their fractal limits, Acta Math., 163 (1989), 1–55.
- [7] LAX, P. and PHILLIPS, R. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Func. Anal., 46 (1982), 280–350.
- [8] MELIÁN, M. and VELANI, S. Geodesic excursions into cusps in infinite volume hyperbolic manifolds, *Mathematica Gottingensis* (1993).
- [9] NICHOLLS, P. A lattice point problem in hyperbolic space, *Michigan Math. J.*, 30 (1983), 273–287.
- [10] NICHOLLS, P. The Ergodic Theory of Discrete Groups, London Mathematical Society Lecture Note Series 143, Cambridge University Press, Cambridge, 1989.
- [11] PATTERSON, S.J. The limit set of a Fuchsian group, Acta Math., 136 (1976), 241–273.
- [12] PATTERSON, S.J. On a lattice point problem in hyperbolic space and related questions in spectral theory, Arkiv Mat., 26 (1988), 167–172.
- [13] POLLICOTT, M. A symbolic proof of a theorem of Margulis on geodesic arcs on negatively curved manifolds, Amer. J. Math., 117 (1995), 289–305.
- [14] POLLICOTT, M. and SHARP, R. Comparison theorems and orbit counting in hyperbolic geometry, Trans. Amer. Math. Soc., 350 (1998), 473–499.
- [15] SULLIVAN, D. The density at infinity of a discrete group of hyperbolic motions, Publ. Math. IHES, 50 (1979), 171–202.
- [16] SULLIVAN, D. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleianian groups, Acta Math., 153 (1984), 259–277.
- [17] TUKIA, P. The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math., 152 (1984), 127–140.

Richard Sharp, Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL – U.K.