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Abstract: Let r > 0 be a finite delay and C([−r, t], E) be the Banach space of

continuous functions from [−r, 0] to the Banach space E. In this paper we prove an

existence theorem for functional differential inclusions of the form: u̇(t) ∈ A(t)u(t) +

F (t, τ(t)u) a.e. on [0, T ] and u = ψ on [−r, 0], where {A(t) : t ∈ [0, T ]} is a family of

linear operators generating a continuous evolution operator K(t, s), F is a multifunction

such that F (t, ·) is weakly sequentially hemi-continuous and τ(t)u(s) = u(t+ s), for all

t ∈ [0, T ] and all s ∈ [−r, 0]. Also, we are concerned with the topological properties of

solution sets.

1 – Introduction

The existence of solutions for functional differential inclusions (FDI) and the

topological properties of solution sets are studied extensively (see, for example,

[1], [2], [9], [10], [11], [12], [13]). However, not much study has been done for func-

tional differential inclusions governed by operators. Mainly, recently, Castaing–

Marques [3] considered a functional differential inclusions governed by sweeping

process while Castaing–Faik–Salvadori [5] considered a functional differential in-

clusion governed by m-accretive operators which are independent of the time.

That is, they proved the existence of integral solutions for the following FDI:

{

u̇(t) ∈ A(u(t)) + F (t, τ(t)u), a.e. on [0, T ],

u = ψ on [−r, 0] ,
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where r > 0 is a finite delay, A is m-accretive operator on a separable Banach

space E, F is a multifunction, ψ is a continuous function from [−r, 0] to E and

for each t∈ [0, T ] τ(t)u is a continuous on [−r, 0] such that for each s ∈ [−r, 0],

(τ(t)u)(s) = u(t+ s).

The purpose of this paper is to obtain conditions on the data that guaran-

teed the existence of integral solutions and to characterize topological properties

of solution sets for a functional differential inclusion (differential inclusion with

delay) of the form:

(P )

{

u̇(t) ∈ A(u(t)) + F (t, τ(t)u), a.e. on [0, T ],

u = ψ on [−r, 0] ,

where {A(t) : t ∈ [0, T ]} is a family of densely defined, closed, linear operators

on a separable Banach space E. Also, we obtain a continuous dependence result

that examines the change in the solution set as we vary the initial function.

Our results generalize many previous theorems. In the important case A(t)=0,

∀ t ∈ I, we have that K(t, s) = Id and an integral solution, in fact, a strong solu-

tion. Then, as special case, we obtain a generalization of the results of Deimling

[7], Kisielewicz [14] and Papageorgiou [16], [17]. In addition, if A(t) 6= 0 then

many results of this kind are generalized too. For example, Cichon [6], Frankwska

[8] and Papageorgiou [18] considered the problem (P ) without delay. Moreover,

Castaing, Faik and Salvadori [5] investigated the problem (P ) in the case when

A is an m-accretive multivalued operator and dependent of t. Finally Castaing

and Ibrahim [2] considered the problem (P ) when A(t) = 0, ∀ t ∈ I.

2 – Definitions, notations and preliminaries

We will use the following definitions and notations.

– E is a separable Banach space, E ′ the topological dual of E and Ew is the

vector space E equipped with the σ(E,E ′) topology.

– c(E) (resp. ck(E)) is the family of nonempty convex closed (resp. nonempty

convex compact) subsets of E.

– If Z is a subset of E, δ∗(·, Z) is the support function of Z and |Z| = {‖z‖ :

z ∈ Z}.

– r > 0, T > 0 and I = [0, T ].

– L1(I, E) is the Banach space of Lebesque–Bochner integrable functions

f : I → E endowed with the usual norm and L(E) is the Banach space of

all linear continuous operators on E.
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– C(I, E) is the Banach space of continuous functions f : I → E with the

norm of uniform convergence, C0 = C([−r, 0], E), ψ ∈ C0.

– For any t > 0 we denote by τ(t) the mapping from C([−r, T ], E) to

C0 = C([−r, 0], E) defined by τ(t)u(s) = u(s + t), ∀ s ∈ [−r, 0], ∀u ∈

C([−r, T ], E).

– A multifunction G : E → 2E− {∅} with closed values is upper semicon-

tinuous (u.s.c) if and only if G−(Z) = {x ∈ E : G(x) ∩ Z 6= ∅} is closed

whenever Z ⊂ E is closed. Taking on E its weak topology, σ(E,E ′), we

obtain in a similar way a notion of w − w upper semicontinuous (w − w

u.s.c) that is, upper semicontinuous from Ew to Ew. If the set G
−(Z) is

weakly sequentially closed whenever Z is weakly closed, we shall say that

G is w − w sequentially u.s.c.

– A multifunction G : E → 2E− {∅} with closed values is called upper hemi-

continuous (u.h.c) [weakly upper hemicontinuous, w-u.h.c] if and only if

for each x∗ ∈ E′ and for each λ ∈ R the set {x ∈ E : δ∗(x∗, G(x)) < λ} is

open in E (in Ew).

– A multifunction G : E → 2E− {∅} with closed values is called weakly se-

quentially upper hemicontinuous (w-seq uhc) if and only if for each x∗∈ E′,

δ∗(x∗, G(·)) : E → R is sequentially upper semicontinuous from Ew to R,
see ([6], [14]).

If G : I → 2E−{∅} is measurable and integrably bounded with weakly com-

pact values, then, the set of all integrable selections of G, S1
G, is weakly

compact in L1(I, E), see [4].

– µ is either the Kuratowski or the Hausdorff measure of noncompactness on

E.

Let {A(t) : t ∈ I=[0, T ]} be a family of densely defined, closed, linear opera-

tors on E. Suppose that for every s ∈ I and every x ∈ E the initial value problem

problem

(∗)

{

u̇(t) ∈ A(t)u(t) , t ∈ [s, T ]

u(s) = x

has a unique strong solution. Then an operator K(·, ·) can be defined from

∆ = {(t, s) : 0 ≤ s ≤ t ≤ T} to E by K(t, s)x = u(t) where u is the unique solu-

tion of (∗). The operator K(·, ·) is called a fundamental solution of (∗) or we say

the family {A(t) : t ∈ I} is a generator of a fundamental solutions K(·, ·) (see

[19]). A continuous function u : [−r, T ]→ E is called an integral solution of the
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problem (P ) if u = ψ on [−r, 0] and for every t ∈ I,

u(t) = K(t, 0)ψ(0) +

∫ t

0
K(t, s) f(s) ds ,

where f ∈ L1(I, E) and f(s) ∈ F (s, τ(s)u) a.e..

The following lemmas will be crucial in the proof of our results.

Lemma 2.1 (Lemma 1, [6]). Let Y be a Banach space. Assume:

(1) G : E → c(Y ) be w-seq uhc;

(2) ‖G(x)‖ ≤ a(t) a.e. on I, for every x ∈ E, where a ∈ L1(I,R);

(3) xn ∈ C(I, E), xn(t)→ x0(t) (weakly) a.e. on I;

(4) yn → y0 (weakly), yn, y0 ∈ L
1(I, E);

(5) yn(t) ∈ G(xn(t)) a.e. on I.

Thus y0(t) ∈ G(x0(t)) a.e. on I.

Lemma 2.2 (Theorem 1, [6]). Let {A(t) : t ∈ I} be a family of densely de-

fined, closed, linear operators on E and is a generators of a fundamental solution

K(·, ·) : ∆ = {(t, s) : 0 ≤ s ≤ t ≤ T} → L(E) such that

(A1) K(s, s) = Id, s ∈ I and K(r, s)K(s, t) = K(r, t), r < s < t;

(A2) K : ∆→ L(E) is strongly continuous;

(A3) ‖K(t, s)‖ ≤M, ∀ (t, s) ∈ ∆;

(A4) K(·, s) : I → L(E) is uniformly continuous.

Let S : I×E → c(E) such that

(S1) For each x ∈ E, S(·, x) has a measurable selection;

(S2) For each t ∈ I, S(t, ·) is w-seq. u.h.c.;

(S3) There exists a ∈ L1(I,R) such that for each x ∈ E,

‖S(t, x)‖ ≤ a(t)
(

1 + ‖x‖
)

a.e. ;

(S4) For each bounded B ⊂ E

lim
δ→0

µ
(

S(It,δ ×B)
)

≤ w(t, µ(B)) a.e. on I
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where It,δ = [t−δ, t] ∩ I and w is a Kamke function. Then for each

x0 ∈ E there exists at least an integral solution for the problem:

{

u̇(t) ∈ A(t)u(t) + S(t, u(t)), a.e. on I

u(0) = x0 .

Moreover, for each x0 ∈ E the set S(x0) of all integral solutions is com-

pact.

3 – Existence theorem for (P )

In this section we give an existence theorem for (P ).

Theorem 3.1. Let {A(t) : t ∈ I} be a family of densely defined, closed, linear

operators on E and is a generator of a fundamental solution K(·, ·) satisfying

conditions (A1)–(A4). Let F : I × C([−r, 0], E) → c(E) be a multifunction such

that

(F1) For each g ∈ C([−r, 0], E), F (·, g) has a measurable selection;

(F2) For each t ∈ I, F (t, ·) is w-seq. uhc;

(F3) There exists a ∈ L1(I,R) such that for every g ∈ C([−r, 0], E),

‖F (t, g)‖ ≤ a(t)
(

1 + ‖g(0)‖
)

a.e. ;

(F4) There exists γ ∈ L1(I,R+) such that for each bounded subset Z of

C([−r, 0], E),

µ(F (t× Z)) ≤ γ(t)µ(Z(0)), a.e..

Then for each ψ ∈ C([−r, 0], E) the problem (P ) has an integral solu-

tion.

Proof: We construct, by induction, a sequence (un) in C([−r, T ], E) such

that it has a subsequence converges uniformly to a function u ∈ C([−r, T ], E)

which is an integral solution of (P ). For notional convenience we assume without

any loss of generality that T = 1.

Step 1. Let n ≥ 1. Set un = ψ on [−r, 0]. Consider the partition of I

by the points tnm =
m
n
, m = 0, 1, 2, ..., n. We define a step function θn : I → I
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by θn(0) = 0, θn(t) = tnm+1 for t ∈ (t
n
m, t

n
m+1]. Now we construct two functions

un ∈ C([−r, T ], E) and gn ∈ L
1(I, E) such that for all t ∈ [0, T ],

un(t) = K(t, 0)ψ(0) +

∫ t

0
K(t, s) gn(s) ds(1)

gn(t) ∈ F
(

t, τ(θn(t)) fnθn(t)−1(·, un(t))
)

a.e. on I ,(2)

where for every m = {0, 1, 2, ..., n− 1}, fm : [−r, t
n
m+1]× E → E, defined by

fm(t, x) =







un(t) if t ∈ [−r, tnm]

un(t
n
m) + n (t− t

n
m) (x− un(

m
n
)) if t ∈ [tnm, t

n
m+1] .

Let f0 : [−r, t
n
1 ]×E → E be defined by

f0(t, x) =







ψ(t) if t ∈ [−r, 0]

ψ(0) + n t (x− ψ(0)) if t ∈ [0, tn1 ]

and F0 : [0, t
n
1 ]×E → c(E) be defined by

F0(t, x) = F
(

t, τ(tn1 ) f0(·, x)
)

.

We want to show that F0 satisfies conditions (S1)–(S4) of Lemma 2.2. Clearly

Condition (S1) is verified. Next, to show that F0 satisfies condition (S2) is suffices

to prove that if xk → x weakly in E then τ(tn1 ) f0(·, xk) → τ(tn1 ) f0(·, x) weakly

in C([−r, 0], E). So, let γ be a bounded regular measure from [−r, 0] to E ′ and

is of bounded variation. We have

lim
k→∞

∫ 0

−r

(

τ(tn1 ) f0(·, xk)− τ(t
n
1 ) f0(·, x)

)

(t) dγ(t) =

= lim
k→∞

∫ 0

−r

(

f0(t+ t
n
1 , xk)− f0(t+ t

n
1 , x)

)

dγ(t)

= lim
k→∞

∫ tn
1

0
f0

(

s, xk − f0(s, x)
)

dγ(s) .

But, for every x∗ ∈ E′ and every s ∈ [0, tn1 ],

lim
k→∞

(

x∗, f0(s, xk)− f0(s, x)
)

= lim
k→∞

n s(x∗, xk− x) = lim
k→∞

(x∗, xk− x) = 0 .

Thus,

lim
k→∞

∫ 0

−r

(

τ(tn1 ) f0(·, xk)− τ(t
n
1 ) f0(·, x)

)

(t) dγ(t) = 0 .
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This show that F0 satisfies condition (S3) of Lemma 2.2. Furthermore, for every

(t, x) ∈ [0, tn1 ]×E,

‖F0(t, x)‖ = ‖F (t, τ(tn1 )f0(·, x))‖

≤ a(t)
(

1 + ‖f0(t
n
1 , x))‖

)

= a(t)
(

1 + ‖x‖
)

.

Then F0 satisfies condition (S3) of Lemma 2.2. Now let B be a bounded subset

of E. Set Z = {τ(tn1 ) f0(·, x) : x ∈ B}. We have,

µ(F0(t, B)) = µ(F (t, Z))

≤ γ(t)µZ(0)

= γ(t)µ(B) .

Applying Lemma 2.2 we get a continuous function v0 : [0, t
n
1 ]→ E such that

v0(t) = K(t, o)ψ(0) +

∫ t

0
K(t, s)σ0(s) ds ,

σ0(s) ∈ F (s, τ(t
n
1 ) f0(·, v0(s))) a.e. on [0, t

n
1 ]. Now, we define un= v0 and gn= σ0

on [0, tnt ]. Then, for all t ∈ [0, t
n
1 ]

un(t) = K(t, 0)ψ(0) +

∫ t

0
K(t, s) gn(s) ds

gn(s) ∈ F (s, τ(θn(s)) fnθn(s)−1(·, un(s))) a.e. on [0, t
n
1 ]. Thus un and gn are well

defined on [0, tn1 ] and satisfy the properties (1) and (2).

Suppose un and gn are well defined on [0, t
n
m] such that the properties (1) and

(2) are satisfied on [0, tnm]. Let

fm : [−r, t
n
m+1]→ E ,

fm(t, x) =







un(t) if t ∈ [−r, tnm]

un(t
n
m) + n (t− t

n
m) (x− un) if t ∈ [tnm, t

n
m+1] .

As above we can show that if xn → x weakly in E then τ(tnm+1) fm(·, xn) →

τ(tnm+1) fm(·, x) weakly in C([−r, 0], E]). Thus the multifunction

Fm : [t
n
m, t

n
m+1]×E → c(E) ,

defined by

Fm(t, x) = F
(

t, τ(tnm+1) fm(·, x)
)

,



262 A.G. IBRAHIM

satisfies conditions (S1)–(S4) of Lemma 2.2. Then, by Lemma 2.2, there exists a

continuous function vm : [t
n
m, t

n
m+1]→ E such that

vm(t) = K(t, tnm)un(t
n
m) +

∫ t

tnm

K(t, s)σm(s) ds , t ∈ [tnm, t
n
m+1] ,

where σm∈L
1([tnm, t

n
m+1], E), σm(s) ∈ Fm(s, vm(s))=F (s, τ(t

n
m+1) fm(s, vm(s)))

a.e.. Set un(t)=vm(t) for all t∈ [t
n
m, t

n
m+1] and gn(t)=σm(t) for all t∈(t

n
m, t

n
m+1].

Then, for every t ∈ [tnm, t
n
m+1]

un(t) = K(t, tnm)un(t
n
m) +

∫ t

tnm

K(t, s) gn(s) ds ,

gn(s) ∈ F
(

s, τ(θn(s)) fnθn(s)−1(·, un(s))
)

a.e. on [tnm, t
n
m+1] .

This proves that gn satisfies relation (2) on [t
n
m, t

n
m+1] We claim that un verifies

relation (1) on [tnm, t
n
m+1], So, let t ∈ [t

n
m, t

n
m+1]. We have

un(t
n
m) = K(tnm, 0)ψ(0) +

∫ tnm

0
K(tnm, s) gn(s) ds .

Then

un(t) = K(t, tnm)K(t
n
m, 0)ψ(0) +

∫ tnm

0
K(t, tnm)K(t

n
m, s) gn(s) ds

+

∫ t

tnm

K(t, s) gn(s) ds

= K(t, 0)ψ(0) +

∫ tnm

0
K(t, s) gn(s) ds +

∫ t

tnm

K(t, s) gn(s) ds

= K(t, 0)ψ(0) +

∫ t

0
K(t, s) gn(s) ds .

This proves that un and gn satisfy relations (1) and (2).

Step 2. We claim that:

(a) There exists a natural number N such that for all n ≥ 1

(3) ‖un(t)‖ ≤ N for all t ∈ I and ‖gn(t)‖ ≤ m(t) = a(t) (1 +N) a.e..

(b) (un)→ u uniformly in C([−r, T ], E), where u = ψ on [−r, 0] and gn→ g

weakly in L1(I, E).
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So, let n ≥ 1. For almost all t ∈ I,

‖gn(t)‖ ≤
∥

∥

∥F
(

t, τ(θn(t)) fnθn(t)−1(·, un(t))
)∥

∥

∥

≤ a(t)
(

1 + fnθn(t)−1(θn(t), un(t))
)

= a(t)
(

1 + ‖un(t)‖
)

.

Then, for all t ∈ I,

‖un(t)‖ ≤ ‖K(t, 0)‖ ‖ψ(0)‖ +
∫ t

0
‖K(t, s)‖ ‖gn(s)‖ ds

≤ M ‖ψ(0)‖ + M

∫ t

0
a(s)

(

1 + ‖un(s)‖
)

ds

≤ M
(

‖ψ(0)‖+ ‖a‖
)

+

∫ t

0
M a(s) ‖un(s)‖ ds .

By Gronwall’s Lemma, we get

‖un(t)‖ ≤ M
(

‖ψ(0)‖+ ‖a‖
)

exp(M ‖a‖) .

Denote the right side of the above inequality by N and put m(t) = a(t) (1 +N),

∀ t ∈ I. To prove the property (b) let t1, t2 ∈ I, (t1 < t2) and let n be a fixed

natural number.

∥

∥

∥un(t2)− un(t1)
∥

∥

∥ ≤
∥

∥

∥K(t2, 0)−K(t1, 0)
∥

∥

∥ ‖ψ(0)‖

+

∫ t1

0

∥

∥

∥K(t2, s)−K(t1, s)
∥

∥

∥ ‖gn(s)‖ ds

+

∫ t2

t1

‖K(t2, s)‖ ‖gn(s)‖ ds

≤
∥

∥

∥K(t2, 0)−K(t1, 0)
∥

∥

∥ ‖ψ(0)‖

+

∫ T

0

∥

∥

∥K(t2, s)−K(t1, s)
∥

∥

∥ |m(s)| ds

+M

∫ t2

t1

|m(s)| ds .

Since for each s ∈ I, K(·, s) is uniformly continuous and un ≡ ψ on [−r, 0], the

sequence (un) is equicontinuous in C([−r, T ], E). Next, for each t ∈ I, put

Z(t) = {un(t) : n ≥ 1} , ρ(t) = µ(Z(t)) .
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From the properties of µ and Proposition 1.6 of Monch [15] we get

ρ(t) = µ

{
∫ t

0
K(t, s) gn(s) ds : n ≥ 1

}

≤ M

∫ t

0
µ
(

{gn(s) : n ≥ 1}
)

ds .

But µ({gn(s) : n ≥ 1}) ≤ µF (s,H(s)) a.e., where

H(s) =
{

τ(θn(s)) fnθn(s)−1(·, un(s)) : n ≥ 1
}

.

Thus, By condition (F4) we obtain,

ρ(t) ≤ M

∫ t

0
γ(s)µ(H(s)(0)) ds

= M

∫ t

0
γ(s)µ{un(s) : n ≥ 1} ds

= M

∫ t

0
γ(s) ρ(s) ds .

Since ρ(0) = 0, Gronwall’s Lemma tells us ρ = 0. So by Ascoli’s theorem we may

assume that un converges uniformly to u ∈ C([−r, T ], E). Obviously u = ψ on

[−r, 0]. Now, let t ∈ I such that Condition (F4) is satisfied. Then,

µ{gn(t) : n ≥ 1} ≤ µ

(

{

F
(

t, θn(t) fnθn(t)(·, un(t))
)

: n ≥ 1
}

)

≤ γ(t)µ

(

{

θn(t) fnθn(t)(·, un(t))(0) : n ≥ 1
}

)

= γ(t)µ{un(t)} .

Then µ({gn(t) : n ≥ 1}) = 0 a.e.. By redefining (if necessary) a multifunction H

such that its values are in c(E) and H(t) = conv{gn(t) : n ≥ 1} a.e.. Thus S
1
H

is nonempty, convex and weakly compact in L1(I, E). By the Eberlein–Smulian

Theorem we may assume gn→ g ∈ L1(I, E) weakly.

Step 3. We claim that the function u obtained in the previous step is the

desired solution. That is we claim that

(4) u(t) = K(t, 0)ψ(0) +

∫ t

0
K(t, s) g(s) ds , ∀ t ∈ I ,

(5) g(t) ∈ F (t, τ(t)u), a.e.
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since gn→g weakly in L1(I, E), un tends weakly toK(t, 0)ψ(0)+
∫ t
0K(t, s) g(s) ds.

Hence we get relation (4). Moreover, from Lemma 2.2 and relation (2), relation

(5) will be true if we show

(6) lim
n→∞

∥

∥

∥τ(θn(t))− fnθn(t)−1(·, un(t))
∥

∥

∥ = 0 , ∀ t ∈ I .

Let t ∈ I and n > 1
r
. Let m ∈ {0, 1, ..., n− 1} such that t ∈ [tnm, t

n
m+1].

∥

∥

∥τ(θn(t)) fnθn(t)−1(·, un(t))− τ(t)u
∥

∥

∥ ≤

≤ sup
s∈[−r,− 1

n
]

∥

∥

∥

∥

fm

(

m+ 1

n
+ s, un(t)

)

− u

(

m+ 1

n
+ s

)∥

∥

∥

∥

+ sup
[− 1

n
,−r]

∥

∥

∥

∥

un

(

m

n
+ n

(

s+
1

n

))(

un(t)− un

(

m

n

))

− u

(

m+ 1

n
+ s

)
∥

∥

∥

∥

+

∥

∥

∥

∥

u

(

m+ 1

n
+ s

)

− u (t+ s)

∥

∥

∥

∥

≤ sup
s∈[−r,− 1

n
]

∥

∥

∥

∥

un

(

m+ 1

n

)

− u

(

m+ 1

n
+ s

)∥

∥

∥

∥

+

∥

∥

∥

∥

un(t)− un

(

m

n

)∥

∥

∥

∥

+
∥

∥

∥un(t)− u(t)
∥

∥

∥

+ sup
s∈[− 1

n
,0]

(

∥

∥

∥

∥

u(t)− u

(

m+ 1

n
+ s

)∥

∥

∥

∥

+

∥

∥

∥

∥

u

(

m+ 1

n
+ s

)

− u(s+ t)

∥

∥

∥

∥

)

.

Since un converges uniformly to u on each compact subset of [−r, T ], u is uni-

formly continuous on [−r, 0] and each un is continuous on [−r, T ], relation (6) is

true.

4 – Some topological properties of solution sets

In the previous section, we obtained conditions on the data that guaranteed

that for every ψ ∈ C([−r, 0], E) the solution set of ψ, S(ψ), is nonempty. In this

section we examine the topological properties of this solution set.

Theorem 4.1. If the hypotheses of Theorem 3.1 hold, then for every ψ ∈

C([−r, 0], E), S(ψ) is compact in C([−r, T ], E).

Proof: Arguing in the proof of Theorem 3.1 we can show that S(ψ) is
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equicontinuous. Furthermore let (un) be a sequence in S(ψ) and t ∈ I. Then

µ
(

{un(t) : n ≥ 1}
)

≤ µ

({
∫ t

0
K(t, s) gn(s) ds : n ≥ 1

})

, gn ∈ S
1
F (·,τ(·)un)

≤ M

∫ t

0
µ
(

{gn(s) : n ≥ 1}
)

ds

≤ M

∫ t

0
µ

(

F
(

s,
∞
⋃

n=1

τ(s)un
)

)

ds

≤ M

∫ t

0
γ(s)µ

(

{(τ(s)un)(0) : n ≥ 1}
)

ds

= M

∫ t

0
γ(s)µ

(

{un(s) : n ≥ 1}
)

ds .

Since µ({un(0) : n≥1})=0, by Gronwall’s Lemma we get µ({un(t) : n≥1})=0.

For all t ∈ I. Thus (un) has a convergent subsequence in C([−r, T ], E).

Theorem 4.2. The multifunction S : C([−r, 0], E)→ C([−r, T ], E) is upper

semicontinuous.

Proof: Let B be a closed set in C([−r, T ], E) and Z = {ψ ∈ C([−r, 0], E) :

S(ψ) ∩ B 6= ∅}. We shall show that Z is closed. So, let ψn ∈ Z, ψn → ψ in

C([−r, 0], E). For each n ≥ 1, let un ∈ S(ψn)∩Z. Then, for every n ≥ 1, un= ψn
on [−r, 0] and for all t ∈ I,

un(t) = K(t, 0)ψn(0) +

∫ t

0
K(t, s) gn(s) ds , gn ∈ S

1
F (·,τ(·)un) .

Then, for every t ∈ I,

µ
(

{un(t) : n ≥ 1}
)

≤ M µ
(

{ψn(0) : n ≥ 1}
)

+M µ

({
∫ t

0
gn(s) ds : n ≥ 1

})

since ψn(0)→ ψ(0) as n→∞, we get

µ
(

{un(t) : n ≥ 1}
)

≤ M µ

(
∫ t

0
gn(s) ds : n ≥ 1

)

.

As in the proof of Theorem 4.1 we can claim that µ({un(t) : n ≥ 1}) = 0.

Invoking the Arzela–Ascoli theorem there exists a subsequence unk → u ∈ Z

in C([−r, T ], E). Clearly u = ψ on [−r, 0]. Now

µ
(

{gnk
(t) : n ≥ 1}

)

≤ µ
(

{F (t, τ(t)unk
) : n ≥ 1)}

)

; t ∈ I

≤ γ(t)µ
(

{(τ(un))(0) : n ≥ 1}
)

; t ∈ I

= 0 .
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As in the proof of Theorem 3.1, gnk
→ g weakly in L1(I, E). Invoking Lemma 2.1,

g(t) ∈ F (t, τ(t)u) a.e.. Thus

u(t) = K(t, 0)ψ(0) +

∫ t

0
K(t, s) g(s) ds , g ∈ S1

F (·,τ(·)u) .

This prove that Z is closed and hence ψ → S(ψ) is upper semicontinuous.

Corollary 4.1. For every ψ ∈ C([−r, 0], E) and every t ∈ I the attainable

set Pt(ψ) = {u(t) : u ∈ S(ψ)} is compact, the multifunction (ψ, t) → Pt(ψ) is

jointely upper semicontinuous.

Theorem 4.3. Let Z be a compact subset of C([−r, 0], E) and let ϕ : E → R
be lower semicontinuous then the problem











u̇(t) ∈ A(t)u(t) + F (t, τ(t)u), a.e. on [0, T ]
u = ψ ∈ Z
minimise ϕ(u(T ))

has an optimal solution, that is, there exists ψ0 ∈ Z and u ∈ S(ψ0) such that

ϕ(u(T )) = inf
{

ϕ(v(T )) : v ∈ S(ψ), ψ ∈ Z
}

.

Proof: Consider the multifunction

PT : Z → 2E

PT (ψ) = {v(T ) : v ∈ S(ψ)} .

By Corollary 4.1, PT is upper semicontinuous. Then the set PT (Z) =
⋃

ψ∈Z PT (ψ)

is compact in E. Since ϕ is lower semicontinuous on E, there exists ψ0 ∈ Z such

that ϕ(ψ0(T )) = inf{ϕ(v(T )) : v ∈
⋃

ψ∈Z S(ψ)}.

Theorem 4.4. Let E be a separable Hilbert space and G(t, ·) is w-seq uhc

and G(·, g) has a measurable selection. Moreover, suppose that there exists a

sequence (Gn) : I × C([−r, 0], E)→ c(E) satisfying the following properties:

(1) For all n ≥ 1, Gn verifies conditions (F1), (F2) and (F4) of Theorem 3.1.

(2) For all (t, g) ∈ I × C([−r, 0], E) we have

(a) ‖Gn(t, g)‖< L, ∀n ≥ 1, for some constant L > 0;

(b) limn→∞ h(Gn(t, g), G(t, g)) = 0, where h is the Hausdorff distance;

(c) Gn+1(t, g) ⊂ Gn(t, g), ∀n ≥ 1;
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(d) G(t, g) =
⋂∞
n=1Gn(t, g).

Then for each ψ ∈ C([−r, 0], E), SG(ψ) =
⋂∞
n=1 SGn

(ψ).

Proof: From the assumptions each Gn satisfies all conditions of Theorem 3.1.

Thus SG(ψ) 6= ∅. Also from condition (2)(d) we get SG(ψ) ⊆ SGn
(ψ), ∀n ≥ 1.

Now let u ∈
⋂∞
n=1 SGn

(ψ). Then for every n ≥ 1, there exists gn∈ L
1(I, E) such

that

u(t) = K(t, 0)ψ(0) +

∫ t

0
K(t, s) gn(s) ds , ∀ t ∈ I ,

gn(t) ∈ Gn(t, τ(t)u) a.e., ∀n ≥ 1 .

Thus, by condition 2(b), we obtain

gn(t) ∈ G(t, τ(t)u) + δn(t)BE a.e. ,

where, for all t ∈ I, δn(t) = limn→∞ h(Gn(t, τ(t)u), G(t, τ(t)u)) → 0 and BE is

the closed unit ball in E. Invoking condition (2)(a), the sequence (gn) is uniformly

bounded. By extracting a subsequence, denoted again by gn, we can passing to

convex combination of gn(t), denoted by g̃n(t), we have g̃n(t) → g(t) a.e. in E

and

g̃n(t) ∈
∑

m≥n

αm(t)
(

G(t, τ(t)u) + δm(t)BE
)

a.e. ,

where
∑

m≥n=1, αm(t) ≥ 0. Since the values of G are convex, we get

g̃n(t) ∈ G(t, τ(t)u) + (sup
m≥n

δm(t))BE .

Taking the limit as n→∞ we obtain g(t) ∈ G(t, τ(t)u) a.e.. Thus u ∈ SG(ψ).

5 – Remarks

1. Let for every t ∈ I, A(t) be a bounded linear operator on E such that

the function t → A(t) is continuous in the uniform operator topology. Then for

every x ∈ E and every s ∈ [0, T ], the initial value problem

{

u̇(t) ∈ A(t)u(t) , t ∈ [0, T ]

u(s) = x

has a unique strong solution. Thus the operatorK(·, ·) can be defined and satisfies

all conditions (A1)–(A4) (see, Ch. 5 [19]).
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2. If we replace condition (F4) by the condition:

(F4)
∗ There exists an integrably bounded multifunction Γ: I → c k(E) such

that

F (t, u) ⊂
(

1 + ‖u(0)‖
)

Γ(t) , ∀ (t, u) ∈ I × C([−r, 0], E) ,

then the convergence of approximated solutions (un) constructed in

the proof of Theorem 3.1 is directly ensured.

Indeed, for all n ≥ 1 and all t ∈ I,

un(t) ∈ K(t, 0)ψ(0) +

∫ t

0
K(t, s)F (t, τ(θn(s))) fnθn(s)−1(·, un(s)) ds

⊆ K(t, 0)ψ(0) + M

∫ t

0

(

1 + ‖un(s)‖
)

Γ(s) ds .

since for each n ≥ 1, ‖un(s)‖ ≤ N, ∀ t ∈ I, Theorem v-15 of [4] implies that,
∫ t
0(1 + ‖un(s)‖) Γ(s) ds is in c k(E). Thus for all t ∈ I the set {un(t) : n ≥ 1} is

relatively compact in E.
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