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0 – Introduction

The aim of this paper is to obtain existence results for the Dirichlet problem

{
−∆pu = f(x, u) in Ω ,

u|∂Ω = 0 .

Here ∆p = ∂
∂xi

(|∇u|p−2 ∂u
∂xi

), 1 < p <∞, is the so-called p-Laplacian and

f : Ω×R → R is a Carathéodory function which satisfies some special growth

conditions. One of the main ideas is to present the operator −∆p as a duality

mapping between W
1,p
0 (Ω) and its dual W−1,p′(Ω), 1

p
+ 1

p′
= 1, corresponding

to the normalization function ϕ(t) = tp−1. This idea, coming from Lions’ book

[23], proves to be a very fruitful one. The properties of the Nemytskii operator

(Nf u)(x) = f(x, u(x)), generated by the Carathéodory function f , the homo-

topy invariance of the Leray–Schauder degree (under the form of a priori esti-

mate, uniformly with respect to λ ∈ [0, 1], of the solutions set of the equation

u = λ(−∆p)
−1Nf u with (−∆p)

−1Nf : W
1,p
0 (Ω) → W

1,p
0 (Ω) compact), the well

known Mountain Pass Theorem of Ambrosetti and Rabinowitz and the varia-

tional characterization of the first eigenvalue of −∆p on W
1,p
0 (Ω) are the other

essential tools which are also used.
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1 – The p-Laplacian as duality mapping

The main idea of this paragraph is to present the operator −∆p, 1 < p <∞,

as duality mapping Jϕ : W
1,p
0 (Ω)→W−1,p′(Ω), 1

p
+ 1

p′
= 1, corresponding to the

normalization function ϕ(t) = tp−1.

Originated in the well known book of Lions (see [23]), this presentation has

the advantage of allowing to apply the general results known for the duality

mapping to the particular case of the p-Laplacian. For example, the surjectivity

of the duality mapping (itself an immediate consequence of a well known result

of Browder (see e.g. [8])) achieves the existence of the W 1,p
0 (Ω)-solution for the

equation −∆pu = f , with f ∈ W−1,p′(Ω). Note that if f ∈ W−1,p′(Ω) is given,

then an element u ∈W 1,p
0 (Ω) is said to be solution of the Dirichlet problem

{
−∆pu = f in Ω ,

u|∂Ω = 0 ,

if the equality −∆pu = f is satisfied in the sense of W−1,p′(Ω).

For the convenience of the reader we have considered to put away the def-

initions and the results concerning the duality mapping, which will be used in

the sequel. Because these results are already known, the proof is often omit-

ted; however the proof is given when these results achieve specific properties for

p-Laplacian.

1.1. Basic results concerning the duality mapping

Below, X always is a real Banach space, X∗ stands for its dual and 〈·, ·〉 is

the duality between X∗ and X. The norm on X and on X∗ is denoted by ‖ ‖.

Given a set valued operator A : X → P(X∗), the range of A is defined to be

the set

R(A) =
⋃

x∈D(A)

Ax

where D(A) = {x ∈ X | Ax 6= ∅} is the domain of A. The operator A is said to

be monotone if

〈x∗1 − x
∗
2, x1 − x2〉 ≥ 0

whenever x1, x2 ∈ D(A) and x∗1 ∈ Ax1, x
∗
2 ∈ Ax2.
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A continuous function ϕ : R+→ R+ is called a normalization function if it is

strictly increasing, ϕ(0) = 0 and ϕ(r)→∞ with r →∞.

By duality mapping corresponding to the normalization function ϕ, we mean

the set valued operator Jϕ : X → P(X∗) as following defined

Jϕx =
{
x∗ ∈ X∗ | 〈x∗, x〉 = ϕ(‖x‖) ‖x‖, ‖x∗‖ = ϕ(‖x‖)

}

for x ∈ X.

By the Hahn–Banach theorem, it is easy to check that D(Jϕ) = X.

Some of the main properties of the duality mapping are contained in the

following

Theorem 1. If ϕ is a normalization function, then:

(i) for each x ∈ X, Jϕx is a bounded, closed and convex subset of X∗;

(ii) Jϕ is monotone:

〈x∗1 − x
∗
2, x1 − x2〉 ≥

(
ϕ(‖x1‖)− ϕ(‖x2‖)

) (
‖x1‖ − ‖x2‖

)
≥ 0 ,

for each x1, x2 ∈ X and x∗1 ∈ Jϕx1, x
∗
2 ∈ Jϕx2;

(iii) for each x ∈ X, Jϕx = ∂ψ(x), where ψ(x) =
‖x‖∫
0
ϕ(t) dt and ∂ψ : X →

P(X∗) is the subdifferential of ψ in the sense of convex analysis, i.e.

∂ψ(x) =
{
x∗ ∈ X∗ | ψ(y)− ψ(x) ≥ 〈x∗, y − x〉 for all y ∈ X

}
.

For proof we refer to Beurling and Livingston [5], Browder [8], Lions [23],

Ciorãnescu [9].

Remark 1. We recall that a functional f : X → R is said to be Gâteaux

differentiable at x ∈ X if there exists f ′(x) ∈ X∗ such that

lim
t→0

f(x+ t h)− f(x)

t
= 〈f ′(x), h〉

for all h ∈ X.

If the convex function f : X → R is Gâteaux differentiable at x ∈ X, then

it is a simple matter to verify that ∂f(x) consists of a single element, namely

x∗ = f ′(x).

This simple remark will be essentially used in the sequel.
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The geometry of the space X (or X∗) supplies further properties of the duality

mapping. That is why we recall the following (see e.g. Diestel [11])

Definition 1. The space X is said to be:

(a) uniformly convex if for each ε ∈ (0, 2], there exists δ(ε) > 0 such that

if ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε then ‖x+ y‖ ≤ 2 (1− δ(ε));

(b) locally uniformly convex if from ‖x‖ = ‖xn‖ = 1 and ‖xn + x‖ → 2 with

n→∞, it results that xn→ x (strongly in X);

(c) strictly convex if for each x, y ∈ X with ‖x‖ = ‖y‖ = 1, x 6= y and

λ ∈ (0, 1), we have ‖λx+ (1−λ) y‖ < 1.

Theorem 2. The following implications hold:

X uniformly convex =⇒ X locally uniformly convex =⇒ X strictly convex .

For proof we refer to Diestel [11].

Theorem 3 (Pettis–Milman). If X is uniformly convex then X is reflexive.

For proof see e.g. Brézis [6] or Diestel [11] — where the original proof of Pettis

is given.

In the sequel, ϕ will be a normalization function.

Proposition 1.

(i) If X is strictly convex, then Jϕ is strictly monotone:

〈x∗1 − x
∗
2, x1 − x2〉 > 0

for each x1, x2 ∈ X, x1 6= x2 and x∗1 ∈ Jϕx1, x
∗
2 ∈ Jϕx2; in particular,

Jϕx1 ∩ Jϕx2 = φ if x1 6= x2.

(ii) If X∗ is strictly convex, then card(Jϕx) = 1, for all x ∈ X.

Proof: (i) First, it is easy to check that (see e.g. James [18]) if X is strictly

convex, then for each x∗ ∈ X∗\{0} there exists at most an element x ∈ X with

‖x‖ = 1, such that 〈x∗, x〉 = ‖x∗‖.

Now, supposing by contradiction that there exist x1, x2 ∈ X with x1 6= x2

and x∗1 ∈ Jϕx1, x
∗
2 ∈ Jϕx2, satisfying

〈x∗1 − x
∗
2, x1 − x2〉 = 0
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we have

0 = 〈x∗1 − x
∗
2, x1 − x2〉 ≥

(
ϕ(‖x1‖)− ϕ(‖x2‖)

) (
‖x1‖ − ‖x2‖

)
≥ 0

and so, we get ‖x1‖ = ‖x2‖.

Remark that x1 6= x2, ‖x1‖ = ‖x2‖ implies x1 6= 0, x2 6= 0.

We obtain

0 =

〈
x∗1 − x

∗
2,

x1

‖x1‖
−

x2

‖x2‖

〉

=

[
ϕ(‖x1‖)−

〈
x∗1,

x2

‖x2‖

〉]
+

[
ϕ(‖x2‖)−

〈
x∗2,

x1

‖x1‖

〉]

and both of the brackets being positive, it results

‖x∗1‖ = ϕ(‖x1‖) =

〈
x∗1,

x2

‖x2‖

〉

which together with

‖x∗1‖ =

〈
x∗1,

x1

‖x1‖

〉

yields 〈
x∗1,

x2

‖x2‖

〉
= ‖x∗1‖ =

〈
x∗1,

x1

‖x1‖

〉
.

By the above mentioned result of James, we have x1

‖x1‖
= x2

‖x2‖
i.e. x1 = x2

which is a contradiction.

(ii) It results from the fact that Jϕx is a convex part of ∂B(0, ϕ(‖x‖)) =

{x∗ ∈ X∗ | ‖x∗‖ = ϕ(‖x‖)}.

Proposition 2. If X is locally uniformly convex and Jϕ is single valued

(Jϕ : X → X∗), then Jϕ satisfies the (S+) condition: if xn ⇀ x (weakly in X)

and lim sup
n→∞

〈Jϕxn, xn − x〉 ≤ 0 then xn → x (strongly in X).

Proof: It is immediately that from xn ⇀ x and lim sup
n→∞

〈Jϕxn, xn − x〉 ≤ 0

it results that lim sup
n→∞

〈Jϕxn − Jϕx, xn − x〉 ≤ 0.

By

0 ≤
(
ϕ(‖xn‖)− ϕ(‖x‖)

) (
‖xn‖ − ‖x‖

)
≤
〈
Jϕxn − Jϕx, xn − x

〉
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it follows (
ϕ(‖xn‖)− ϕ(‖x‖)

) (
‖xn‖ − ‖x‖|

)
→ 0

and hence, ‖xn‖ → ‖x‖.

Now, by a well known result (see e.g. Diestel [11]), in a locally uniformly

convex space, from xn ⇀ x and ‖xn‖ → ‖x‖ it results xn → x.

Proposition 3. IfX is reflexive and Jϕ : X → X∗ then Jϕ is demicontinuous:

if xn → x in X then Jϕxn ⇀ Jϕx in X∗.

Proof: By the boundedness of (xn) it follows that (Jϕxn) is bounded in X∗.

Since X∗ is also reflexive, in order to prove that Jϕxn ⇀ Jϕx it suffices to show

that all subsequences of (Jϕxn) which are weakly convergent have the same limit,

namely Jϕx.

Let x∗ ∈ X∗ be the weak limit of a subsequence of (Jϕxn), still denoted by

(Jϕxn).

By the weakly lower semicontinuity of the norm, we have:

‖x∗‖ ≤ lim inf
n→∞

‖Jϕxn‖ = lim
n→∞

ϕ(‖xn‖) = ϕ(‖x‖) .

On the other hand, from xn → x and Jϕxn ⇀ x∗, it follows that

〈Jϕxn, xn〉 → 〈x∗, x〉 .

But,

〈Jϕxn, xn〉 = ϕ(‖xn‖) ‖xn‖ → ϕ(‖x‖) ‖x‖ .

We get 〈x∗, x〉=ϕ(‖x‖) ‖x‖ and so, ϕ(‖x‖)≤‖x∗‖. Finally 〈x∗, x〉=ϕ(‖x‖) ‖x‖

and ϕ(‖x‖) = ‖x∗‖, which means x∗ = Jϕx.

Theorem 4. Let X be reflexive and Jϕ : X → X∗. Then R(Jϕ) = X∗.

Proof: The result follows from a well known theorem of Browder [8]: if X

is reflexive and T : X → X∗ is monotone, hemicontinuous and coercive, then T

is surjective.

In our case, Jϕ is monotone by Theorem 1 (ii). The fact that Jϕ is hemicon-

tinuous means:

lim
t→0

〈
Jϕ(u+ t v), w

〉
= 〈Jϕu,w〉

for u, v, w ∈ X, and it results from the demicontinuity of Jϕ (Proposition 3).
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Finally,

〈Jϕu, u〉

‖u‖
= ϕ(‖u‖)→∞ with ‖u‖ → ∞ ,

hence Jϕ is coercive.

Theorem 5. Let X be reflexive, locally uniformly convex and Jϕ : X → X∗.

Then Jϕ is bijective with its inverse J−1ϕ bounded, continuous and monotone.

Moreover, it holds

J−1ϕ = χ−1 J∗ϕ−1

where χ : X → X∗∗, is the canonical isomorphism between X and X∗∗ and J∗
ϕ−1 :

X∗ → X∗∗ is the duality mapping on X∗ corresponding to the normalization

function ϕ−1.

Proof: By Theorem 4, Jϕ is surjective. The space X being locally uniformly

convex, it is strictly convex (Theorem 2) and by Proposition 1 (i) we have that

Jϕ is injective.

Let, now, χ be the canonical isomorphism between X and X∗∗ (〈χ(x), x∗〉 =

〈x∗, x〉) and let J∗
ϕ−1 : X∗ → X∗∗ be the duality mapping corresponding to the

normalization function ϕ−1. It should be noticed that because X is reflexive and

locally uniformly convex, so is X∗∗; in particular X∗∗ is strictly convex (Theo-

rem 2) and, consequently, J∗
ϕ−1 : X∗ → X∗∗ is single valued (Proposition 1 (ii)).

It is easy to see that:

J−1ϕ = χ−1 J∗ϕ−1 .(1)

From (1) and because a duality mapping maps bounded subsets into bounded

subsets, it is immediately that J−1ϕ is bounded.

To see that J−1ϕ is continuous, let x∗n → x∗ in X∗.

From (1) and by Proposition 3 we have that J−1ϕ x∗n ⇀ J−1ϕ x∗. By the defini-

tion of the duality mapping Jϕ, it is easy to see that ‖J−1ϕ x∗n‖ → ‖J−1ϕ x∗‖. But

the space X is assumed to be locally uniformly convex, and so, J−1ϕ x∗n → J−1ϕ x∗.

To prove the monotonicity of J−1ϕ , the space X is identified with X∗∗ by the

canonical isomorphism χ. Then, for x∗1, x
∗
2 ∈ X

∗, we have:

〈
χ(J−1ϕ x∗1)− χ(J

−1
ϕ x∗2), x

∗
1 − x

∗
2

〉
=
〈
J∗ϕ−1x

∗
1 − J

∗
ϕ−1x

∗
2, x

∗
1 − x

∗
2

〉

and we apply Theorem 1 (ii) with ϕ−1 instead of ϕ and X∗ instead of X.
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1.2. The functional framework

In the sequel, Ω will be a bounded domain in RN , N ≥ 2 with Lipschitz

continuous boundary and p ∈ (1,∞). We shall use the standard notations:

W 1,p(Ω) =

{
u ∈ Lp(Ω) |

∂u

∂xi
∈ Lp(Ω), i = 1, ..., N

}

equipped with the norm:

‖u‖p
W 1,p(Ω) = ‖u‖p0,p +

N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
p

0,p

where ‖ ‖0,p is the usual norm on Lp(Ω).

It is well known that (W 1,p(Ω), ‖ ‖W 1,p(Ω)) is separable, reflexive and uni-

formly convex (see e.g. Adams [1, Theorem 3.5]).

We need the space

W
1,p
0 (Ω) = the closure of C∞0 (Ω) in the space W 1,p(Ω)

=
{
u ∈W 1,p(Ω) | u|∂Ω = 0

}

the value of u on ∂Ω being understood in the sense of the trace: there is a

unique linear and continuous operator γ : W 1,p(Ω) → W
1− 1

p
,p
(∂Ω) such that

γ is surjective and for u ∈ W 1,p(Ω) ∩ C(Ω) we have γ u = u|∂Ω. It holds

W
1,p
0 (Ω) = ker γ.

The dual space (W 1,p
0 (Ω))∗ will be denoted by W−1,p′(Ω), where 1

p
+ 1

p′
=1.

For each u ∈ W 1,p(Ω), we put

∇u =

(
∂u

∂x1
, ...,

∂u

∂xN

)
, |∇u| =

(
N∑

i=1

(
∂u

∂xi

)2)1
2

and let us remark that

|∇u| ∈ Lp(Ω) , |∇u|p−2
∂u

∂xi
∈ Lp′(Ω) for i = 1, ..., N .

Therefore, by the theorem concerning the form of the elements of W−1,p′(Ω) (see

Brézis [6] or Lions [23]) it follows that the operator −∆p may be seen acting from

W
1,p
0 (Ω) into W−1,p′(Ω) by

〈−∆pu, v〉 =

∫

Ω

|∇u|p−2∇u∇v for u, v ∈W 1,p
0 (Ω) .
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By virtue of the Poincaré inequality

‖u‖0,p ≤ Const(Ω, n) ‖|∇u|‖0,p for all u ∈W 1,p
0 (Ω) ,

the functional

W
1,p
0 (Ω) 3 u 7−→ ‖u‖1,p := ‖|∇u|‖0,p

is a norm on W 1,p
0 (Ω), equivalent with ‖ ‖W 1,p(Ω).

Because the geometrical properties of the space are not automatically main-

tained by passing to an equivalent norm, we give a direct proof of the following

theorem

Theorem 6. The space (W 1,p
0 (Ω), ‖ ‖1,p) is uniformly convex.

Proof: First, let p ∈ [2,∞). Then (see e.g. Adams [1, pp. 36]) for each

z, w ∈ RN , it holds:

∣∣∣∣
z + w

2

∣∣∣∣
p

+

∣∣∣∣
z − w

2

∣∣∣∣
p

≤
1

2

(
|z|p + |w|p

)
.

Let u, v ∈ W
1,p
0 satisfy ‖u‖1,p = ‖v‖1,p = 1 and ‖u − v‖1,p ≥ ε ∈ (0, 2]. We

have

∥∥∥∥
u+ v

2

∥∥∥∥
p

1,p
+

∥∥∥∥
u− v

2

∥∥∥∥
p

1,p
=

∫

Ω

(∣∣∣∣
∇u+∇v

2

∣∣∣∣
p

+

∣∣∣∣
∇u−∇v

2

∣∣∣∣
p
)

≤
1

2

∫

Ω

(
|∇u|p + |∇v|p

)
=

1

2

(
‖u‖p1,p + ‖v‖

p
1,p

)
= 1

which yields

∥∥∥∥
u+ v

2

∥∥∥∥
p

1,p
≤ 1−

(
ε

2

)p

.(2)

If p ∈ (1, 2), then (see e.g. Adams [1, pp. 36]) for each z, w ∈ RN , it holds:

∣∣∣∣
z + w

2

∣∣∣∣
p′

+

∣∣∣∣
z − w

2

∣∣∣∣
p′

≤

[
1

2

(
|z|p + |w|p

)] 1
p−1

.

A straightforward computation shows that if v∈W 1,p
0 (Ω) then |∇v|p

′
∈ Lp−1(Ω)

and ‖|∇v|p
′
‖0,p−1 = ‖v‖

p′

1,p.
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Let v1, v2 ∈ W
1,p
0 (Ω). Then |∇v1|

p′ , |∇v2|
p′ ∈ Lp−1(Ω), with 0 < p − 1 < 1

and, according to Adams [1, pp. 25],
∥∥∥|∇v1|p

′

+ |∇v2|
p′
∥∥∥
0,p−1

≥ ‖|∇v1|
p′‖0,p−1 + ‖|∇v2|

p′‖0,p−1 .

Consequently,

∥∥∥∥
v1 + v2

2

∥∥∥∥
p′

1,p
+

∥∥∥∥
v1 − v2

2

∥∥∥∥
p′

1,p
=

∥∥∥∥
∣∣∣∣∇

v1 + v2

2

∣∣∣∣
p′∥∥∥∥

0,p−1
+

∥∥∥∥
∣∣∣∣∇

v1 − v2
2

∣∣∣∣
p′∥∥∥∥

0,p−1

≤

∥∥∥∥∥

∣∣∣∣∇
v1 + v2

2

∣∣∣∣
p′

+

∣∣∣∣∇
v1 − v2

2

∣∣∣∣
p′
∥∥∥∥∥
0,p−1

=



∫

Ω

(∣∣∣∣
∇v1+∇v2

2

∣∣∣∣
p′

+

∣∣∣∣
∇v1−∇v2

2

∣∣∣∣
p′
)p−1




1
p−1

≤

[
1

2

∫

Ω

(
|∇v1|

p + |∇v2|
p
)] 1

p−1

=

[
1

2
‖v1‖

p
1,p +

1

2
‖v2‖

p
1,p

] 1
p−1

.

For u, v ∈ W
1,p
0 (Ω) with ‖u‖1,p = ‖v‖1,p = 1 and ‖u − v‖1,p ≥ ε ∈ (0, 2], we

get ∥∥∥∥
u+ v

2

∥∥∥∥
p′

1,p
≤ 1−

(
ε

2

)p′

.(3)

From (2) and (3), in either case there exists δ(ε) > 0 such that ‖u + v‖1,p ≤

2 (1− δ(ε)).

Below, the space W 1,p
0 (Ω) always will be considered to be endowed with the

norm ‖ ‖1,p.

Theorem 7. The operator −∆p : W
1,p
0 (Ω) → W−1,p′(Ω) is a potential one.

More precisely, its potential is the functional ψ : W 1,p
0 (Ω)→ R, given by

ψ(u) =
1

p
‖u‖p1,p

and

ψ′ = −∆p = Jϕ

where Jϕ : W 1,p
0 (Ω) → W−1,p′(Ω) is the duality mapping corresponding to the

normalization function ϕ(t) = tp−1.
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Proof: Since ψ(u) =
‖u‖1,p∫
0

ϕ(t) dt, it is sufficient to prove that ψ is Gâteaux

differentiable and ψ′(u) = −∆pu for all u ∈ W
1,p
0 (Ω) (see Theorem 1 (iii) and

Remark 1).

If u ∈ W
1,p
0 (Ω) is such that |∇u| = 0Lp(Ω) (this implies that ‖u‖1,p = 0 i.e.

u = 0
W

1,p
0 (Ω)

), then it is immediately that 〈ψ′(u), h〉 = 0 for all h ∈ W
1,p
0 (Ω).

Therefore, we may suppose that |∇u| 6= 0Lp(Ω).

It is obvious that ψ can be written as a product ψ = QP , where Q : Lp(Ω)→R
is given by Q(v) = 1

p
‖v‖p0,p and P : W 1,p

0 (Ω)→ Lp(Ω) is given by P (v) = |∇v|.

The functional Q is Gâteaux differentiable (see Vainberg [28]) and

〈Q′(v), h〉 = 〈|v|p−1 sign v, h〉(4)

for all v, h ∈ Lp(Ω).

Simple computations show that the operator P is Gâteaux differentiable at u

and

P ′(u) · v =
∇u∇v

|∇u|
(5)

for all v ∈W 1,p
0 (Ω).

Combining (4) and (5), we obtain that ψ is Gâteaux differentiable at u and

〈ψ′(u), v〉 =
〈
Q′(P (u)), P ′(u) · v

〉

=

〈
|∇u|p−1,

∇u∇v

|∇u|

〉

=

∫

Ω

|∇u|p−2∇u∇v = 〈−∆pu, v〉

for all v ∈W 1,p
0 (Ω).

Remark 2. Let ‖ ‖∗ be the dual norm of ‖ ‖1,p. Then, we have

‖−∆pu‖∗ = ‖Jϕu‖∗ = ϕ(‖u‖1,p) = ‖u‖p−11,p .

Theorem 8. The operator −∆p defines a one-to-one correspondence be-

tween W
1,p
0 (Ω) and W−1,p′(Ω), with inverse (−∆p)

−1 monotone, bounded and

continuous.

Proof: It is obvious from Theorems 7, 6 and 5.
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Remark 3. In fact, the above Theorem 8 asserts that for each f ∈W−1,p′(Ω),

the equation −∆pu = f has a unique solution in W 1,p
0 (Ω).

The properties of (−∆p)
−1 show how the solution u = (−∆p)

−1f depends on

the data f . These properties will be used in the sequel.

Since the elements of W 1,p
0 (Ω) vanish on the boundary ∂Ω in the sense of the

trace, it is natural that the unique solution inW 1,p
0 (Ω) of the equation −∆pu = f

to be called solution of the Dirichlet problem
{
−∆pu = f ,

u|∂Ω = 0 .

We shall conclude this section with two technical results which will be useful

in the sequel.

We have seen (Theorem 7) that the functional ψ(u) = 1
p
‖u‖p1,p is Gâteaux

differentiable on W 1,p
0 (Ω). Moreover, we have:

Theorem 9. The functional ψ is continuously Fréchet differentiable on

W
1,p
0 (Ω).

For the proof we need the following lemma (see Glowinski and Marrocco [16]).

Lemma 1.

(i) If p ∈ [2,∞) then it holds:

∣∣∣|z|p−2z − |y|p−2 y
∣∣∣ ≤ β |z − y|

(
|z|+ |y|

)p−2
for all y, z ∈ RN

with β independent of y and z;

(ii) If p ∈ (1, 2], then it holds:
∣∣∣|z|p−2z − |y|p−2 y

∣∣∣ ≤ β |z − y|p−1 for all y, z ∈ RN

with β independent of y and z.

Proof of Theorem 9: Consider the product space X =
∏N

i=1 L
p′(Ω)

endowed with the norm

[h]0,p′ =

( N∑

i=1

‖hi‖
p′

0,p′

) 1
p′

for h = (h1, .., hN ) ∈ X .
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We define g = (g1, ..., gN ) : W 1,p
0 (Ω)→ X by

g(u) = |∇u|p−2∇u ,

for u ∈W 1,p
0 (Ω).

Let us prove that g is continuous.

By the equivalence of the norms on RN we can find a constant C1 > 0 such

that

[h]p
′

0,p′ ≤ C1

∫

Ω

|h|p
′

,

for all h ∈ X .

Let p ∈ (2,∞) and u, v ∈W 1,p
0 (Ω). By Lemma 1 (i) and by the Hölder

inequality, we have:

[
g(u)− g(v)

]p′
0,p
≤ C1

∫

Ω

∣∣∣g(u)− g(v)
∣∣∣
p′

≤ C2

∫

Ω

|∇u−∇v|p
′
(
|∇u|+ |∇v|

)p′(p−2)

≤ C2 ‖u− v‖
p′

1,p

∥∥∥|∇u|+ |∇v|
∥∥∥
p′(p−2)

0,p

which yields

[
g(u)− g(v)

]
0,p
≤ C ‖u− v‖p

′

1,p

(
‖u‖1,p + ‖v‖1,p

)p′(p−2)
(6)

with C > 0 constant independent of u and v.

If p ∈ (1, 2] and u, v ∈W 1,p
0 (Ω), then from Lemma 1 (ii) it follows

[
g(u)− g(v)

]p′
0,p′

≤ C ′2

∫

Ω

|∇u−∇v|p
′(p−1) = C ′2 ‖u− v‖

p
1,p

or [
g(u)− g(v)

]
0,p′

≤ C ′ ‖u− v‖p−11,p(7)

with C ′ > 0 constant independent of u and v.

From (6) and (7) the continuity of g is obvious.

On the other hand, it holds
∥∥∥ψ′(u)− ψ′(v)

∥∥∥
∗
≤ K

[
g(u)− g(v)

]
0,p′

(8)

with K > 0 constant independent of u, v ∈W 1,p
0 (Ω).
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Indeed, by the Hölder inequality and by the equivalence of the norms on RN ,

we successively have:

∣∣∣
〈
ψ′(u)− ψ′(v), w

〉∣∣∣ ≤
∫

Ω

∣∣∣g(u)− g(v)
∣∣∣ |∇w|

≤

(∫

Ω

∣∣∣g(u)− g(v)
∣∣∣
p′
) 1
p′
(∫

Ω

|∇w|p
) 1
p

≤ K

( N∑

i=1

∥∥∥gi(u)− gi(v)
∥∥∥
p′

0,p′

) 1
p′

‖w‖1,p

= K
[
g(u)− g(v)

]
0,p′
‖w‖1,p

for u, v, w ∈W 1,p
0 (Ω), proving (8).

Now, by the continuity of g and (8), the conclusion of the theorem follows in

a standard way: a functional is continuously Fréchet differentiable if and only if

it is continuously Gâteaux differentiable.

Remark 4. Naturally, the Fréchet differential of ψ at u ∈ W 1,p
0 (Ω) will be

denoted by ψ′(u) and it is clear that ψ′(u) = −∆pu.

Theorem 10. The operator −∆p satisfies the (S+) condition: if un ⇀ u

(weakly in W 1,p
0 (Ω)) and lim sup

n→∞
〈−∆pun, un− u〉 ≤ 0, then un → u (strongly in

W
1,p
0 (Ω)).

Proof: It is a simple consequence of Proposition 2, Theorems 6, 2 and 7.

2 – The problem −∆pu = f(x, u), u|∂Ω = 0

In this paragraph we are interested about sufficient conditions on the right-

hand member f ensuring the existence of some u ∈W 1,p
0 (Ω) such that the equality

−∆pu = f(x, u) holds in the sense ofW−1,p′(Ω). Such an u will be called solution

of the Dirichlet problem

{
−∆pu = f(x, u) in Ω ,

u|∂Ω = 0 .
(9)
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Thus, first of all, appropriate conditions on f ensuring that Nf u ∈W
−1,p′(Ω)

must be formulated, Nf being the well known Nemytskii operator defined by f ,

i.e. (Nf u)(x) = f(x, u(x)) for x ∈ Ω. Hence, we are guided to consider some basic

results on the Nemytskii operator. Simple proofs of these facts can be found in

e.g. de Figueiredo [14] or Kavian [20] (see also Vainberg [28]).

2.1. Detour on the Nemytskii operator

Let Ω be as in the beginning of Section 1.2 and f : Ω×R →R be a Carathéodory

function, i.e.:

(i) for each s∈R, the function x 7→ f(x, s) is Lebesgue measurable in Ω;

(ii) for a.e. x∈Ω, the function s 7→ f(x, s) is continuous in R.

We make the convention that in the case of a Carathéodory function, the

assertion “x ∈ Ω” to be understood in the sense “a.e. x ∈ Ω”.

Let M be the set of all measurable function u : Ω→ R.

Proposition 4. If f : Ω × R →R is Carathéodory, then, for each u ∈ M,

the function Nf u : Ω→ R defined by

(Nf u)(x) = f(x, u(x)) for x ∈ Ω

is measurable in Ω.

In view of this proposition, a Carathéodory function f : Ω×R →R defines an

operator Nf : M→M, which is called Nemytskii operator.

The proposition here below states sufficient conditions when a Nemytskii op-

erator maps an Lp1 space into another Lp2 space.

Proposition 5. Suppose f : Ω × R →R is Carathéodory and the following

growth condition is satisfied:

|f(x, s)| ≤ C |s|r + b(x) for x ∈ Ω, s ∈ R ,

where C ≥ 0 is constant, r > 0 and b ∈ Lq1(Ω), 1 ≤ q1 <∞.

Then Nf (L
q1r(Ω)) ⊂ Lq1(Ω). Moreover, Nf is continuous from Lq1r(Ω) into

Lq1(Ω) and maps bounded sets into bounded sets.
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Concerning the potentiality of a Nemytskii operator, we have:

Proposition 6. Suppose f : Ω× R →R is Carathéodory and it satisfies the

growth condition:

|f(x, s)| ≤ C |s|q−1 + b(x) for x ∈ Ω, s ∈ R ,

where C ≥ 0 is constant, q > 1, b ∈ Lq′(Ω), 1
q
+ 1

q′
= 1.

Let F : Ω× R →R be defined by F (x, s) =
s∫
0
f(x, τ) dτ .

Then:

(i) the function F is Carathéodory and there exist C1 ≥ 0 constant and

c ∈ L1(Ω) such that

|F (x, s)| ≤ C1 |s|
q + c(x) for x ∈ Ω, s ∈ R ;

(ii) the functional Φ : Lq(Ω)→R defined by Φ(u) :=
∫
Ω
NF u =

∫
Ω
F (x, u) is

continuously Fréchet differentiable and Φ′(u) = NF u for all u ∈ Lq(Ω).

It should be noticed that, under the conditions of the above Proposition 6,

we have Nf (L
q(Ω)) ⊂ Lq′(Ω), NF (L

q(Ω)) ⊂ L1(Ω), each of the Nemytskii oper-

ators Nf and NF being continuous and bounded (it is a simple consequence of

Proposition 5). It should also be noticed that for each fixed u ∈ Lq(Ω), it holds

Nf u = Φ′(u) ∈ Lq′(Ω).

Now, we return to problem (9).

First, let us denote by p∗ the Sobolev conjugate exponent of p, i.e.

p∗ =





N p

N − p
if p < N ,

∞ if p ≥ N .

Below, the function f : Ω×R → R will be always assumed Carathéodory and

satisfying the growth condition

|f(x, s)| ≤ C |s|q−1 + b(x) for x ∈ Ω, s ∈ R ,(10)

where C ≥ 0 is constant, q ∈ (1, p∗), b ∈ Lq′(Ω), 1
q
+ 1

q′
= 1.
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The restriction q ∈ (1, p∗) ensures that the imbedding W 1,p
0 (Ω) ↪→ Lq(Ω) is

compact. Hence, the diagram

W
1,p
0 (Ω)

Id
↪→ Lq(Ω)

Nf
→ Lq′(Ω)

I∗
d
↪→W−1,p′(Ω)

shows that Nf is a compact operator (continuous and maps bounded sets into

relatively compact sets) from W
1,p
0 (Ω) into W−1,p′(Ω).

An element u ∈W 1,p
0 (Ω) is said to be solution of problem (9) if

−∆pu = Nf u(11)

in the sense of W−1,p′(Ω) i.e.

〈−∆pu, v〉 = 〈Nf u, v〉 for all v ∈W 1,p
0 (Ω)

or ∫

Ω

|∇u|p−2∇u∇v =

∫

Ω

f(x, u) v for all v ∈W 1,p
0 (Ω) .(12)

At this stage, in the approach of problem (9), two strategies appear to be

natural.

The first reduces problem (9) to a fixed point problem with compact operator.

Indeed, by Theorem 8, the operator (−∆p)
−1 : W−1,p′(Ω) → W

1,p
0 (Ω) is

bounded and continuous.

Consequently, (11) can be equivalently written

u = (−∆p)
−1Nf u(13)

with (−∆p)
−1Nf : W

1,p
0 (Ω)→W

1,p
0 (Ω) a compact operator.

The second is a variational one: the solutions of problem (9) appear as critical

points of a C1 functional on W 1,p
0 (Ω).

To see this, we first have that −∆p = ψ′, where the functional ψ(u) = 1
p
‖u‖p1,p

is continuously Fréchet differentiable on W 1,p
0 (Ω). On the other hand, under the

basic condition (10) and taking into account that the imbedding W
1,p
0 (Ω) →

Lq(Ω) is continuous (in fact, compact), the functional Φ: W 1,p
0 (Ω)→ R defined

by Φ(u) =
∫
Ω
F (x, u) with F (x, s) =

s∫
0
f(x, τ) dτ , is continuously Fréchet differen-

tiable on W 1,p
0 (Ω) and Φ′(u) = Nf u.
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Consequently, the functional F : W 1,p
0 (Ω)→ R defined by

F(u) = ψ(u)− Φ(u) =
1

p
‖u‖p1,p −

∫

Ω

F (x, u)

is C1 in W 1,p
0 (Ω) and

F ′(u) = (−∆p)u−Nf u .

The search for solutions of problem (9) is, now, reduced to the search of critical

points of F , i.e. of those u ∈ W 1,p
0 (Ω) such that F ′(u) = 0.

2.2. Existence of fixed points for (−∆p)
−1Nf via a Leray–Schauder

technique

In this section, the “a priori estimate method” will be used in order to es-

tablish the existence of fixed points for the compact operator T = (−∆p)
−1Nf :

W
1,p
0 (Ω)→W

1,p
0 (Ω) (see Dinca and Jebelean [13]).

For it suffices to prove that the set

S =
{
u ∈W 1,p

0 (Ω) | u = αTu for some α ∈ [0, 1]
}

is bounded in W 1,p
0 (Ω).

By (10), for arbitrary u ∈ W 1,p
0 (Ω), it is obvious that

‖Tu‖p1,p =
〈
(−∆p)Tu, Tu

〉
= 〈Nf u, Tu〉 =

∫

Ω

f(x, u)Tu

≤
∫

Ω

(
C |u|q−1 + b(x)

)
|Tu| .

Furthermore, for u ∈ S i.e. u = αTu, with some α ∈ [0, 1], we have

‖Tu‖p1,p ≤ C αq−1 ‖Tu‖q0,q + ‖b‖0,q′ ‖Tu‖0,q

≤ C αq−1C
q
1 ‖Tu‖

q
1,p + ‖b‖0,q′ C1 ‖Tu‖1,p

≤ C C
q
1 ‖Tu‖

q
1,p + ‖b‖0,q′ C1 ‖Tu‖1,p

the constant C1 coming from the continuous imbedding W 1,p
0 (Ω)→ Lq(Ω).
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Consequently, for each u ∈ S, it holds

‖Tu‖p1,p −K1 ‖Tu‖
q
1,p −K2 ‖Tu‖1,p ≤ 0(14)

with K1,K2 ≥ 0 constants.

Remark that if (14) would imply that there is a constant a ≥ 0 such that

‖Tu‖1,p ≤ a, then the boundedness of S would be proved, because we would have

‖u‖1,p = α ‖Tu‖1,p ≤ a.

But this is obviously true if q ∈ (1, p).

We have obtained

Theorem 11. If the Carathéodory function f : Ω × R → R satisfies (10)

with q ∈ (1, p) then the operator (−∆p)
−1Nf has fixed points in W

1,p
0 (Ω) or

equivalently, problem (9) has solutions. Moreover, the set of all solutions of

problem (9) is bounded in the space W 1,p
0 (Ω).

Remark 5. We shall see that if (10) holds with b ∈ L∞(Ω) then the vari-

ational approach allows to weaken the hypotheses of Theorem 11 and problem

(9) still has solutions but the boundedness of the set of all solutions will not be

ensured.

Remark 6. The condition q ∈ (1, p) appear as a technical condition, needed

in obtaining the boundedness of S.

It is a natural question if the set S still remains bounded in case that q = p

and it is a simple matter to see that if q = p and 1 − K1 > 0 then the above

reasoning still works. This means that we are interested to work with “the best

constants” C and C1 such that 1− C · Cp
1 be strictly positive.

There are situations when 1−C ·Cp
1 > 0 fails. The example here below shows

that then S can be unbounded.

Let λ be an eigenvalue of −∆p in W
1,p
0 (Ω) and u be a corresponding eigen-

vector:

−∆pu = λ |u|p−2 u .

It is clear that

λ =
‖u‖p1,p
‖u‖p0,p

.(15)

Because ‖v‖0,p≤C1‖v‖1,p for all v∈W
1,p
0 (Ω), from (15), it results that 1−λCp

1≤0.
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Consider the Carathéodory function f(x, s) = λ |s|p−2 s. Clearly, the growth

condition (10) is satisfied with q = p and b = 0, c = λ. Consequently, (14)

becomes

(1− λCp
1 ) ‖Tu‖

p
1,p ≤ 0

for all u ∈ S and no conclusion on the boundedness of S can be derived.

In fact, S is unbounded.

Indeed, we have −∆p(t u) = Nf (t u) i.e. t u = (−∆p)
−1Nf (t u) for all t ∈ R,

which means {t u | t ∈ R} ⊂ S and so, S is unbounded.

Remark 7. In the case f(x, s) = g(s) + h(x) with g : R → R continuous

and h ∈ L∞(Ω), the homotopy invariance of Leray–Schauder degree (but in a

different functional framework) is used by Hachimi and Gossez [17] in order to

prove the following result (see [17] Th 1.1):

If

(i) lim sup
s→±∞

g(s)

|s|p−2s
≤ λ1 and (ii) lim sup

s→±∞

pG(s)

|s|p
< λ1

where G(s) =
s∫
0
g(τ) dτ and λ1 is the first eigenvalue of −∆p in W

1,p
0 (Ω), then

the problem

−∆pu = g(u) + h(x) in Ω, u = 0 on ∂Ω

has a solution in W 1,p
0 (Ω) ∩ L∞(Ω).

2.3. Existence results by a direct variational method

As we have already emphasized in Section 2.1, in the variational approach,

under the growth condition (10) on f , the solutions of problem (9) are precisely

the critical points of the C1 functional F : W 1,p
0 (Ω)→ R defined by

F(u) = ψ(u)− Φ(u) =
1

p
‖u‖p1,p −

∫

Ω

F (x, u)

where F (x, u) =
s∫
0
f(x, τ) dτ .

Remark that the compact imbedding W
1,p
0 (Ω) ↪→ Lq(Ω) implies that F is

weakly lower semicontinuous in W 1,p
0 (Ω) .

So, by a standard result, in order to derive sufficient conditions for (9) has

solutions, a first suitable way is to ensure the coerciveness of F . Such results



DIRICHLET PROBLEMS WITH p-LAPLACIAN 359

were obtained by Anane and Gossez [4] even in more general conditions on f . It

is not our aim to detail this direction. However, we depict a few such of results.

First we refer to a result of Anane and Gossez [4].

Let G : Ω× R → R be a Carathéodory function, such that, for any R > 0,

Ω 3 x→ sup
|s|≤R

|G(x, s)| ∈ L1(Ω) .(16)

We write G(x, s) = λ1 |s|p

p
+ H(x, s), where λ1 is the first eigenvalue of −∆p

on W
1,p
0 (Ω) (see e.g. Anane [3], Lindqvist [22]) and let us define H±(x) as the

superior limit of H(x,s)
|s|p as s→ ±∞ respectively.

It holds (see Proposition 2.1 in Anane–Gossez [4]):

Theorem 12. Assume (16) and

(i) H±(x) ≤ 0 a.e. uniformly in x;

(ii) H+(x) < 0 on Ω+ and H−(x) < 0 on Ω− for subsets Ω± of positive

measure.

Then

G(u) =
1

p
‖u‖p1,p −

∫

Ω

G(x, u)

is well defined on W 1,p
0 (Ω), takes values in ]−∞,+∞], is weakly lower semicon-

tinuous and coercive.

We now return to problem (9).

By virtue of Proposition 6 (i), we have for any R > 0

sup
|s|≤R

|F (x, s)| ≤ C1R
q + c(x) ∈ L1(Ω)

showing that (16) is fulfilled with G(x, s) = F (x, s).

Clearly, in this case H(x, s) = F (x, s)− λ1|s|p

p
.

In order to extend a result of Mawhin–Ward–Willem [25] for the particular

case p = 2 to the general case p ∈ (1,∞), suppose that there exists a function

α(x) ∈ L∞(Ω) with α(x) < λ1, on a set of positive measure, such that

lim sup
s→±∞

pF (x, s)

|s|p
≤ α(x) ≤ λ1 uniformly in Ω .(17)
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We obtain

H±(x) = lim sup
s→±∞

H(x, s)

|s|p
= lim sup

s→±∞

(
F (x, s)

|s|p
−
λ1

p

)
=

= lim sup
s→±∞

F (x, s)

|s|p
−
λ1

p
≤

α(x)− λ1
p

which yields H±(x) ≤ 0 uniformly in Ω, i.e. (i) in Theorem 12.

On the other hand, it is clear that

H±(x) ≤
α(x)− λ1

p
< 0

on the set of positive measure Ω1 = {x ∈ Ω | α(x) < λ1} and (ii) in Theorem 12

is checked.

We have obtained

Theorem 13. Let f : Ω×R → R be a Carathéodory function satisfying the

growth condition (10). Suppose that there exists α(x) ∈ L∞(Ω) with α(x) < λ1

on a set of positive measure such that (17) holds.

Then F is coercive; consequently problem (9) has solutions.

A direct proof of Theorem 13 can be given as it follows.

Define N : W 1,p
0 (Ω)→ R by

N (v) = ‖v‖p1,p −
∫

Ω

α(x) |v|p

and let us prove that there exists ε0 > 0 such that

N (v) ≥ ε0 for all v ∈W 1,p
0 (Ω) with ‖v‖1,p = 1 .(18)

For, let us recall (see e.g. Anane [3]) that

λ1 = inf

{
‖v‖p1,p
‖v‖p0,p

| v ∈W 1,p
0 (Ω)\{0}

}
(19)

the infimum being attained exactly when v is multiple of some function u1>0.

By (17) and (19) it follows that N (v) ≥ 0 for all v ∈W 1,p
0 (Ω).

Supposing, by contradiction, that there is a sequence (vn) in W
1,p
0 (Ω) with

‖vn‖1,p = 1 and N (vn) → 0, we can find a subsequence of (vn), still denoted by

(vn), and some v0 ∈ W
1,p
0 (Ω) with vn ⇀ v0, weakly in W

1,p
0 (Ω) and vn → v0,

strongly in Lp(Ω).
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The functional v 7→
∫
Ω
α(x) |v|p is continuous on Lp(Ω) and weakly continuous

on W 1,p
0 (Ω).

By the weakly lower semicontinuity of N on W 1,p
0 (Ω), we infer

0 ≤ ‖v0‖
p
1,p −

∫

Ω

α(x) |v0|
p ≤ lim inf

n→∞
N (vn) = 0

and so, ‖v0‖
p
1,p =

∫
Ω
α(x) |v0|

p. But N (vn)→ 1−
∫
Ω
α(x) |v0|

p, hence

‖v0‖
p
1,p =

∫

Ω

α(x) |v0|
p = 1

which yields v0 6= 0.

Then, by (17) and (19) we have

λ1 ‖v0‖
p
0,p ≤ ‖v0‖

p
1,p =

∫

Ω

α(x) |v0|
p ≤ λ1 ‖v0‖

p
0,p(20)

which implies that λ1 =
‖v0‖

p
1,p

‖v0‖
p
0,p

.

It results that v0 is a nonzero multiple of u1.

Consequently, |v0(x)| > 0 a.e. in Ω.

But, then, denoting Ω1 := {x ∈ Ω | α(x) < λ1}, because meas(Ω1) > 0, we get

∫

Ω

α(x) |v0|
p =

∫

Ω1

α(x) |v0|
p +

∫

Ω\Ω1

α(x) |v0|
p < λ1 ‖v0‖

p
0,p

contradicting (20). So, (18) is proved.

Obviously, from (18) we have

‖v‖p1,p −
∫

Ω

α(x) |v0|
p ≥ ε0 ‖v‖

p
1,p for all v ∈W 1,p

0 (Ω) .(21)

Let ε > 0 be such that ε < λ1 ε0.

Using (17) and by Proposition 6 (i) a straightforward computation shows that

there exists a constant k = k(ε) such that

F (x, s) ≤
α(x) + ε

p
|s|p + k + c(x) for x ∈ Ω, s ∈ R .(22)
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Now, by (21) and (22) we estimate F as it follows

F(v) ≥
1

p

(
ε0 ‖v‖

p
1,p − ε ‖v‖

p
0,p

)
− k1

≥
λ1 ε0 − ε

p
‖v‖p1,p − k1 → ∞

as ‖v‖1,p →∞.

Remark 8.

(i) If in (10) the function b is required to be in L∞(Ω) then it is easy to

check that if q ∈ (1, p) then (17) holds with α ≡ 0 and so, problem

(9) has solutions. But, as we have already remarked (see Remark 5), if

b ∈ L∞(Ω) and only (17) is required then the boundedness of the set of

solutions (as in Theorem 11) is not stated.

(ii) The idea of the above direct proof of Theorem 13 is a suitable one in

proving the existence of solutions for a multivalued variant of problem

(9) (see Proposition 4.1 in Jebelean [19]).

2.4. Using the Mountain Pass Theorem

(cf. Dinca, Jebelean and Mawhin [12])

Again, the Carathéodory function f : Ω × R → R is assumed to satisfy the

growth condition (10).

The existence of nontrivial critical points of the C1 functional F : W 1,p
0 (Ω)→R

means that the Dirichlet problem (9) has nontrivial solutions.

This section is devoted to formulate supplementary conditions on f and F

ensuring the existence of such nontrivial critical points for F .

The main tool in this direction is the well known “Mountain Pass Theorem”

of Ambrosetti and Rabinowitz [2] which we recall here in a useful and popular

form (see e.g. Theorem 2.2 in Rabinowitz [26]).

Theorem 14. Let X be a real Banach space and I ∈ C1(X,R) satisfying

the Palais–Smale (PS) condition. Suppose I(0) = 0 and

(I1) there are constants ρ, α > 0 such that I|‖x‖=ρ ≥ α;

(I2) there is an element e ∈ X, ‖e‖ > ρ such that I(e) ≤ 0.
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Then I possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

I(u)

where

Γ =
{
g ∈ C([0, 1], X) | g(0) = 0, g(1) = e

}
.

It is obvious that each critical point u at level c (I ′(u) = 0, I(u) = c) is a

nontrivial one. Consequently, if the hypothesis of Theorem 14 are satisfied with

X = W
1,p
0 (Ω) and I = F then the existence of nontrivial solutions for problem

(9) is ensured.

We first deal with the (PS) condition for F .

Recall that F is said to satisfy the (PS) condition if any sequence (un) ⊂

W
1,p
0 (Ω) for which F(un) is bounded and F ′(un) → 0 as n → ∞, possesses a

convergent subsequence.

Lemma 2. If (un) ⊂ W
1,p
0 (Ω) is bounded and F ′(un) → 0 as n → ∞, then

(un) has a convergent subsequence.

Proof: One can extract a subsequence (unk) of (un), weakly convergent to

some u ∈W 1,p
0 (Ω). As F ′(unk)→ 0, we infer

〈
F ′(unk), unk− u

〉
=
〈
−∆punk−Nf unk , unk − u

〉
→ 0 .(23)

But

〈Nf unk , unk− u〉 → 0

because of ∣∣∣〈Nf unk , unk− u〉
∣∣∣ ≤ ‖Nf unk‖o,q′ ‖unk− u‖0,q

and, by unk⇀ u in W 1,p
0 (Ω) and by the compact imbedding W 1,p

0 (Ω) ↪→ Lq(Ω),

we get unk→ u strongly in Lq(Ω). Notice that (Nf unk) is bounded in Lq′(Ω).

By (23) we obtain

〈−∆punk , unk− u〉 → 0

which, together with Theorem 10 shows that unk→ u strongly in W 1,p
0 (Ω).

Theorem 15. If there exist θ > p and s0 > 0 such that

θ F (x, s) ≤ s f(x, s) for x ∈ Ω, |s| ≥ s0 ,(24)

then F satisfies the (PS) condition.
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Remark 9. It is worth noticing that (24) extends the well known condition

there are θ > 2 and s0 > 0 such that

0 < θ F (x, s) ≤ s f(x, s) for x ∈ Ω, |s| ≥ s0

which was first formulated by Ambrosetti and Rabinowitz [2] as a sufficient con-

dition to ensure that F satisfies (PS) in the particular case p = 2.

Proof of Theorem 15: It suffices to show that any sequence (un) ⊂W
1,p
0 (Ω)

for which (F(un)) is bounded and F ′(un)→ 0, is bounded. Then Lemma 2 will

accomplish the proof.

Let d ∈ R be such that F(un) ≤ d for all n ∈ N. For each n ∈ N, we denote

Ωn =
{
x ∈ Ω | |un(x)| ≥ s0

}
, Ω′n = Ω\Ωn .

We have
1

p
‖un‖

p
1,p −

( ∫

Ωn

F (x, un) +

∫

Ω′n

F (x, un)

)
≤ d .(25)

We proceed with obtaining estimations independent of n for the integrals in

(25).

Let n ∈ N be arbitrary chosen.

If x ∈ Ω′n, then |un(x)| < s0 and by Proposition 6 (i), it follows

F (x, un) ≤ C1 |un(x)|
q + c(x) ≤ C1 s

q
0 + c(x)

and hence ∫

Ω′n

F (x, un) ≤ C1 s
q
0 ·meas(Ω) +

∫

Ω

c(x) = K1 .(26)

If x ∈ Ωn, then |un(x)| ≥ s0 and by (24) it holds

F (x, un) ≤
1

θ
f(x, un(x))un(x)

which gives
∫

Ωn

F (x, un) ≤
∫

Ωn

1

θ
f(x, un)un =

1

θ

( ∫

Ω

f(x, un)un −
∫

Ω′n

f(x, un)un

)
.(27)

By the growth condition (10), we deduce
∣∣∣∣
∫

Ω′n

f(x, un)un

∣∣∣∣ ≤
∫

Ω′n

(
C |un|

q + b(x) |un|
)

≤ C s
q
0 ·meas(Ω) + s0

∫

Ω

b(x) = K2
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which yields

−
1

θ

∫

Ω′n

f(x, un)un ≤
K2

θ
.(28)

Finally, by (25), (26), (27) and (28) we get

1

p
‖un‖

p
1,p −

1

θ

∫

Ω

f(x, un)un ≤ d+K1 +
K2

θ
= K ,

1

p
‖un‖

p
1,p −

1

θ
〈Nf un, un〉 ≤ K .(29)

On the other hand, because F ′(un)→ 0 as n→∞, there is n0 ∈ N such that

|〈F ′(un), un〉| ≤ ‖un‖1.p for n ≥ n0. Consequently, for all n ≥ n0, we have

∣∣∣〈−∆pun, un〉 − 〈Nf un, un〉
∣∣∣ ≤ ‖un‖1,p

or ∣∣∣‖un‖p1.p − 〈Nf un, un〉
∣∣∣ ≤ ‖un‖1,p

which gives

−
1

θ
‖un‖

p
1,p −

1

θ
‖un‖1,p ≤ −

1

θ
〈Nf un, un〉 .(30)

Now, from (29) and (30) it results

(
1

p
−

1

θ

)
‖un‖

p
1,p −

1

θ
‖un‖1,p ≤ K

and taking into account that θ > p, we conclude that (un) is bounded.

Now, viewing (I2) in Theorem 14, the next step is to obtain sufficient con-

ditions for F be unbounded below in W 1,p
0 (Ω). The following lemma will throw

light in the role of this unboundedness.

Lemma 3. The functional F has the properties:

(i) F(0) = 0;

(ii) F maps bounded sets into bounded sets.

Proof: (i) Obvious.

(ii) Because

F ′(u) = −∆pu−Nf u



366 G. DINCA, P. JEBELEAN and J. MAWHIN

it is clear that

‖F ′(u)‖∗ ≤ ‖ −∆pu‖∗ + ‖Nf u‖∗

≤ ‖u‖p−11,p +K ‖Nf u‖0,q′

for all u ∈W 1,p
0 (Ω).

Furthermore, by the (compact) imbedding W 1,p
0 (Ω) ↪→ Lq(Ω) and by virtue

of the fact that Nf maps bounded sets in Lq(Ω) into bounded sets in Lq′(Ω), we

conclude that F ′ maps bounded sets in W 1,p
0 (Ω) into bounded sets in W−1,p′(Ω).

Let v be arbitrary chosen in W 1,p
0 (Ω). We have:

|F(v)| = |F(v)−F(0)| = |〈F ′(ξv), v〉| ≤ ‖F ′(ξv)‖∗ ‖v‖1,p

with ξ ∈ (0, 1). Then (ii) follows by the above conclusion on F ′.

Remark 10. Actually, (ii) in the above Lemma 3 is a consequence of the

growth condition (10) and of the fact that ‖−∆pu‖∗ = ‖u‖
p−1
1,p .

Remark 11. Assume F is unbounded from below. Then, for any ρ > 0

there is an element e ∈W 1,p
0 (Ω) with ‖e‖1,p ≥ ρ, such that F(e) ≤ 0.

Indeed, suppose by contradiction that there is some ρ > 0 such that for all

u ∈ W
1,p
0 (Ω) with ‖u‖ ≥ ρ, it holds F(u) ≥ 0. Then by Lemma 3 (ii), the set

{F(u) | ‖u‖1,p < ρ} is bounded. It results that F is bounded from below, which

is a contradiction.

Theorem 16. If either

(i) there are numbers θ > p and s1 > 0 such that

0 < θ F (x, s) ≤ s f(x, s) for x ∈ Ω, s ≥ s1 ,(31)

or

(ii) there are numbers θ > p and s1 < 0 such that

0 < θ F (x, s) ≤ s f(x, s) for x ∈ Ω, s ≤ s1 ,(32)

then F is unbounded from below.

Proof: We shall prove the sufficiency of condition (i) (similar argument if

(ii) holds).
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More precisely, we’ll show that if u ∈W 1,p
0 (Ω), u > 0 is such that

meas(M1(u)) > 0 holds, with

M1(u) =
{
x ∈ Ω | u(x) ≥ s1

}
,

then F(λu)→ −∞ as λ→∞.

First, for λ ≥ 1, let us denote

Mλ(u) =
{
x ∈ Ω | λu(x) ≥ s1

}

and let us remark that M1(u) ⊂Mλ(u), and hence meas(Mλ(u)) > 0.

On the other hand, there is a function γ ∈ L1(Ω), γ > 0 such that

F (x, s) ≥ γ(x) sθ for x ∈ Ω, s ≥ s1 .(33)

Indeed, for x ∈ Ω and τ ≥ s1, by (31) we have

θ

τ
≤

f(x, τ)

F (x, τ)
=

F ′τ (x, τ)

F (x, τ)

and integrating from s1 to s we get

ln

(
s

s1

)θ

≤ lnF (x, s)− lnF (x, s1)

which implies (33) with γ(x) = F (x,s1)

sθ1
> 0.

Now, let λ ≥ 1. Clearly,

F(λu) =
λp

p
‖u‖p1,p −

( ∫

Mλ(u)

F (x, λu) +

∫

Ω\Mλ(u)

F (x, λu)

)
.(34)

If x ∈Mλ(u) then λu(x) ≥ s1, and by (33)

F (x, λu(x)) ≥ γ(x)λθ uθ .

Therefore,
∫

Mλ(u)

F (x, λu) ≥ λθ
∫

Mλ(u)

γ(x)uθ ≥ λθ
∫

M1(u)

γ(x)uθ = λθK1(u) ,(35)

with K1(u) > 0.

If x ∈ Ω\Mλ(u) then λu(x) < s1, and by virtue of Proposition 6 (i), we

obtain

|F (x, λu(x))| ≤ C1 λ
q uq + c(x) ≤ C1 s

q
1 + c(x) .
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Therefore,

∣∣∣∣
∫

Ω\Mλ(u)

F (x, λu)

∣∣∣∣ ≤ C1 s
q
1 ·meas(Ω) +

∫

Ω

c(x) = K2 .(36)

From (34), (35) and (36) it results

F(λu) ≤
λp

p
‖u‖p1,p − λ

θK1(u) +K2 → −∞ as λ→∞

and the proof is complete.

Concerning condition (I1) in Theorem 14, we have the following

Theorem 17. Suppose the Carathéodory function f : Ω× R → R satisfies

(i) there is q ∈ (1, p∗) such that

|f(x, s)| ≤ C(|s|q−1 + 1) for x ∈ Ω, s ∈ R ,

with C ≥ 0 constant;

(ii)

lim sup
s→0

f(x, s)

|s|p−2 s
< λ1 uniformly with x ∈ Ω

where λ1 is the first eigenvalue of −∆p on W 1,p
0 (Ω).

Then there are constants ρ, α > 0 such that F|‖u‖1,p=ρ ≥ α.

Proof: We define h : Ω→ R by putting

h(x) = lim sup
s→0

f(x, s)

|s|p−2 s
.

By (ii) we can find µ ∈ (0, λ1) such that h(x) < µ uniformly with x ∈ Ω.

Therefore, there is some δµ > 0 such that

f(x, s)

|s|p−2 s
≤ µ for x ∈ Ω, 0 < |s| < δµ ,

or

f(x, s) ≤ µ sp−1 for x ∈ Ω, s ∈ (0, δµ) ,(37)

− µ |s|p−1 ≤ f(x, s) for x ∈ Ω, s ∈ (−δµ, 0) .(38)

Remark that the Carathéodory function f satisfies f(x, 0) = 0 for x ∈ Ω.
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From (37), (38) and by the definition of F , we infer

F (x, s) ≤
µ

p
|s|p for x ∈ Ω, |s| < δµ .(39)

Taking into account (i), it is easy to see that F satisfies

|F (x, s)| ≤ C1(|s|
q + 1) for x ∈ Ω, s ∈ R(40)

with C1 ≥ 0 constant.

Choose q1 ∈ (max{p, q}, p∗). Then by (40), there is a constant C2 ≥ 0 such

that

|F (x, s)| ≤ C2 |s|
q1 for x ∈ Ω, |s| ≥ δµ .(41)

From (39) and (41), we have

F (x, s) ≤
µ

p
|s|p + C2 |s|

q1 for x ∈ Ω, s ∈ R .(42)

Now, by the variational characterization of the first eigenvalue λ1 (see (19)),

by the estimate (42) and by the imbedding W 1,p
0 (Ω) ↪→ Lq1(Ω), it results

F(u) =
1

p
‖u‖p1,p −

∫

Ω

F (x, u)

≥
1

p
‖u‖p1,p −

µ

p

∫

Ω

|u|p − C2

∫

Ω

|u|q1

≥
1

p
‖u‖p1,p −

µ

p
‖u‖p0,p − C3 ‖u‖

q1
1,p

= ‖u‖p1,p

[
1

p

(
1− µ

‖u‖p0,p
‖u‖p1,p

)
− C3 ‖u‖

q1−p
1,p

]

≥ ‖u‖p1,p

[
1

p

(
1−

µ

λ1

)
− C3 ‖u‖

q1−p
1,p

]
≥ α > 0 ,

provided ‖u‖1,p = ρ is sufficiently small.

The following lemma will be needed in the sequel.

Lemma 4.

(i) If u ∈ W
1,p
0 (Ω) is a solution of problem (9) with f(x, s) ≥ 0 for x ∈ Ω

and s ≤ 0, then u ≥ 0.

(ii) If u ∈ W
1,p
0 (Ω) is a solution of problem (9) with f(x, s) ≤ 0 for x ∈ Ω

and s ≥ 0, then u ≤ 0.
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Proof: We shall prove (i) (similar argument for (ii)).

Let u ∈W 1,p
0 (Ω) be a solution of problem (9) and let us denote Ω− = {x ∈ Ω |

u(x) < 0}. We define u− = max{−u, 0}. By Theorem A.1 in Kinderlehrer and

Stampacchia [21], it is known that u− ∈W
1,p
0 (Ω) and it is obvious that

∇u− =

{
−∇u in Ω− ,

0 in Ω\Ω− .

From ∫

Ω

|∇u|p−2∇u∇u− =

∫

Ω

f(x, u)u−

we obtain

−
∫

Ω−

|∇u|p = −
∫

Ω−

f(x, u)u ≥ 0 .

Thus, ∇u = 0 a.e. in Ω−, consequently ∇u− = 0 a.e. in Ω. Therefore,

‖u−‖1,p = 0 or u− = 0 a.e. in Ω.

We conclude that meas(Ω−) = 0, i.e. u ≥ 0 a.e. in Ω.

At this stage we are in position to prove the main result of this section.

Theorem 18. Suppose f : Ω× R →R is Carathéodory and it satisfies:

(i) there is q ∈ (1, p∗) such that

|f(x, s)| ≤ C(|s|q−1 + 1) for x ∈ Ω, s ∈ R ,

with C ≥ 0 constant;

(ii)

lim sup
s→0

f(x, s)

|s|p−2 s
< λ1 uniformly with x ∈ Ω

where λ1 is the first eigenvalue of −∆p on W 1,p
0 (Ω);

(iii) there are constants θ > p and s0 > 0 such that

0 < θ F (x, s) ≤ s f(x, s) for x ∈ Ω, |s| ≥ s0 .

Then problem (9) has nontrivial solutions u− ≤ 0 ≤ u+.

Proof: We shall prove that (9) has a nontrivial solution u+ ≥ 0 (similar

argument for the existence of u−).
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We define f+ : Ω× R → R by f+(x, s) = f(x, s+|s|2 ) i.e.

f+(x, s) =

{
0 if s ≤ 0 ,
f(x, s) if s > 0 ,

and let F+ : Ω× R → R be defined by

F+(x, s) =

s∫

0

f+(x, τ) dτ .

The following assertions are true:

(i)+ the function f+ is Carathéodory and it satisfies

|f+(x, s)| ≤ C(|s|q−1 + 1) for x ∈ Ω, s ∈ R ;

(ii)+ lim sup
s→0

f+(x,s)
|s|p−2 s

< λ1 uniformly with x ∈ Ω;

(iii)+ θ F+(x, s) ≤ s f+(x, s) for x ∈ Ω, |s| ≥ s0;

(iv)+ 0 < θ F+(x, s) ≤ s f+(x, s) for x ∈ Ω, s ≥ s0.

Indeed, (i)+, (iii)+ and (iv)+ are easily seen.

To see (ii)+, we have

lim sup
s→0

f+(x, s)

|s|p−2 s
= max

{
lim sup

s↗0

f+(x, s)

|s|p−2 s
, lim sup

s↘0

f+(x, s)

|s|p−2 s

}

= max

{
0, lim sup

s↘0

f(x, s)

|s|p−2 s

}
< λ1 uniformly with x ∈ Ω .

From (i)+–(iv)+ we infer that the C1 functional F+ : W
1,p
0 (Ω)→ R defined by

F+(u) =
1

p
‖u‖p1,p −

∫

Ω

F+(x, u)

has a nontrivial critical point u+ ∈W
1,p
0 (Ω).

To see this, we apply Theorem 14 with I = F+.

To this end, first of all, it will be remarked that viewing (i)+, the results

concerning F remain valid for F+, with f+ instead of f .

Clearly, F+(0) = 0.

By (i)+, (ii)+ and Theorem 17, there are constants α, ρ > 0 such that

F+|‖u‖1,p=ρ ≥ α.
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Furthermore, by (iv)+, Theorem 16 (i) and Lemma 3 (ii) (also see Remark 11),

there is an element e ∈W 1,p
0 (Ω) with ‖e‖1,p ≥ ρ, such that F+(e) ≤ 0.

Finally, by (iii)+ and Theorem 15, F+ satisfies the (PS) condition.

The nontrivial critical point u+ ∈ W
1,p
0 (Ω), whose existence is ensured by

Theorem 14, satisfies

∫

Ω

|∇u+|
p−2∇u+∇v =

∫

Ω

f+(x, u+) v for all v ∈W 1,p
0 (Ω) .(43)

As f+(x, s) = 0 for x ∈ Ω, s ≤ 0, Lemma 4 (i) shows that u+ ≥ 0.

Now, by the definition of f+, (43) becomes

∫

Ω

|∇u+|
p−2∇u+∇v =

∫

Ω

f(x, u+) v for all v ∈W 1,p
0 (Ω)

and the proof is complete.

Remark 12. Theorem 18 was originally stated by Ambrosetti and Rabi-

nowitz (see Corollary 3.11 in Ambrosetti–Rabinowitz [2]), in the case p = 2.

After, their result became frequently cited as a typical existence result for non-

linear Dirichlet problems with right-hand member having a superlinear growth

(see e.g. Corollary 2.23 in Rabinowitz [26], Theorem 6.9 in de Figueiredo [14],

Theorem 6.2 in Struwe [27], et. al.).

In this context, Theorem 18 can be seen as a model of existence result for

Dirichlet problems with p-Laplacian having the right-hand member a function

with “super p− 1 polynomial” growth, condition (iii) implying

lim
|s|→∞

f(x, s)

|s|p−2 s
= +∞ .(44)

Moreover, (44) shows that the generality of Theorem 18 is not lost if in (i) q is

required to be in (p, p∗) instead of (1, p∗).

On the other hand, a reasoning similar to that in the proof of Theorem 16

shows that conditions (iii) and (i) in Theorem 18 yield the existence of some

γ ∈ L∞(Ω), γ > 0, such that F (x, s) ≥ γ(x) |s|θ for x ∈ Ω, and |s| ≥ s0 (also see

the proof of Proposition 7 bellow). This shows that the potential F grows faster

than |s|p with |s| → ∞. For an existence result allowing F to grow faster than

|s|p or slower than |s|p we refer the reader to Costa and Magalhaes [10].
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2.5. Multiple solutions

Taking into account the minimax methods in critical point theory, invoking

the “Mountain Pass Theorem” in order to prove existence of nontrivial solutions

for problem (9), make natural the question: what about multiple solutions?

More precisely, following the particular case p = 2, it would be expected

that under the basic hypothesis of Theorem 18, the oddness of f be sufficient to

guarantee the existence of an unbounded sequence of solutions for problem (9).

Such a result will conclude the paper.

We need the following

Proposition 7. Suppose the Carathéodory function f : Ω×R → R satisfies

(i) there is q ∈ (1, p∗) such that

|f(x, s)| ≤ C(|s|q−1 + 1) for x ∈ Ω, s ∈ R ,

with C ≥ 0 constant;

(ii) there are numbers θ > ρ and s0 > 0 such that

0 < θ F (x, s) ≤ s f(x, s) for x ∈ Ω, |s| ≥ s0 .

Then, if X1 is a finite dimensional subspace of W
1,p
0 (Ω), the set

S = {v ∈ X1 | F(v) ≥ 0} is bounded in W 1,p
0 (Ω).

Proof: From (i), F satisfies

|F (x, s)| ≤ C1(|s|
q + 1) for x ∈ Ω, s ∈ R ,(45)

with C1 ≥ 0 constant.

We claim that there is γ ∈ L∞(Ω), γ > 0 on Ω, such that

F (x, s) ≥ γ(x) |s|θ for x ∈ Ω, |s| ≥ s0 .(46)

Indeed, as in the proof of Theorem 16, we have

F (x, s) ≥ γ1(x) s
θ for x ∈ Ω, s ≥ s0 ,(47)

where γ1(x) =
F (x,s0)

sθ0
. By virtue of (45), it is obvious that γ1 ∈ L

∞(Ω) and (ii)

yields γ1 > 0 on Ω.

A similar reasoning shows that

F (x, s) ≥ γ2(x) |s|
θ for x ∈ Ω, s ≤ −s0 ,(48)

where γ2(x) =
F (x,−s0)

sθ0
. Again γ2 ∈ L

∞(Ω) and γ2 > 0 on Ω.
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Therefore, (46) holds with γ(x) = min{γ1(x), γ2(x)} for x ∈ Ω, as claimed.

We shall prove that F satisfies

F(v) ≤
1

p
‖v‖p1,p −

∫

Ω

γ(x) |v|θ −K for all v ∈W 1,p
0 (Ω)(49)

with K ≥ 0 constant.

Let v be arbitrary chosen in W
1,p
0 (Ω) and let us denote Ω< = {x ∈ Ω |

|v(x)|<s0}.

By (45) we have
∫

Ω<

F (x, v) ≥ −C1

∫

Ω<

(|v|q + 1) ≥ −C1

∫

Ω

(sq0 + 1) =

= −C1(s
q
0 + 1) ·meas(Ω) = K1

and by (46) it holds
∫

Ω\Ω<

F (x, v) ≥
∫

Ω\Ω<

γ(x) |v|θ .

Then

F(v) =
1

p
‖v‖p1,p −

( ∫

Ω<

F (x, v) +

∫

Ω\Ω<

F (x, v)

)

≤
1

p
‖v‖p1,p −

∫

Ω\Ω<

γ(x) |v|θ −K1

=
1

p
‖v‖p1,p −

∫

Ω

γ(x) |v|θ +

∫

Ω<

γ(x) |v|θ −K1

≤
1

p
‖v‖p1,p −

∫

Ω

γ(x) |v|θ + K ,

where K = ‖γ‖0,∞ s
q
0 ·meas(Ω)−K1, and (49) is proved.

The functional ‖ ‖γ : W
1,p
0 (Ω)→ R defined by

‖v‖γ =

(∫

Ω

γ(x) |v|θ
) 1
θ

is a norm on W 1,p
0 (Ω). On the finite dimensional subspace X1 the norms ‖ ‖1,p

and ‖ ‖γ being equivalent, there is a constant K̃ = K̃(X1) > 0 such that

‖v‖1,p ≤ K̃

(∫

Ω

γ(x) |v|θ
)1
θ

for all v ∈ X1 .
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Consequently, by (49), on X1 it holds:

F(v) ≤
1

p
K̃p

(∫

Ω

γ(x) |v|θ
)p
θ

−
∫

Ω

γ(x) |v|θ −K

=
1

p
K̃p ‖v‖pγ − ‖v‖

θ
γ −K .

Therefore
1

p
K̃p ‖v‖pγ − ‖v‖

θ
γ −K ≥ 0 for all v ∈ S

and taking into account θ > p, we conclude that S is bounded.

We also need the following Z2 symmetric version of the “Mountain Pass The-

orem” (see e.g. Theorem 9.12 in Rabinowitz [26]).

Theorem 19. Let X be an infinite dimensional real Banach space and let

I ∈ C1(X,R) be even, satisfy (PS) condition and I(0) = 0. If:

(I1) there are constants ρ, α > 0 such that I|‖x‖=ρ ≥ α;

(I′2) for each finite dimensional subspace X1 of X the set {x ∈ X | I(x) ≥ 0}

is bounded,

then I possesses an unbounded sequence of critical values.

Now, we can state

Theorem 20. Suppose the Carathéodory function f : Ω × R → R is odd

in the second argument: f(x, s) = − f(x,−s). If conditions (i), (ii), (iii) of

Theorem 18 are satisfied, that is

(i) there is q ∈ (1, p∗) such that

|f(x, s)| ≤ C(|s|q−1 + 1) for x ∈ Ω, s ∈ R ,

with C ≥ 0 constant;

(ii)

lim sup
s→0

f(x, s)

|s|p−2 s
< λ1 uniformly with x ∈ Ω

where λ1 is the first eigenvalue of −∆p on W 1,p
0 (Ω);

(iii) there are constants θ > p and s0 > 0 such that

0 < θ F (x, s) ≤ s f(x, s) for x ∈ Ω, |s| ≥ s0 ,

then problem (9) has an unbounded sequence of solutions.
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Proof: The function f being odd, the functional F is even. It is obvious

that F(0) = 0.

From (iii) by Theorem 15, F satisfies the (PS) condition.

By (i), (ii) and Theorem 17, there are constants α, ρ > 0 such that

F|‖u‖1,p=ρ ≥ α.

Proposition 7 and (i), (iii) show that the set {v ∈ X1 | F(u) ≥ 0} is bounded

in W 1,p
0 (Ω), whenever X1 is a finite dimensional subspace of W 1,p

0 (Ω).

Theorem 19 applies with X = W
1,p
0 (Ω) and I = F .

Remark 13. In Proposition 7 by condition (ii), the exponent q in the growth

condition (i) is forced to be in the interval (p, p∗) (see Remark 12). Therefore, as

in the case of Theorem 18, the generality of Theorem 20 is not lost if q in (i) is

required to be in the interval (p, p∗) instead of (1, p∗).

Remark 14. In the particular case p = 2 the symmetry assumption on f al-

lows to remove condition (ii) in Theorem 20 (see e.g. Theorem 9.38 in Rabinowitz

[26], Theorem 6.6 in Struwe [27]).
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[20] Kavian, O. – Introduction à La Théorie des Points Critiques et Applications aux

Problemes Elliptiques, Springer-Verlag, 1993.

[21] Kinderlehrer, D. and Stampacchia, G. – An Introduction to Variational

Inequalities and Their Applications, Academic Press, 1980.

[22] Lindqvist, P. – On a nonlinear eigenvalue problem, Fall School Analysis
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