TOPOLOGICAL PROPERTIES OF SOLUTION SETS FOR FUNCTIONAL DIFFERENTIAL INCLUSIONS GOVERNED BY A FAMILY OF OPERATORS

A.G. Ibrahim

Abstract

Let $r>0$ be a finite delay and $C([-r, t], E)$ be the Banach space of continuous functions from $[-r, 0]$ to the Banach space E. In this paper we prove an existence theorem for functional differential inclusions of the form: $\dot{u}(t) \in A(t) u(t)+$ $F(t, \tau(t) u)$ a.e. on $[0, T]$ and $u=\psi$ on $[-r, 0]$, where $\{A(t): t \in[0, T]\}$ is a family of linear operators generating a continuous evolution operator $K(t, s), F$ is a multifunction such that $F(t, \cdot)$ is weakly sequentially hemi-continuous and $\tau(t) u(s)=u(t+s)$, for all $t \in[0, T]$ and all $s \in[-r, 0]$. Also, we are concerned with the topological properties of solution sets.

1 - Introduction

The existence of solutions for functional differential inclusions (FDI) and the topological properties of solution sets are studied extensively (see, for example, [1], [2], [9], [10], [11], [12], [13]). However, not much study has been done for functional differential inclusions governed by operators. Mainly, recently, CastaingMarques [3] considered a functional differential inclusions governed by sweeping process while Castaing-Faik-Salvadori [5] considered a functional differential inclusion governed by m-accretive operators which are independent of the time. That is, they proved the existence of integral solutions for the following FDI:

$$
\left\{\begin{array}{lr}
\dot{u}(t) \in A(u(t))+F(t, \tau(t) u), & \text { a.e. on }[0, T] \\
u=\psi & \text { on }[-r, 0]
\end{array}\right.
$$

[^0]where $r>0$ is a finite delay, A is m-accretive operator on a separable Banach space E, F is a multifunction, ψ is a continuous function from $[-r, 0]$ to E and for each $t \in[0, T] \tau(t) u$ is a continuous on $[-r, 0]$ such that for each $s \in[-r, 0]$, $(\tau(t) u)(s)=u(t+s)$.

The purpose of this paper is to obtain conditions on the data that guaranteed the existence of integral solutions and to characterize topological properties of solution sets for a functional differential inclusion (differential inclusion with delay) of the form:

$$
(P)\left\{\begin{array}{lr}
\dot{u}(t) \in A(u(t))+F(t, \tau(t) u), & \text { a.e. on }[0, T] \\
u=\psi & \text { on }[-r, 0]
\end{array}\right.
$$

where $\{A(t): t \in[0, T]\}$ is a family of densely defined, closed, linear operators on a separable Banach space E. Also, we obtain a continuous dependence result that examines the change in the solution set as we vary the initial function.

Our results generalize many previous theorems. In the important case $A(t)=0$, $\forall t \in I$, we have that $K(t, s)=I d$ and an integral solution, in fact, a strong solution. Then, as special case, we obtain a generalization of the results of Deimling [7], Kisielewicz [14] and Papageorgiou [16], [17]. In addition, if $A(t) \neq 0$ then many results of this kind are generalized too. For example, Cichon [6], Frankwska [8] and Papageorgiou [18] considered the problem (P) without delay. Moreover, Castaing, Faik and Salvadori [5] investigated the problem (P) in the case when A is an m-accretive multivalued operator and dependent of t. Finally Castaing and Ibrahim [2] considered the problem (P) when $A(t)=0, \forall t \in I$.

2 - Definitions, notations and preliminaries

We will use the following definitions and notations.

- E is a separable Banach space, E^{\prime} the topological dual of E and E_{w} is the vector space E equipped with the $\sigma\left(E, E^{\prime}\right)$ topology.
$-c(E)($ resp. $c k(E))$ is the family of nonempty convex closed (resp. nonempty convex compact) subsets of E.
- If Z is a subset of $E, \delta^{*}(\cdot, Z)$ is the support function of Z and $|Z|=\{\|z\|$: $z \in Z\}$.
- $r>0, T>0$ and $I=[0, T]$.
- $L^{1}(I, E)$ is the Banach space of Lebesque-Bochner integrable functions $f: I \rightarrow E$ endowed with the usual norm and $\mathcal{L}(E)$ is the Banach space of all linear continuous operators on E.
- $C(I, E)$ is the Banach space of continuous functions $f: I \rightarrow E$ with the norm of uniform convergence, $C_{0}=C([-r, 0], E), \psi \in C_{0}$.
- For any $t>0$ we denote by $\tau(t)$ the mapping from $C([-r, T], E)$ to $C_{0}=C([-r, 0], E)$ defined by $\tau(t) u(s)=u(s+t), \forall s \in[-r, 0], \forall u \in$ $C([-r, T], E)$.
- A multifunction $G: E \rightarrow 2^{E}-\{\emptyset\}$ with closed values is upper semicontinuous (u.s.c) if and only if $G^{-}(Z)=\{x \in E: G(x) \cap Z \neq \emptyset\}$ is closed whenever $Z \subset E$ is closed. Taking on E its weak topology, $\sigma\left(E, E^{\prime}\right)$, we obtain in a similar way a notion of $w-w$ upper semicontinuous $(w-w$ u.s.c) that is, upper semicontinuous from E_{w} to E_{w}. If the set $G^{-}(Z)$ is weakly sequentially closed whenever Z is weakly closed, we shall say that G is $w-w$ sequentially u.s.c.
- A multifunction $G: E \rightarrow 2^{E}-\{\emptyset\}$ with closed values is called upper hemicontinuous (u.h.c) [weakly upper hemicontinuous, w-u.h.c] if and only if for each $x^{*} \in E^{\prime}$ and for each $\lambda \in \mathbb{R}$ the set $\left\{x \in E: \delta^{*}\left(x^{*}, G(x)\right)<\lambda\right\}$ is open in E (in E_{w}).
- A multifunction $G: E \rightarrow 2^{E}-\{\emptyset\}$ with closed values is called weakly sequentially upper hemicontinuous (w-seq uhc) if and only if for each $x^{*} \in E^{\prime}$, $\delta^{*}\left(x^{*}, G(\cdot)\right): E \rightarrow \mathbb{R}$ is sequentially upper semicontinuous from E_{w} to \mathbb{R}, see ([6], [14]).
If $G: I \rightarrow 2^{E}-\{\emptyset\}$ is measurable and integrably bounded with weakly compact values, then, the set of all integrable selections of G, S_{G}^{1}, is weakly compact in $L^{1}(I, E)$, see [4].
- μ is either the Kuratowski or the Hausdorff measure of noncompactness on E.

Let $\{A(t): t \in I=[0, T]\}$ be a family of densely defined, closed, linear operators on E. Suppose that for every $s \in I$ and every $x \in E$ the initial value problem problem

$$
(*) \quad\left\{\begin{array}{l}
\dot{u}(t) \in A(t) u(t), \quad t \in[s, T] \\
u(s)=x
\end{array}\right.
$$

has a unique strong solution. Then an operator $K(\cdot, \cdot)$ can be defined from $\Delta=\{(t, s): 0 \leq s \leq t \leq T\}$ to E by $K(t, s) x=u(t)$ where u is the unique solution of $(*)$. The operator $K(\cdot, \cdot)$ is called a fundamental solution of $(*)$ or we say the family $\{A(t): t \in I\}$ is a generator of a fundamental solutions $K(\cdot, \cdot)$ (see [19]). A continuous function $u:[-r, T] \rightarrow E$ is called an integral solution of the
problem (P) if $u=\psi$ on $[-r, 0]$ and for every $t \in I$,

$$
u(t)=K(t, 0) \psi(0)+\int_{0}^{t} K(t, s) f(s) d s
$$

where $f \in L^{1}(I, E)$ and $f(s) \in F(s, \tau(s) u)$ a.e..
The following lemmas will be crucial in the proof of our results.
Lemma 2.1 (Lemma 1, [6]). Let Y be a Banach space. Assume:
(1) $G: E \rightarrow c(Y)$ be w-seq uhc;
(2) $\|G(x)\| \leq a(t)$ a.e. on I, for every $x \in E$, where $a \in L^{1}(I, \mathbb{R})$;
(3) $x_{n} \in C(I, E), x_{n}(t) \rightarrow x_{0}(t)$ (weakly) a.e. on I;
(4) $y_{n} \rightarrow y_{0}$ (weakly), $y_{n}, y_{0} \in L^{1}(I, E)$;
(5) $y_{n}(t) \in G\left(x_{n}(t)\right)$ a.e. on I.

Thus $y_{0}(t) \in G\left(x_{0}(t)\right)$ a.e. on I.
Lemma 2.2 (Theorem 1, [6]). Let $\{A(t): t \in I\}$ be a family of densely defined, closed, linear operators on E and is a generators of a fundamental solution $K(\cdot, \cdot): \Delta=\{(t, s): 0 \leq s \leq t \leq T\} \rightarrow \mathcal{L}(E)$ such that
$\left(\mathbf{A}_{1}\right) K(s, s)=I d, s \in I$ and $K(r, s) K(s, t)=K(r, t), r<s<t ;$
$\left(\mathbf{A}_{2}\right) K: \Delta \rightarrow \mathcal{L}(E)$ is strongly continuous;
$\left(\mathbf{A}_{3}\right)\|K(t, s)\| \leq M, \forall(t, s) \in \Delta ;$
$\left(\mathbf{A}_{4}\right) K(\cdot, s): I \rightarrow \mathcal{L}(E)$ is uniformly continuous.
Let $S: I \times E \rightarrow c(E)$ such that
$\left(\mathbf{S}_{1}\right)$ For each $x \in E, S(\cdot, x)$ has a measurable selection;
$\left(\mathbf{S}_{2}\right)$ For each $t \in I, S(t, \cdot)$ is w-seq. u.h.c.;
$\left(\mathbf{S}_{3}\right)$ There exists $a \in L^{1}(I, \mathbb{R})$ such that for each $x \in E$,

$$
\|S(t, x)\| \leq a(t)(1+\|x\|) \quad \text { a.e. }
$$

$\left(\mathbf{S}_{4}\right)$ For each bounded $B \subset E$

$$
\lim _{\delta \rightarrow 0} \mu\left(S\left(I_{t, \delta} \times B\right)\right) \leq w(t, \mu(B)) \quad \text { a.e. on } I
$$

where $I_{t, \delta}=[t-\delta, t] \cap I$ and w is a Kamke function. Then for each $x_{0} \in E$ there exists at least an integral solution for the problem:

$$
\left\{\begin{array}{l}
\dot{u}(t) \in A(t) u(t)+S(t, u(t)), \quad \text { a.e. on } I \\
u(0)=x_{0}
\end{array}\right.
$$

Moreover, for each $x_{0} \in E$ the set $S\left(x_{0}\right)$ of all integral solutions is compact.

3 - Existence theorem for (P)

In this section we give an existence theorem for (P).
Theorem 3.1. Let $\{A(t): t \in I\}$ be a family of densely defined, closed, linear operators on E and is a generator of a fundamental solution $K(\cdot, \cdot)$ satisfying conditions $\left(A_{1}\right)-\left(A_{4}\right)$. Let $F: I \times C([-r, 0], E) \rightarrow c(E)$ be a multifunction such that
$\left(\mathbf{F}_{1}\right)$ For each $g \in C([-r, 0], E), F(\cdot, g)$ has a measurable selection;
$\left(\mathbf{F}_{2}\right)$ For each $t \in I, F(t, \cdot)$ is w-seq. uhc;
$\left(\mathbf{F}_{3}\right)$ There exists $a \in L^{1}(I, \mathbb{R})$ such that for every $g \in C([-r, 0], E)$,

$$
\|F(t, g)\| \leq a(t)(1+\|g(0)\|) \quad \text { a.e. }
$$

$\left(\mathbf{F}_{4}\right)$ There exists $\gamma \in L^{1}\left(I, \mathbb{R}^{+}\right)$such that for each bounded subset Z of $C([-r, 0], E)$,

$$
\mu(F(t \times Z)) \leq \gamma(t) \mu(Z(0)), \quad \text { a.e.. }
$$

Then for each $\psi \in C([-r, 0], E)$ the problem (P) has an integral solution.

Proof: We construct, by induction, a sequence $\left(u_{n}\right)$ in $C([-r, T], E)$ such that it has a subsequence converges uniformly to a function $u \in C([-r, T], E)$ which is an integral solution of (P). For notional convenience we assume without any loss of generality that $T=1$.

Step 1. Let $n \geq 1$. Set $u_{n}=\psi$ on $[-r, 0]$. Consider the partition of I by the points $t_{m}^{n}=\frac{m}{n}, m=0,1,2, \ldots, n$. We define a step function $\theta_{n}: I \rightarrow I$
by $\theta_{n}(0)=0, \theta_{n}(t)=t_{m+1}^{n}$ for $t \in\left(t_{m}^{n}, t_{m+1}^{n}\right]$. Now we construct two functions $u_{n} \in C([-r, T], E)$ and $g_{n} \in L^{1}(I, E)$ such that for all $t \in[0, T]$,

$$
\begin{align*}
& u_{n}(t)=K(t, 0) \psi(0)+\int_{0}^{t} K(t, s) g_{n}(s) d s \tag{1}\\
& g_{n}(t) \in F\left(t, \tau\left(\theta_{n}(t)\right) f_{n \theta_{n}(t)-1}\left(\cdot, u_{n}(t)\right)\right) \quad \text { a.e. on } \quad I \tag{2}
\end{align*}
$$

where for every $m=\{0,1,2, \ldots, n-1\}, f_{m}:\left[-r, t_{m+1}^{n}\right] \times E \rightarrow E$, defined by

$$
f_{m}(t, x)= \begin{cases}u_{n}(t) & \text { if } t \in\left[-r, t_{m}^{n}\right] \\ u_{n}\left(t_{m}^{n}\right)+n\left(t-t_{m}^{n}\right)\left(x-u_{n}\left(\frac{m}{n}\right)\right) & \text { if } t \in\left[t_{m}^{n}, t_{m+1}^{n}\right]\end{cases}
$$

Let $f_{0}:\left[-r, t_{1}^{n}\right] \times E \rightarrow E$ be defined by

$$
f_{0}(t, x)= \begin{cases}\psi(t) & \text { if } t \in[-r, 0] \\ \psi(0)+n t(x-\psi(0)) & \text { if } t \in\left[0, t_{1}^{n}\right]\end{cases}
$$

and $F_{0}:\left[0, t_{1}^{n}\right] \times E \rightarrow c(E)$ be defined by

$$
F_{0}(t, x)=F\left(t, \tau\left(t_{1}^{n}\right) f_{0}(\cdot, x)\right)
$$

We want to show that F_{0} satisfies conditions $\left(\mathrm{S}_{1}\right)-\left(\mathrm{S}_{4}\right)$ of Lemma 2.2. Clearly Condition $\left(S_{1}\right)$ is verified. Next, to show that F_{0} satisfies condition $\left(S_{2}\right)$ is suffices to prove that if $x_{k} \rightarrow x$ weakly in E then $\tau\left(t_{1}^{n}\right) f_{0}\left(\cdot, x_{k}\right) \rightarrow \tau\left(t_{1}^{n}\right) f_{0}(\cdot, x)$ weakly in $C([-r, 0], E)$. So, let γ be a bounded regular measure from $[-r, 0]$ to E^{\prime} and is of bounded variation. We have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{-r}^{0}\left(\tau\left(t_{1}^{n}\right) f_{0}\left(\cdot, x_{k}\right)\right. & \left.-\tau\left(t_{1}^{n}\right) f_{0}(\cdot, x)\right)(t) d \gamma(t)= \\
& =\lim _{k \rightarrow \infty} \int_{-r}^{0}\left(f_{0}\left(t+t_{1}^{n}, x_{k}\right)-f_{0}\left(t+t_{1}^{n}, x\right)\right) d \gamma(t) \\
& =\lim _{k \rightarrow \infty} \int_{0}^{t_{1}^{n}} f_{0}\left(s, x_{k}-f_{0}(s, x)\right) d \gamma(s)
\end{aligned}
$$

But, for every $x^{*} \in E^{\prime}$ and every $s \in\left[0, t_{1}^{n}\right]$,

$$
\lim _{k \rightarrow \infty}\left(x^{*}, f_{0}\left(s, x_{k}\right)-f_{0}(s, x)\right)=\lim _{k \rightarrow \infty} n s\left(x^{*}, x_{k}-x\right)=\lim _{k \rightarrow \infty}\left(x^{*}, x_{k}-x\right)=0
$$

Thus,

$$
\lim _{k \rightarrow \infty} \int_{-r}^{0}\left(\tau\left(t_{1}^{n}\right) f_{0}\left(\cdot, x_{k}\right)-\tau\left(t_{1}^{n}\right) f_{0}(\cdot, x)\right)(t) d \gamma(t)=0
$$

This show that F_{0} satisfies condition $\left(S_{3}\right)$ of Lemma 2.2. Furthermore, for every $(t, x) \in\left[0, t_{1}^{n}\right] \times E$,

$$
\begin{aligned}
\left\|F_{0}(t, x)\right\| & =\left\|F\left(t, \tau\left(t_{1}^{n}\right) f_{0}(\cdot, x)\right)\right\| \\
& \left.\leq a(t)\left(1+\| f_{0}\left(t_{1}^{n}, x\right)\right) \|\right) \\
& =a(t)(1+\|x\|)
\end{aligned}
$$

Then F_{0} satisfies condition $\left(S_{3}\right)$ of Lemma 2.2. Now let B be a bounded subset of E. Set $Z=\left\{\tau\left(t_{1}^{n}\right) f_{0}(\cdot, x): x \in B\right\}$. We have,

$$
\begin{aligned}
\mu\left(F_{0}(t, B)\right) & =\mu(F(t, Z)) \\
& \leq \gamma(t) \mu Z(0) \\
& =\gamma(t) \mu(B)
\end{aligned}
$$

Applying Lemma 2.2 we get a continuous function $v_{0}:\left[0, t_{1}^{n}\right] \rightarrow E$ such that

$$
v_{0}(t)=K(t, o) \psi(0)+\int_{0}^{t} K(t, s) \sigma_{0}(s) d s
$$

$\sigma_{0}(s) \in F\left(s, \tau\left(t_{1}^{n}\right) f_{0}\left(\cdot, v_{0}(s)\right)\right)$ a.e. on $\left[0, t_{1}^{n}\right]$. Now, we define $u_{n}=v_{0}$ and $g_{n}=\sigma_{0}$ on $\left[0, t_{t}^{n}\right]$. Then, for all $t \in\left[0, t_{1}^{n}\right]$

$$
u_{n}(t)=K(t, 0) \psi(0)+\int_{0}^{t} K(t, s) g_{n}(s) d s
$$

$g_{n}(s) \in F\left(s, \tau\left(\theta_{n}(s)\right) f_{n \theta_{n}(s)-1}\left(\cdot, u_{n}(s)\right)\right)$ a.e. on $\left[0, t_{1}^{n}\right]$. Thus u_{n} and g_{n} are well defined on $\left[0, t_{1}^{n}\right]$ and satisfy the properties (1) and (2).

Suppose u_{n} and g_{n} are well defined on $\left[0, t_{m}^{n}\right]$ such that the properties (1) and (2) are satisfied on $\left[0, t_{m}^{n}\right]$. Let

$$
\begin{gathered}
f_{m}:\left[-r, t_{m+1}^{n}\right] \rightarrow E, \\
f_{m}(t, x)= \begin{cases}u_{n}(t) & \text { if } t \in\left[-r, t_{m}^{n}\right] \\
u_{n}\left(t_{m}^{n}\right)+n\left(t-t_{m}^{n}\right)\left(x-u_{n}\right) & \text { if } t \in\left[t_{m}^{n}, t_{m+1}^{n}\right]\end{cases}
\end{gathered}
$$

As above we can show that if $x_{n} \rightarrow x$ weakly in E then $\tau\left(t_{m+1}^{n}\right) f_{m}\left(\cdot, x_{n}\right) \rightarrow$ $\tau\left(t_{m+1}^{n}\right) f_{m}(\cdot, x)$ weakly in $\left.C([-r, 0], E]\right)$. Thus the multifunction

$$
F_{m}:\left[t_{m}^{n}, t_{m+1}^{n}\right] \times E \rightarrow c(E)
$$

defined by

$$
F_{m}(t, x)=F\left(t, \tau\left(t_{m+1}^{n}\right) f_{m}(\cdot, x)\right)
$$

satisfies conditions $\left(\mathrm{S}_{1}\right)-\left(\mathrm{S}_{4}\right)$ of Lemma 2.2. Then, by Lemma 2.2, there exists a continuous function $v_{m}:\left[t_{m}^{n}, t_{m+1}^{n}\right] \rightarrow E$ such that

$$
v_{m}(t)=K\left(t, t_{m}^{n}\right) u_{n}\left(t_{m}^{n}\right)+\int_{t_{m}^{n}}^{t} K(t, s) \sigma_{m}(s) d s, \quad t \in\left[t_{m}^{n}, t_{m+1}^{n}\right]
$$

where $\sigma_{m} \in L^{1}\left(\left[t_{m}^{n}, t_{m+1}^{n}\right], E\right), \sigma_{m}(s) \in F_{m}\left(s, v_{m}(s)\right)=F\left(s, \tau\left(t_{m+1}^{n}\right) f_{m}\left(s, v_{m}(s)\right)\right)$ a.e.. Set $u_{n}(t)=v_{m}(t)$ for all $t \in\left[t_{m}^{n}, t_{m+1}^{n}\right]$ and $g_{n}(t)=\sigma_{m}(t)$ for all $t \in\left(t_{m}^{n}, t_{m+1}^{n}\right]$. Then, for every $t \in\left[t_{m}^{n}, t_{m+1}^{n}\right]$

$$
\begin{gathered}
u_{n}(t)=K\left(t, t_{m}^{n}\right) u_{n}\left(t_{m}^{n}\right)+\int_{t_{m}^{n}}^{t} K(t, s) g_{n}(s) d s \\
g_{n}(s) \in F\left(s, \tau\left(\theta_{n}(s)\right) f_{n \theta_{n}(s)-1}\left(\cdot, u_{n}(s)\right)\right) \quad \text { a.e. on }\left[t_{m}^{n}, t_{m+1}^{n}\right]
\end{gathered}
$$

This proves that g_{n} satisfies relation (2) on $\left[t_{m}^{n}, t_{m+1}^{n}\right]$ We claim that u_{n} verifies relation (1) on $\left[t_{m}^{n}, t_{m+1}^{n}\right]$, So, let $t \in\left[t_{m}^{n}, t_{m+1}^{n}\right]$. We have

$$
u_{n}\left(t_{m}^{n}\right)=K\left(t_{m}^{n}, 0\right) \psi(0)+\int_{0}^{t_{m}^{n}} K\left(t_{m}^{n}, s\right) g_{n}(s) d s
$$

Then

$$
\begin{aligned}
u_{n}(t)= & K\left(t, t_{m}^{n}\right) K\left(t_{m}^{n}, 0\right) \psi(0)+\int_{0}^{t_{m}^{n}} K\left(t, t_{m}^{n}\right) K\left(t_{m}^{n}, s\right) g_{n}(s) d s \\
& +\int_{t_{m}^{n}}^{t} K(t, s) g_{n}(s) d s \\
= & K(t, 0) \psi(0)+\int_{0}^{t_{m}^{n}} K(t, s) g_{n}(s) d s+\int_{t_{m}^{n}}^{t} K(t, s) g_{n}(s) d s \\
= & K(t, 0) \psi(0)+\int_{0}^{t} K(t, s) g_{n}(s) d s
\end{aligned}
$$

This proves that u_{n} and g_{n} satisfy relations (1) and (2).
Step 2. We claim that:
(a) There exists a natural number N such that for all $n \geq 1$
(3) $\quad\left\|u_{n}(t)\right\| \leq N$ for all $t \in I \quad$ and $\quad\left\|g_{n}(t)\right\| \leq m(t)=a(t)(1+N)$ a.e..
(b) $\quad\left(u_{n}\right) \rightarrow u$ uniformly in $C([-r, T], E)$, where $u=\psi$ on $[-r, 0]$ and $g_{n} \rightarrow g$ weakly in $L^{1}(I, E)$.

So, let $n \geq 1$. For almost all $t \in I$,

$$
\begin{aligned}
\left\|g_{n}(t)\right\| & \leq\left\|F\left(t, \tau\left(\theta_{n}(t)\right) f_{n \theta_{n}(t)-1}\left(\cdot, u_{n}(t)\right)\right)\right\| \\
& \leq a(t)\left(1+f_{n \theta_{n}(t)-1}\left(\theta_{n}(t), u_{n}(t)\right)\right) \\
& =a(t)\left(1+\left\|u_{n}(t)\right\|\right) .
\end{aligned}
$$

Then, for all $t \in I$,

$$
\begin{aligned}
\left\|u_{n}(t)\right\| & \leq\|K(t, 0)\|\|\psi(0)\|+\int_{0}^{t}\|K(t, s)\|\left\|g_{n}(s)\right\| d s \\
& \leq M\|\psi(0)\|+M \int_{0}^{t} a(s)\left(1+\left\|u_{n}(s)\right\|\right) d s \\
& \leq M(\|\psi(0)\|+\|a\|)+\int_{0}^{t} M a(s)\left\|u_{n}(s)\right\| d s .
\end{aligned}
$$

By Gronwall's Lemma, we get

$$
\left\|u_{n}(t)\right\| \leq M(\|\psi(0)\|+\|a\|) \exp (M\|a\|)
$$

Denote the right side of the above inequality by N and put $m(t)=a(t)(1+N)$, $\forall t \in I$. To prove the property (b) let $t_{1}, t_{2} \in I,\left(t_{1}<t_{2}\right)$ and let n be a fixed natural number.

$$
\begin{aligned}
\left\|u_{n}\left(t_{2}\right)-u_{n}\left(t_{1}\right)\right\| \leq & \left\|K\left(t_{2}, 0\right)-K\left(t_{1}, 0\right)\right\|\|\psi(0)\| \\
& +\int_{0}^{t_{1}}\left\|K\left(t_{2}, s\right)-K\left(t_{1}, s\right)\right\|\left\|g_{n}(s)\right\| d s \\
& +\int_{t_{1}}^{t_{2}}\left\|K\left(t_{2}, s\right)\right\|\left\|g_{n}(s)\right\| d s \\
\leq & \left\|K\left(t_{2}, 0\right)-K\left(t_{1}, 0\right)\right\|\|\psi(0)\| \\
& +\int_{0}^{T}\left\|K\left(t_{2}, s\right)-K\left(t_{1}, s\right)\right\||m(s)| d s \\
& +M \int_{t_{1}}^{t_{2}}|m(s)| d s
\end{aligned}
$$

Since for each $s \in I, K(\cdot, s)$ is uniformly continuous and $u_{n} \equiv \psi$ on $[-r, 0]$, the sequence (u_{n}) is equicontinuous in $C([-r, T], E)$. Next, for each $t \in I$, put

$$
Z(t)=\left\{u_{n}(t): n \geq 1\right\}, \quad \rho(t)=\mu(Z(t)) .
$$

From the properties of μ and Proposition 1.6 of Monch [15] we get

$$
\begin{aligned}
\rho(t) & =\mu\left\{\int_{0}^{t} K(t, s) g_{n}(s) d s: n \geq 1\right\} \\
& \leq M \int_{0}^{t} \mu\left(\left\{g_{n}(s): n \geq 1\right\}\right) d s
\end{aligned}
$$

But $\mu\left(\left\{g_{n}(s): n \geq 1\right\}\right) \leq \mu F(s, H(s))$ a.e., where

$$
H(s)=\left\{\tau\left(\theta_{n}(s)\right) f_{n \theta_{n}(s)-1}\left(\cdot, u_{n}(s)\right): n \geq 1\right\} .
$$

Thus, By condition (F_{4}) we obtain,

$$
\begin{aligned}
\rho(t) & \leq M \int_{0}^{t} \gamma(s) \mu(H(s)(0)) d s \\
& =M \int_{0}^{t} \gamma(s) \mu\left\{u_{n}(s): n \geq 1\right\} d s \\
& =M \int_{0}^{t} \gamma(s) \rho(s) d s .
\end{aligned}
$$

Since $\rho(0)=0$, Gronwall's Lemma tells us $\rho=0$. So by Ascoli's theorem we may assume that u_{n} converges uniformly to $u \in C([-r, T], E)$. Obviously $u=\psi$ on $[-r, 0]$. Now, let $t \in I$ such that Condition $\left(F_{4}\right)$ is satisfied. Then,

$$
\begin{aligned}
\mu\left\{g_{n}(t): n \geq 1\right\} & \leq \mu\left(\left\{F\left(t, \theta_{n}(t) f_{n \theta_{n}(t)}\left(\cdot, u_{n}(t)\right)\right): n \geq 1\right\}\right) \\
& \leq \gamma(t) \mu\left(\left\{\theta_{n}(t) f_{n \theta_{n}(t)}\left(\cdot, u_{n}(t)\right)(0): n \geq 1\right\}\right) \\
& =\gamma(t) \mu\left\{u_{n}(t)\right\}
\end{aligned}
$$

Then $\mu\left(\left\{g_{n}(t): n \geq 1\right\}\right)=0$ a.e.. By redefining (if necessary) a multifunction H such that its values are in $c(E)$ and $H(t)=\overline{\operatorname{conv}}\left\{g_{n}(t): n \geq 1\right\}$ a.e.. Thus S_{H}^{1} is nonempty, convex and weakly compact in $L^{1}(I, E)$. By the Eberlein-Smulian Theorem we may assume $g_{n} \rightarrow g \in L^{1}(I, E)$ weakly.

Step 3. We claim that the function u obtained in the previous step is the desired solution. That is we claim that

$$
\begin{gather*}
u(t)=K(t, 0) \psi(0)+\int_{0}^{t} K(t, s) g(s) d s, \quad \forall t \in I, \tag{4}\\
g(t) \in F(t, \tau(t) u), \quad \text { a.e. } \tag{5}
\end{gather*}
$$

since $g_{n} \rightarrow g$ weakly in $L^{1}(I, E), u_{n}$ tends weakly to $K(t, 0) \psi(0)+\int_{0}^{t} K(t, s) g(s) d s$. Hence we get relation (4). Moreover, from Lemma 2.2 and relation (2), relation (5) will be true if we show

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\tau\left(\theta_{n}(t)\right)-f_{n \theta_{n}(t)-1}\left(\cdot, u_{n}(t)\right)\right\|=0, \quad \forall t \in I \tag{6}
\end{equation*}
$$

Let $t \in I$ and $n>\frac{1}{r}$. Let $m \in\{0,1, \ldots, n-1\}$ such that $t \in\left[t_{m}^{n}, t_{m+1}^{n}\right]$.

$$
\begin{aligned}
& \left\|\tau\left(\theta_{n}(t)\right) f_{n \theta_{n}(t)-1}\left(\cdot, u_{n}(t)\right)-\tau(t) u\right\| \leq \\
& \leq \\
& \quad \sup _{s \in\left[-r,-\frac{1}{n}\right]}\left\|f_{m}\left(\frac{m+1}{n}+s, u_{n}(t)\right)-u\left(\frac{m+1}{n}+s\right)\right\| \\
& \quad+\sup _{\left[-\frac{1}{n},-r\right]}\left\|u_{n}\left(\frac{m}{n}+n\left(s+\frac{1}{n}\right)\right)\left(u_{n}(t)-u_{n}\left(\frac{m}{n}\right)\right)-u\left(\frac{m+1}{n}+s\right)\right\| \\
& \quad+\left\|u\left(\frac{m+1}{n}+s\right)-u(t+s)\right\| \\
& \leq \\
& \quad \sup _{s \in\left[-r,-\frac{1}{n}\right]}\left\|u_{n}\left(\frac{m+1}{n}\right)-u\left(\frac{m+1}{n}+s\right)\right\| \\
& \quad+\left\|u_{n}(t)-u_{n}\left(\frac{m}{n}\right)\right\|+\left\|u_{n}(t)-u(t)\right\| \\
& \quad+\sup _{s \in\left[-\frac{1}{n}, 0\right]}\left(\left\|u(t)-u\left(\frac{m+1}{n}+s\right)\right\|+\left\|u\left(\frac{m+1}{n}+s\right)-u(s+t)\right\|\right)
\end{aligned}
$$

Since u_{n} converges uniformly to u on each compact subset of $[-r, T], u$ is uniformly continuous on $[-r, 0]$ and each u_{n} is continuous on $[-r, T]$, relation (6) is true.

4 - Some topological properties of solution sets

In the previous section, we obtained conditions on the data that guaranteed that for every $\psi \in C([-r, 0], E)$ the solution set of $\psi, S(\psi)$, is nonempty. In this section we examine the topological properties of this solution set.

Theorem 4.1. If the hypotheses of Theorem 3.1 hold, then for every $\psi \in$ $C([-r, 0], E), S(\psi)$ is compact in $C([-r, T], E)$.

Proof: Arguing in the proof of Theorem 3.1 we can show that $S(\psi)$ is
equicontinuous. Furthermore let $\left(u_{n}\right)$ be a sequence in $S(\psi)$ and $t \in I$. Then

$$
\begin{aligned}
\mu\left(\left\{u_{n}(t): n \geq 1\right\}\right) & \leq \mu\left(\left\{\int_{0}^{t} K(t, s) g_{n}(s) d s: n \geq 1\right\}\right), \quad g_{n} \in S_{F\left(\cdot, \tau(\cdot) u_{n}\right)}^{1} \\
& \leq M \int_{0}^{t} \mu\left(\left\{g_{n}(s): n \geq 1\right\}\right) d s \\
& \leq M \int_{0}^{t} \mu\left(F\left(s, \bigcup_{n=1}^{\infty} \tau(s) u_{n}\right)\right) d s \\
& \leq M \int_{0}^{t} \gamma(s) \mu\left(\left\{\left(\tau(s) u_{n}\right)(0): n \geq 1\right\}\right) d s \\
& =M \int_{0}^{t} \gamma(s) \mu\left(\left\{u_{n}(s): n \geq 1\right\}\right) d s
\end{aligned}
$$

Since $\mu\left(\left\{u_{n}(0): n \geq 1\right\}\right)=0$, by Gronwall's Lemma we get $\mu\left(\left\{u_{n}(t): n \geq 1\right\}\right)=0$. For all $t \in I$. Thus $\left(u_{n}\right)$ has a convergent subsequence in $C([-r, T], E)$.

Theorem 4.2. The multifunction $S: C([-r, 0], E) \rightarrow C([-r, T], E)$ is upper semicontinuous.

Proof: Let B be a closed set in $C([-r, T], E)$ and $Z=\{\psi \in C([-r, 0], E)$: $S(\psi) \cap B \neq \emptyset\}$. We shall show that Z is closed. So, let $\psi_{n} \in Z, \psi_{n} \rightarrow \psi$ in $C([-r, 0], E)$. For each $n \geq 1$, let $u_{n} \in S\left(\psi_{n}\right) \cap Z$. Then, for every $n \geq 1, u_{n}=\psi_{n}$ on $[-r, 0]$ and for all $t \in I$,

$$
u_{n}(t)=K(t, 0) \psi_{n}(0)+\int_{0}^{t} K(t, s) g_{n}(s) d s, \quad g_{n} \in S_{F\left(\cdot, \tau(\cdot) u_{n}\right)}^{1}
$$

Then, for every $t \in I$,

$$
\mu\left(\left\{u_{n}(t): n \geq 1\right\}\right) \leq M \mu\left(\left\{\psi_{n}(0): n \geq 1\right\}\right)+M \mu\left(\left\{\int_{0}^{t} g_{n}(s) d s: n \geq 1\right\}\right)
$$

since $\psi_{n}(0) \rightarrow \psi(0)$ as $n \rightarrow \infty$, we get

$$
\mu\left(\left\{u_{n}(t): n \geq 1\right\}\right) \leq M \mu\left(\int_{0}^{t} g_{n}(s) d s: n \geq 1\right)
$$

As in the proof of Theorem 4.1 we can claim that $\mu\left(\left\{u_{n}(t): n \geq 1\right\}\right)=0$. Invoking the Arzela-Ascoli theorem there exists a subsequence $u_{n k} \rightarrow u \in Z$ in $C([-r, T], E)$. Clearly $u=\psi$ on $[-r, 0]$. Now

$$
\begin{aligned}
\mu\left(\left\{g_{n_{k}}(t): n \geq 1\right\}\right) & \left.\leq \mu\left(\left\{F\left(t, \tau(t) u_{n_{k}}\right): n \geq 1\right)\right\}\right) ; \quad t \in I \\
& \leq \gamma(t) \mu\left(\left\{\left(\tau\left(u_{n}\right)\right)(0): n \geq 1\right\}\right) ; \quad t \in I \\
& =0
\end{aligned}
$$

As in the proof of Theorem 3.1, $g_{n_{k}} \rightarrow g$ weakly in $L^{1}(I, E)$. Invoking Lemma 2.1, $g(t) \in F(t, \tau(t) u)$ a.e.. Thus

$$
u(t)=K(t, 0) \psi(0)+\int_{0}^{t} K(t, s) g(s) d s, \quad g \in S_{F(\cdot, \tau(\cdot) u)}^{1}
$$

This prove that Z is closed and hence $\psi \rightarrow S(\psi)$ is upper semicontinuous.
Corollary 4.1. For every $\psi \in C([-r, 0], E)$ and every $t \in I$ the attainable set $P_{t}(\psi)=\{u(t): u \in S(\psi)\}$ is compact, the multifunction $(\psi, t) \rightarrow P_{t}(\psi)$ is jointely upper semicontinuous.

Theorem 4.3. Let Z be a compact subset of $C([-r, 0], E)$ and let $\varphi: E \rightarrow \mathbb{R}$ be lower semicontinuous then the problem

$$
\left\{\begin{array}{l}
\dot{u}(t) \in A(t) u(t)+F(t, \tau(t) u), \quad \text { a.e. on }[0, T] \\
u=\psi \in Z \\
\text { minimise } \varphi(u(T))
\end{array}\right.
$$

has an optimal solution, that is, there exists $\psi_{0} \in Z$ and $u \in S\left(\psi_{0}\right)$ such that

$$
\varphi(u(T))=\inf \{\varphi(v(T)): v \in S(\psi), \psi \in Z\}
$$

Proof: Consider the multifunction

$$
\begin{aligned}
& P_{T}: Z \rightarrow 2^{E} \\
& P_{T}(\psi)=\{v(T): v \in S(\psi)\}
\end{aligned}
$$

By Corollary 4.1, P_{T} is upper semicontinuous. Then the set $P_{T}(Z)=\bigcup_{\psi \in Z} P_{T}(\psi)$ is compact in E. Since φ is lower semicontinuous on E, there exists $\psi_{0} \in Z$ such that $\varphi\left(\psi_{0}(T)\right)=\inf \left\{\varphi(v(T)): v \in \bigcup_{\psi \in Z} S(\psi)\right\}$.

Theorem 4.4. Let E be a separable Hilbert space and $G(t, \cdot)$ is w-seq uhc and $G(\cdot, g)$ has a measurable selection. Moreover, suppose that there exists a sequence $\left(G_{n}\right): I \times C([-r, 0], E) \rightarrow c(E)$ satisfying the following properties:
(1) For all $n \geq 1, G_{n}$ verifies conditions $\left(F_{1}\right),\left(F_{2}\right)$ and $\left(F_{4}\right)$ of Theorem 3.1.
(2) For all $(t, g) \in I \times C([-r, 0], E)$ we have
(a) $\left\|G_{n}(t, g)\right\|<L, \forall n \geq 1$, for some constant $L>0$;
(b) $\lim _{n \rightarrow \infty} h\left(G_{n}(t, g), G(t, g)\right)=0$, where h is the Hausdorff distance;
(c) $G_{n+1}(t, g) \subset G_{n}(t, g), \quad \forall n \geq 1$;
(d) $G(t, g)=\bigcap_{n=1}^{\infty} G_{n}(t, g)$.

Then for each $\psi \in C([-r, 0], E), S_{G}(\psi)=\bigcap_{n=1}^{\infty} S_{G_{n}}(\psi)$.
Proof: From the assumptions each G_{n} satisfies all conditions of Theorem 3.1. Thus $S_{G}(\psi) \neq \emptyset$. Also from condition (2)(d) we get $S_{G}(\psi) \subseteq S_{G_{n}}(\psi), \forall n \geq 1$. Now let $u \in \bigcap_{n=1}^{\infty} S_{G_{n}}(\psi)$. Then for every $n \geq 1$, there exists $g_{n} \in L^{1}(I, E)$ such that

$$
\begin{aligned}
u(t)= & K(t, 0) \psi(0)+\int_{0}^{t} K(t, s) g_{n}(s) d s, \quad \forall t \in I, \\
& g_{n}(t) \in G_{n}(t, \tau(t) u) \text { a.e., } \forall n \geq 1 .
\end{aligned}
$$

Thus, by condition 2(b), we obtain

$$
g_{n}(t) \in G(t, \tau(t) u)+\delta_{n}(t) \overline{B_{E}} \quad \text { a.e. },
$$

where, for all $t \in I, \delta_{n}(t)=\lim _{n \rightarrow \infty} h\left(G_{n}(t, \tau(t) u), G(t, \tau(t) u)\right) \rightarrow 0$ and $\overline{B_{E}}$ is the closed unit ball in E. Invoking condition (2)(a), the sequence (g_{n}) is uniformly bounded. By extracting a subsequence, denoted again by g_{n}, we can passing to convex combination of $g_{n}(t)$, denoted by $\tilde{g}_{n}(t)$, we have $\tilde{g}_{n}(t) \rightarrow g(t)$ a.e. in E and

$$
\tilde{g}_{n}(t) \in \sum_{m \geq n} \alpha_{m}(t)\left(G(t, \tau(t) u)+\delta_{m}(t) \overline{B_{E}}\right) \quad \text { a.e. }
$$

where $\sum_{m \geq n}=1, \alpha_{m}(t) \geq 0$. Since the values of G are convex, we get

$$
\tilde{g}_{n}(t) \in G(t, \tau(t) u)+\left(\sup _{m \geq n} \delta_{m}(t)\right) \overline{B_{E}} .
$$

Taking the limit as $n \rightarrow \infty$ we obtain $g(t) \in G(t, \tau(t) u)$ a.e.. Thus $u \in S_{G}(\psi)$.

5 - Remarks

1. Let for every $t \in I, A(t)$ be a bounded linear operator on E such that the function $t \rightarrow A(t)$ is continuous in the uniform operator topology. Then for every $x \in E$ and every $s \in[0, T]$, the initial value problem

$$
\left\{\begin{array}{l}
\dot{u}(t) \in A(t) u(t), \quad t \in[0, T] \\
u(s)=x
\end{array}\right.
$$

has a unique strong solution. Thus the operator $K(\cdot, \cdot)$ can be defined and satisfies all conditions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$ (see, Ch. 5 [19]). व
2. If we replace condition $\left(F_{4}\right)$ by the condition:
$\left(\mathbf{F}_{4}\right)^{*}$ There exists an integrably bounded multifunction $\Gamma: I \rightarrow c k(E)$ such that

$$
F(t, u) \subset(1+\|u(0)\|) \Gamma(t), \quad \forall(t, u) \in I \times C([-r, 0], E)
$$

then the convergence of approximated solutions $\left(u_{n}\right)$ constructed in the proof of Theorem 3.1 is directly ensured.
Indeed, for all $n \geq 1$ and all $t \in I$,

$$
\begin{aligned}
u_{n}(t) & \in K(t, 0) \psi(0)+\int_{0}^{t} K(t, s) F\left(t, \tau\left(\theta_{n}(s)\right)\right) f_{n \theta_{n}(s)-1}\left(\cdot, u_{n}(s)\right) d s \\
& \subseteq K(t, 0) \psi(0)+M \int_{0}^{t}\left(1+\left\|u_{n}(s)\right\|\right) \Gamma(s) d s
\end{aligned}
$$

since for each $n \geq 1,\left\|u_{n}(s)\right\| \leq N, \forall t \in I$, Theorem v-15 of [4] implies that, $\int_{0}^{t}\left(1+\left\|u_{n}(s)\right\|\right) \Gamma(s) d s$ is in $c k(E)$. Thus for all $t \in I$ the set $\left\{u_{n}(t): n \geq 1\right\}$ is relatively compact in E. \quad

REFERENCES

[1] Cadinali, T.; Papageorgiou, N.S. and Papalini - On nonconvex functional evolutions involving m-dissipative operators, Czechoslovak Math. Journal, 1 (1997), 135-148.
[2] Castaing, C. and Ibrahim, A.G. - Functional differential inclusions on closed sets in Banach spaces, Adv. Math. Econ., 2 (2000), 12-39.
[3] Castaing, C. and Monteiro Marques, M.D.P. - Topological properties of solution sets for sweeping processes with delay, Portug. Math., 54(4) (1997), 485-507.
[4] Castaing, C. and Valadier, M. - Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer Verlag, 1977.
[5] Castaing, C.; Faik, A. and Salvadori, A. - Evolution equations governed by m-accretive and subdifferential operators with delay (to appear).
[6] Cichon, M. - Differential inclusions and abstract control problems, Bull. Austral Math. Soc., 53 (1996), 109-122.
[7] Deimling, K. - Multivalued Differential Equations, Walter de Gruyter, Berlin, New York, 1992.
[8] Frankwska, H. - A priori estimates for operational differential inclusions, J. Differential Equations, 84 (1990), 100-128.
[9] Gavioli, A. and Malaguti, L. - Viable solutions of differential inclusions with memory in Banach spaces (submitted), 1998.
[10] Haddad, G. - Monotone viable trajectories for functional differential inclusions, J. Diff. Equation, 24 (1981), 1-24.
[11] Haddad, G. - Topological properties of the set of solutions for functional differential inclusions, Nonlinear Anal., 5 (1981), 1349-1366.
[12] Haddad, G. and Lasry, J.M. - Periodic solutions of functional inclusions and fixed point of σ-selectional correspondence, J. Math. Anal. Appl., 96 (1993), 259-312.
[13] Ibrahim, A.G. - On differential inclusions with memory in Banach spaces, Proc. Math. Phys. Soc. Egypt, 67 (1992), 1-26.
[14] Kisielewicz, M. - Differential Inclusions and Optimal Control, PWN-Polish Publishers, Kluwer Academic Publishers, Warsaw, London, 1991.
[15] MÖnch, H. - Boundary value problems for ordinary differential equations of second order in Banach spaces, Nonl. Anal., 4 (1980), 985-999.
[16] Papageorgiou, N.S. - On multivalued evolution equation and differential inclusions in Banach space, Comment Math. Univ. Sancti., Pauli., 36 (1987), 21-39.
[17] Papageorgiou, N.S. - On the attainable set of differential inclusions with control system, J. Math. Anal. Appl., 125 (1987), 305-322.
[18] Papageorgiou, N.S. - On multivalued semilinear evaluations equations, Boll. Un. Math. Ital., B_{3} (1989), 1-16.
[19] Pazy, A. - Semigroups of Linear Operators and Applications to Partial Differential Equations, New York, Berlin Heidelberg, Springer Verlag, 1983.

A.G. Ibrahim,

Department of Mathematics, Faculty of Science, Cairo University, Giza - EGYPT

[^0]: Received: January 26, 1999; Revised: November 2, 1999.

