PORTUGALIAE MATHEMATICA Vol. 58 Fasc. 3 – 2001 Nova Série

TOPOLOGICAL PROPERTIES OF SOLUTION SETS FOR FUNCTIONAL DIFFERENTIAL INCLUSIONS GOVERNED BY A FAMILY OF OPERATORS

A.G. Ibrahim

Abstract: Let r > 0 be a finite delay and C([-r,t], E) be the Banach space of continuous functions from [-r, 0] to the Banach space E. In this paper we prove an existence theorem for functional differential inclusions of the form: $\dot{u}(t) \in A(t) u(t) + F(t, \tau(t)u)$ a.e. on [0,T] and $u = \psi$ on [-r,0], where $\{A(t) : t \in [0,T]\}$ is a family of linear operators generating a continuous evolution operator K(t,s), F is a multifunction such that $F(t, \cdot)$ is weakly sequentially hemi-continuous and $\tau(t) u(s) = u(t+s)$, for all $t \in [0,T]$ and all $s \in [-r,0]$. Also, we are concerned with the topological properties of solution sets.

1 – Introduction

The existence of solutions for functional differential inclusions (FDI) and the topological properties of solution sets are studied extensively (see, for example, [1], [2], [9], [10], [11], [12], [13]). However, not much study has been done for functional differential inclusions governed by operators. Mainly, recently, Castaing–Marques [3] considered a functional differential inclusions governed by sweeping process while Castaing–Faik–Salvadori [5] considered a functional differential inclusion governed by *m*-accretive operators which are independent of the time. That is, they proved the existence of integral solutions for the following FDI:

$$\begin{cases} \dot{u}(t) \in A(u(t)) + F(t, \tau(t)u), & \text{a.e. on } [0, T], \\ u = \psi & \text{on } [-r, 0], \end{cases}$$

Received: January 26, 1999; Revised: November 2, 1999.

where r > 0 is a finite delay, A is *m*-accretive operator on a separable Banach space E, F is a multifunction, ψ is a continuous function from [-r, 0] to E and for each $t \in [0, T]$ $\tau(t) u$ is a continuous on [-r, 0] such that for each $s \in [-r, 0]$, $(\tau(t) u)(s) = u(t + s)$.

The purpose of this paper is to obtain conditions on the data that guaranteed the existence of integral solutions and to characterize topological properties of solution sets for a functional differential inclusion (differential inclusion with delay) of the form:

$$(P) \begin{cases} \dot{u}(t) \in A(u(t)) + F(t, \tau(t) \, u), & \text{a.e. on } [0, T], \\ u = \psi & \text{on } [-r, 0]. \end{cases}$$

where $\{A(t): t \in [0, T]\}$ is a family of densely defined, closed, linear operators on a separable Banach space E. Also, we obtain a continuous dependence result that examines the change in the solution set as we vary the initial function.

Our results generalize many previous theorems. In the important case A(t) = 0, $\forall t \in I$, we have that K(t, s) = Id and an integral solution, in fact, a strong solution. Then, as special case, we obtain a generalization of the results of Deimling [7], Kisielewicz [14] and Papageorgiou [16], [17]. In addition, if $A(t) \neq 0$ then many results of this kind are generalized too. For example, Cichon [6], Frankwska [8] and Papageorgiou [18] considered the problem (P) without delay. Moreover, Castaing, Faik and Salvadori [5] investigated the problem (P) in the case when A is an m-accretive multivalued operator and dependent of t. Finally Castaing and Ibrahim [2] considered the problem (P) when A(t) = 0, $\forall t \in I$.

2 – Definitions, notations and preliminaries

We will use the following definitions and notations.

- E is a separable Banach space, E' the topological dual of E and E_w is the vector space E equipped with the $\sigma(E, E')$ topology.
- -c(E) (resp. ck(E)) is the family of nonempty convex closed (resp. nonempty convex compact) subsets of E.
- If Z is a subset of E, $\delta^*(\cdot, Z)$ is the support function of Z and $|Z| = \{ ||z|| : z \in Z \}$.
- r > 0, T > 0 and I = [0, T].
- $-L^1(I, E)$ is the Banach space of Lebesque–Bochner integrable functions $f: I \to E$ endowed with the usual norm and $\mathcal{L}(E)$ is the Banach space of all linear continuous operators on E.

- C(I, E) is the Banach space of continuous functions $f: I \to E$ with the norm of uniform convergence, $C_0 = C([-r, 0], E), \psi \in C_0$.
- For any t > 0 we denote by $\tau(t)$ the mapping from C([-r,T],E) to $C_0 = C([-r,0],E)$ defined by $\tau(t) u(s) = u(s+t), \ \forall s \in [-r,0], \ \forall u \in C([-r,T],E).$
- A multifunction $G: E \to 2^E \{\emptyset\}$ with closed values is upper semicontinuous (u.s.c) if and only if $G^-(Z) = \{x \in E: G(x) \cap Z \neq \emptyset\}$ is closed whenever $Z \subset E$ is closed. Taking on E its weak topology, $\sigma(E, E')$, we obtain in a similar way a notion of w - w upper semicontinuous (w - wu.s.c) that is, upper semicontinuous from E_w to E_w . If the set $G^-(Z)$ is weakly sequentially closed whenever Z is weakly closed, we shall say that G is w - w sequentially u.s.c.
- A multifunction $G: E \to 2^E \{\emptyset\}$ with closed values is called upper hemicontinuous (u.h.c) [weakly upper hemicontinuous, w-u.h.c] if and only if for each $x^* \in E'$ and for each $\lambda \in \mathbb{R}$ the set $\{x \in E: \delta^*(x^*, G(x)) < \lambda\}$ is open in E (in E_w).
- A multifunction $G: E \to 2^E \{\emptyset\}$ with closed values is called weakly sequentially upper hemicontinuous (w-seq uhc) if and only if for each $x^* \in E'$, $\delta^*(x^*, G(\cdot)): E \to \mathbb{R}$ is sequentially upper semicontinuous from E_w to \mathbb{R} , see ([6], [14]).

If $G: I \to 2^E - \{\emptyset\}$ is measurable and integrably bounded with weakly compact values, then, the set of all integrable selections of G, S_G^1 , is weakly compact in $L^1(I, E)$, see [4].

 $-\mu$ is either the Kuratowski or the Hausdorff measure of noncompactness on E.

Let $\{A(t): t \in I = [0, T]\}$ be a family of densely defined, closed, linear operators on E. Suppose that for every $s \in I$ and every $x \in E$ the initial value problem problem

$$(*) \quad \begin{cases} \dot{u}(t) \in A(t)u(t), \quad t \in [s,T] \\ u(s) = x \end{cases}$$

has a unique strong solution. Then an operator $K(\cdot, \cdot)$ can be defined from $\Delta = \{(t,s): 0 \le s \le t \le T\}$ to E by K(t,s) x = u(t) where u is the unique solution of (*). The operator $K(\cdot, \cdot)$ is called a fundamental solution of (*) or we say the family $\{A(t): t \in I\}$ is a generator of a fundamental solutions $K(\cdot, \cdot)$ (see [19]). A continuous function $u: [-r, T] \to E$ is called an integral solution of the

problem (P) if $u = \psi$ on [-r, 0] and for every $t \in I$,

$$u(t) = K(t,0) \psi(0) + \int_0^t K(t,s) f(s) \, ds \; ,$$

where $f \in L^1(I, E)$ and $f(s) \in F(s, \tau(s) u)$ a.e..

The following lemmas will be crucial in the proof of our results.

Lemma 2.1 (Lemma 1, [6]). Let Y be a Banach space. Assume:

- (1) $G: E \to c(Y)$ be w-seq uhc;
- (2) $||G(x)|| \le a(t)$ a.e. on *I*, for every $x \in E$, where $a \in L^1(I, \mathbb{R})$;
- (3) $x_n \in C(I, E), x_n(t) \to x_0(t)$ (weakly) a.e. on I;
- (4) $y_n \rightarrow y_0$ (weakly), $y_n, y_0 \in L^1(I, E)$;
- (5) $y_n(t) \in G(x_n(t))$ a.e. on *I*.

Thus $y_0(t) \in G(x_0(t))$ a.e. on I.

Lemma 2.2 (Theorem 1, [6]). Let $\{A(t): t \in I\}$ be a family of densely defined, closed, linear operators on E and is a generators of a fundamental solution $K(\cdot, \cdot): \Delta = \{(t, s): 0 \le s \le t \le T\} \rightarrow \mathcal{L}(E)$ such that

- (A₁) $K(s,s) = Id, s \in I$ and K(r,s) K(s,t) = K(r,t), r < s < t;
- (A₂) $K: \Delta \to \mathcal{L}(E)$ is strongly continuous;
- $(\mathbf{A}_3) ||K(t,s)|| \le M, \forall (t,s) \in \Delta;$
- (A₄) $K(\cdot, s): I \to \mathcal{L}(E)$ is uniformly continuous.
- Let $S: I \times E \to c(E)$ such that
- (S₁) For each $x \in E$, $S(\cdot, x)$ has a measurable selection;
- (S₂) For each $t \in I$, $S(t, \cdot)$ is w-seq. u.h.c.;
- (S₃) There exists $a \in L^1(I, \mathbb{R})$ such that for each $x \in E$,

$$||S(t,x)|| \le a(t) (1 + ||x||)$$
 a.e.

(\mathbf{S}_4) For each bounded $B \subset E$

$$\lim_{\delta \to 0} \mu \Big(S(I_{t,\delta} \times B) \Big) \le w(t,\mu(B)) \quad \text{ a.e. on } I$$

where $I_{t,\delta} = [t - \delta, t] \cap I$ and w is a Kamke function. Then for each $x_0 \in E$ there exists at least an integral solution for the problem:

$$\begin{cases} \dot{u}(t) \in A(t) \, u(t) + S(t, u(t)), & \text{ a.e. on } I \\ u(0) = x_0 \ . \end{cases}$$

Moreover, for each $x_0 \in E$ the set $S(x_0)$ of all integral solutions is compact.

3 – Existence theorem for (P)

In this section we give an existence theorem for (P).

Theorem 3.1. Let $\{A(t): t \in I\}$ be a family of densely defined, closed, linear operators on E and is a generator of a fundamental solution $K(\cdot, \cdot)$ satisfying conditions $(A_1)-(A_4)$. Let $F: I \times C([-r, 0], E) \to c(E)$ be a multifunction such that

- (**F**₁) For each $g \in C([-r, 0], E)$, $F(\cdot, g)$ has a measurable selection;
- (**F**₂) For each $t \in I$, $F(t, \cdot)$ is w-seq. uhc;
- (**F**₃) There exists $a \in L^1(I, \mathbb{R})$ such that for every $g \in C([-r, 0], E)$,

$$||F(t,g)|| \le a(t) (1 + ||g(0)||)$$
 a.e.;

(**F**₄) There exists $\gamma \in L^1(I, \mathbb{R}^+)$ such that for each bounded subset Z of C([-r, 0], E),

$$\mu(F(t \times Z)) \le \gamma(t) \,\mu(Z(0)), \quad \text{a.e..}$$

Then for each $\psi \in C([-r, 0], E)$ the problem (P) has an integral solution.

Proof: We construct, by induction, a sequence (u_n) in C([-r, T], E) such that it has a subsequence converges uniformly to a function $u \in C([-r, T], E)$ which is an integral solution of (P). For notional convenience we assume without any loss of generality that T = 1.

Step 1. Let $n \ge 1$. Set $u_n = \psi$ on [-r, 0]. Consider the partition of I by the points $t_m^n = \frac{m}{n}, m = 0, 1, 2, ..., n$. We define a step function $\theta_n \colon I \to I$

by $\theta_n(0) = 0$, $\theta_n(t) = t_{m+1}^n$ for $t \in (t_m^n, t_{m+1}^n]$. Now we construct two functions $u_n \in C([-r, T], E)$ and $g_n \in L^1(I, E)$ such that for all $t \in [0, T]$,

(1)
$$u_n(t) = K(t,0) \psi(0) + \int_0^t K(t,s) g_n(s) \, ds$$

(2)
$$g_n(t) \in F\left(t, \tau(\theta_n(t)) f_{n\theta_n(t)-1}(\cdot, u_n(t))\right)$$
 a.e. on I ,

where for every $m = \{0, 1, 2, ..., n - 1\}, f_m : [-r, t_{m+1}^n] \times E \to E$, defined by

$$f_m(t,x) = \begin{cases} u_n(t) & \text{if } t \in [-r, t_m^n] \\ u_n(t_m^n) + n \left(t - t_m^n\right) \left(x - u_n(\frac{m}{n})\right) & \text{if } t \in [t_m^n, t_{m+1}^n] \end{cases}.$$

Let $f_0: [-r, t_1^n] \times E \to E$ be defined by

$$f_0(t,x) = \begin{cases} \psi(t) & \text{if } t \in [-r,0] \\ \psi(0) + n t (x - \psi(0)) & \text{if } t \in [0,t_1^n] \end{cases}$$

and $F_0: [0, t_1^n] \times E \to c(E)$ be defined by

0

$$F_0(t,x) = F(t, \tau(t_1^n) f_0(\cdot, x))$$
.

We want to show that F_0 satisfies conditions $(S_1)-(S_4)$ of Lemma 2.2. Clearly Condition (S_1) is verified. Next, to show that F_0 satisfies condition (S_2) is suffices to prove that if $x_k \to x$ weakly in E then $\tau(t_1^n) f_0(\cdot, x_k) \to \tau(t_1^n) f_0(\cdot, x)$ weakly in C([-r, 0], E). So, let γ be a bounded regular measure from [-r, 0] to E' and is of bounded variation. We have

$$\lim_{k \to \infty} \int_{-r}^{0} \left(\tau(t_{1}^{n}) f_{0}(\cdot, x_{k}) - \tau(t_{1}^{n}) f_{0}(\cdot, x) \right)(t) d\gamma(t) =$$

$$= \lim_{k \to \infty} \int_{-r}^{0} \left(f_{0}(t + t_{1}^{n}, x_{k}) - f_{0}(t + t_{1}^{n}, x) \right) d\gamma(t)$$

$$= \lim_{k \to \infty} \int_{0}^{t_{1}^{n}} f_{0}\left(s, x_{k} - f_{0}(s, x)\right) d\gamma(s) .$$

But, for every $x^* \in E'$ and every $s \in [0, t_1^n]$,

$$\lim_{k \to \infty} \left(x^*, f_0(s, x_k) - f_0(s, x) \right) = \lim_{k \to \infty} n \, s(x^*, x_k - x) = \lim_{k \to \infty} (x^*, x_k - x) = 0 \; .$$

Thus,

$$\lim_{k \to \infty} \int_{-r}^{0} \left(\tau(t_1^n) f_0(\cdot, x_k) - \tau(t_1^n) f_0(\cdot, x) \right)(t) d\gamma(t) = 0.$$

This show that F_0 satisfies condition (S_3) of Lemma 2.2. Furthermore, for every $(t, x) \in [0, t_1^n] \times E$,

$$\begin{aligned} \|F_0(t,x)\| &= \|F(t,\,\tau(t_1^n)f_0(\cdot,x))\| \\ &\leq a(t)\left(1+\|f_0(t_1^n,x))\|\right) \\ &= a(t)\left(1+\|x\|\right) \,. \end{aligned}$$

Then F_0 satisfies condition (S_3) of Lemma 2.2. Now let B be a bounded subset of E. Set $Z = \{\tau(t_1^n) f_0(\cdot, x) \colon x \in B\}$. We have,

$$\mu(F_0(t,B)) = \mu(F(t,Z))$$

$$\leq \gamma(t) \mu Z(0)$$

$$= \gamma(t) \mu(B) .$$

Applying Lemma 2.2 we get a continuous function $v_0: [0, t_1^n] \to E$ such that

$$v_0(t) = K(t,o) \psi(0) + \int_0^t K(t,s) \sigma_0(s) \, ds ,$$

 $\sigma_0(s) \in F(s, \tau(t_1^n) f_0(\cdot, v_0(s)))$ a.e. on $[0, t_1^n]$. Now, we define $u_n = v_0$ and $g_n = \sigma_0$ on $[0, t_t^n]$. Then, for all $t \in [0, t_1^n]$

$$u_n(t) = K(t,0) \psi(0) + \int_0^t K(t,s) g_n(s) \, ds$$

 $g_n(s) \in F(s, \tau(\theta_n(s)) f_{n\theta_n(s)-1}(\cdot, u_n(s)))$ a.e. on $[0, t_1^n]$. Thus u_n and g_n are well defined on $[0, t_1^n]$ and satisfy the properties (1) and (2).

Suppose u_n and g_n are well defined on $[0, t_m^n]$ such that the properties (1) and (2) are satisfied on $[0, t_m^n]$. Let

$$f_m: [-r, t_{m+1}^n] \to E ,$$

$$f_m(t, x) = \begin{cases} u_n(t) & \text{if } t \in [-r, t_m^n] \\ u_n(t_m^n) + n (t - t_m^n) (x - u_n) & \text{if } t \in [t_m^n, t_{m+1}^n] \end{cases}$$

As above we can show that if $x_n \to x$ weakly in E then $\tau(t_{m+1}^n) f_m(\cdot, x_n) \to \tau(t_{m+1}^n) f_m(\cdot, x)$ weakly in C([-r, 0], E]). Thus the multifunction

$$F_m: [t_m^n, t_{m+1}^n] \times E \to c(E)$$

defined by

$$F_m(t,x) = F\Big(t,\,\tau(t_{m+1}^n)\,f_m(\cdot,x)\Big)\ ,$$

satisfies conditions $(S_1)-(S_4)$ of Lemma 2.2. Then, by Lemma 2.2, there exists a continuous function $v_m: [t_m^n, t_{m+1}^n] \to E$ such that

$$v_m(t) = K(t, t_m^n) u_n(t_m^n) + \int_{t_m^n}^t K(t, s) \sigma_m(s) \, ds \,, \quad t \in [t_m^n, t_{m+1}^n] \,,$$

where $\sigma_m \in L^1([t_m^n, t_{m+1}^n], E)$, $\sigma_m(s) \in F_m(s, v_m(s)) = F(s, \tau(t_{m+1}^n) f_m(s, v_m(s)))$ a.e.. Set $u_n(t) = v_m(t)$ for all $t \in [t_m^n, t_{m+1}^n]$ and $g_n(t) = \sigma_m(t)$ for all $t \in (t_m^n, t_{m+1}^n]$. Then, for every $t \in [t_m^n, t_{m+1}^n]$

$$u_n(t) = K(t, t_m^n) u_n(t_m^n) + \int_{t_m^n}^t K(t, s) g_n(s) ds ,$$

$$g_n(s) \in F\left(s, \tau(\theta_n(s)) f_{n\theta_n(s)-1}(\cdot, u_n(s))\right) \quad \text{a.e. on} \ [t_m^n, t_{m+1}^n]$$

This proves that g_n satisfies relation (2) on $[t_m^n, t_{m+1}^n]$ We claim that u_n verifies relation (1) on $[t_m^n, t_{m+1}^n]$, So, let $t \in [t_m^n, t_{m+1}^n]$. We have

$$u_n(t_m^n) = K(t_m^n, 0) \,\psi(0) + \int_0^{t_m^n} K(t_m^n, s) \,g_n(s) \,\,ds \,\,.$$

Then

$$\begin{aligned} u_n(t) &= K(t, t_m^n) \, K(t_m^n, 0) \, \psi(0) \, + \int_0^{t_m^n} K(t, t_m^n) \, K(t_m^n, s) \, g_n(s) \, ds \\ &+ \int_{t_m^n}^t K(t, s) \, g_n(s) \, ds \end{aligned} \\ &= K(t, 0) \, \psi(0) \, + \int_0^{t_m^n} K(t, s) \, g_n(s) \, ds \, + \int_{t_m^n}^t K(t, s) \, g_n(s) \, ds \end{aligned}$$
$$&= K(t, 0) \, \psi(0) \, + \int_0^t K(t, s) \, g_n(s) \, ds \, .\end{aligned}$$

This proves that u_n and g_n satisfy relations (1) and (2).

Step 2. We claim that:

(a) There exists a natural number N such that for all $n \ge 1$

(3)
$$||u_n(t)|| \le N$$
 for all $t \in I$ and $||g_n(t)|| \le m(t) = a(t)(1+N)$ a.e..

(b) $(u_n) \to u$ uniformly in C([-r, T], E), where $u = \psi$ on [-r, 0] and $g_n \to g$ weakly in $L^1(I, E)$.

So, let $n \ge 1$. For almost all $t \in I$,

$$||g_n(t)|| \leq \left\| F\left(t, \tau(\theta_n(t)) f_{n\theta_n(t)-1}(\cdot, u_n(t))\right) \right\|$$

$$\leq a(t) \left(1 + f_{n\theta_n(t)-1}(\theta_n(t), u_n(t))\right)$$

$$= a(t) \left(1 + ||u_n(t)||\right).$$

Then, for all $t \in I$,

$$\begin{aligned} \|u_n(t)\| &\leq \|K(t,0)\| \, \|\psi(0)\| + \int_0^t \|K(t,s)\| \, \|g_n(s)\| \, ds \\ &\leq M \, \|\psi(0)\| + M \int_0^t a(s) \left(1 + \|u_n(s)\|\right) \, ds \\ &\leq M \left(\|\psi(0)\| + \|a\|\right) + \int_0^t M \, a(s) \, \|u_n(s)\| \, ds \, .\end{aligned}$$

By Gronwall's Lemma, we get

$$||u_n(t)|| \le M (||\psi(0)|| + ||a||) \exp(M ||a||).$$

Denote the right side of the above inequality by N and put m(t) = a(t) (1 + N), $\forall t \in I$. To prove the property (b) let $t_1, t_2 \in I$, $(t_1 < t_2)$ and let n be a fixed natural number.

$$\begin{aligned} \left\| u_n(t_2) - u_n(t_1) \right\| &\leq \left\| K(t_2, 0) - K(t_1, 0) \right\| \left\| \psi(0) \right\| \\ &+ \int_0^{t_1} \left\| K(t_2, s) - K(t_1, s) \right\| \left\| g_n(s) \right\| \, ds \\ &+ \int_{t_1}^{t_2} \left\| K(t_2, s) \right\| \left\| g_n(s) \right\| \, ds \end{aligned} \\ &\leq \left\| K(t_2, 0) - K(t_1, 0) \right\| \left\| \psi(0) \right\| \\ &+ \int_0^T \left\| K(t_2, s) - K(t_1, s) \right\| \left\| m(s) \right\| \, ds \\ &+ M \int_{t_1}^{t_2} |m(s)| \, ds \end{aligned}$$

Since for each $s \in I$, $K(\cdot, s)$ is uniformly continuous and $u_n \equiv \psi$ on [-r, 0], the sequence (u_n) is equicontinuous in C([-r, T], E). Next, for each $t \in I$, put

$$Z(t) = \{u_n(t) : n \ge 1\}, \quad \rho(t) = \mu(Z(t)).$$

From the properties of μ and Proposition 1.6 of Monch [15] we get

$$\rho(t) = \mu \left\{ \int_0^t K(t,s) g_n(s) \, ds \colon n \ge 1 \right\}$$
$$\leq M \int_0^t \mu \left(\{ g_n(s) \colon n \ge 1 \} \right) \, ds \; .$$

But $\mu(\{g_n(s): n \ge 1\}) \le \mu F(s, H(s))$ a.e., where

$$H(s) = \left\{ \tau(\theta_n(s)) f_{n\theta_n(s)-1}(\cdot, u_n(s)) \colon n \ge 1 \right\}.$$

Thus, By condition (F_4) we obtain,

$$\rho(t) \leq M \int_0^t \gamma(s) \,\mu(H(s)(0)) \, ds$$

= $M \int_0^t \gamma(s) \,\mu\{u_n(s) \colon n \geq 1\} \, ds$
= $M \int_0^t \gamma(s) \,\rho(s) \, ds$.

Since $\rho(0) = 0$, Gronwall's Lemma tells us $\rho = 0$. So by Ascoli's theorem we may assume that u_n converges uniformly to $u \in C([-r, T], E)$. Obviously $u = \psi$ on [-r, 0]. Now, let $t \in I$ such that Condition (F_4) is satisfied. Then,

$$\mu\{g_n(t): n \ge 1\} \le \mu\left(\left\{F\left(t, \theta_n(t) f_{n\theta_n(t)}(\cdot, u_n(t))\right): n \ge 1\right\}\right)$$
$$\le \gamma(t) \mu\left(\left\{\theta_n(t) f_{n\theta_n(t)}(\cdot, u_n(t))(0): n \ge 1\right\}\right)$$
$$= \gamma(t) \mu\{u_n(t)\}.$$

Then $\mu(\{g_n(t): n \ge 1\}) = 0$ a.e.. By redefining (if necessary) a multifunction H such that its values are in c(E) and $H(t) = \overline{\operatorname{conv}}\{g_n(t): n \ge 1\}$ a.e.. Thus S_H^1 is nonempty, convex and weakly compact in $L^1(I, E)$. By the Eberlein–Smulian Theorem we may assume $g_n \to g \in L^1(I, E)$ weakly.

Step 3. We claim that the function u obtained in the previous step is the desired solution. That is we claim that

(4)
$$u(t) = K(t,0) \psi(0) + \int_0^t K(t,s) g(s) \, ds \,, \quad \forall t \in I \,,$$

(5)
$$g(t) \in F(t, \tau(t) u),$$
 a.e.

since $g_n \to g$ weakly in $L^1(I, E)$, u_n tends weakly to $K(t, 0) \psi(0) + \int_0^t K(t, s) g(s) ds$. Hence we get relation (4). Moreover, from Lemma 2.2 and relation (2), relation (5) will be true if we show

(6)
$$\lim_{n \to \infty} \left\| \tau(\theta_n(t)) - f_{n\theta_n(t)-1}(\cdot, u_n(t)) \right\| = 0, \quad \forall t \in I.$$

Let $t \in I$ and $n > \frac{1}{r}$. Let $m \in \{0, 1, \dots, n-1\}$ such that $t \in [t_m^n, t_{m+1}^n]$.

$$\begin{aligned} \left| \tau(\theta_{n}(t)) f_{n\theta_{n}(t)-1}(\cdot, u_{n}(t)) - \tau(t) u \right\| &\leq \\ &\leq \sup_{s \in [-r, -\frac{1}{n}]} \left\| f_{m} \left(\frac{m+1}{n} + s, u_{n}(t) \right) - u \left(\frac{m+1}{n} + s \right) \right\| \\ &+ \sup_{[-\frac{1}{n}, -r]} \left\| u_{n} \left(\frac{m}{n} + n \left(s + \frac{1}{n} \right) \right) \left(u_{n}(t) - u_{n} \left(\frac{m}{n} \right) \right) - u \left(\frac{m+1}{n} + s \right) \right\| \\ &+ \left\| u \left(\frac{m+1}{n} + s \right) - u \left(t + s \right) \right\| \\ &\leq \sup_{s \in [-r, -\frac{1}{n}]} \left\| u_{n} \left(\frac{m+1}{n} \right) - u \left(\frac{m+1}{n} + s \right) \right\| \\ &+ \left\| u_{n}(t) - u_{n} \left(\frac{m}{n} \right) \right\| + \left\| u_{n}(t) - u(t) \right\| \\ &+ \sup_{s \in [-\frac{1}{n}, 0]} \left(\left\| u(t) - u \left(\frac{m+1}{n} + s \right) \right\| + \left\| u \left(\frac{m+1}{n} + s \right) - u(s+t) \right\| \right). \end{aligned}$$

Since u_n converges uniformly to u on each compact subset of [-r, T], u is uniformly continuous on [-r, 0] and each u_n is continuous on [-r, T], relation (6) is true.

4 – Some topological properties of solution sets

In the previous section, we obtained conditions on the data that guaranteed that for every $\psi \in C([-r, 0], E)$ the solution set of ψ , $S(\psi)$, is nonempty. In this section we examine the topological properties of this solution set.

Theorem 4.1. If the hypotheses of Theorem 3.1 hold, then for every $\psi \in C([-r, 0], E)$, $S(\psi)$ is compact in C([-r, T], E).

Proof: Arguing in the proof of Theorem 3.1 we can show that $S(\psi)$ is

equicontinuous. Furthermore let (u_n) be a sequence in $S(\psi)$ and $t \in I$. Then

$$\begin{split} \mu\Big(\{u_n(t)\colon n\ge 1\}\Big) &\leq \mu\Big(\Big\{\int_0^t K(t,s)\,g_n(s)\,ds\colon n\ge 1\Big\}\Big), \quad g_n\in S^1_{F(\cdot,\tau(\cdot)u_n)} \\ &\leq M\int_0^t \mu\Big(\{g_n(s)\colon n\ge 1\}\Big)\,ds \\ &\leq M\int_0^t \mu\Big(F\Big(s,\bigcup_{n=1}^\infty \tau(s)\,u_n\Big)\Big)\,ds \\ &\leq M\int_0^t \gamma(s)\,\mu\Big(\{(\tau(s)u_n)(0)\colon n\ge 1\}\Big)\,ds \\ &= M\int_0^t \gamma(s)\,\mu\Big(\{u_n(s)\colon n\ge 1\}\Big)\,ds \;. \end{split}$$

Since $\mu(\{u_n(0): n \ge 1\}) = 0$, by Gronwall's Lemma we get $\mu(\{u_n(t): n \ge 1\}) = 0$. For all $t \in I$. Thus (u_n) has a convergent subsequence in C([-r, T], E).

Theorem 4.2. The multifunction $S : C([-r, 0], E) \to C([-r, T], E)$ is upper semicontinuous.

Proof: Let *B* be a closed set in C([-r, T], E) and $Z = \{\psi \in C([-r, 0], E) : S(\psi) \cap B \neq \emptyset\}$. We shall show that *Z* is closed. So, let $\psi_n \in Z, \ \psi_n \to \psi$ in C([-r, 0], E). For each $n \ge 1$, let $u_n \in S(\psi_n) \cap Z$. Then, for every $n \ge 1$, $u_n = \psi_n$ on [-r, 0] and for all $t \in I$,

$$u_n(t) = K(t,0) \psi_n(0) + \int_0^t K(t,s) g_n(s) \, ds \,, \quad g_n \in S^1_{F(\cdot,\tau(\cdot)u_n)}$$

Then, for every $t \in I$,

$$\mu\Big(\{u_n(t): n \ge 1\}\Big) \le M\,\mu\Big(\{\psi_n(0): n \ge 1\}\Big) + M\,\mu\Big(\Big\{\int_0^t g_n(s)\,ds: n \ge 1\Big\}\Big)$$

since $\psi_n(0) \to \psi(0)$ as $n \to \infty$, we get

$$\mu\Big(\{u_n(t)\colon n\ge 1\}\Big) \le M\,\mu\Big(\int_0^t g_n(s)\,ds\colon n\ge 1\Big)\;.$$

As in the proof of Theorem 4.1 we can claim that $\mu(\{u_n(t): n \ge 1\}) = 0$. Invoking the Arzela–Ascoli theorem there exists a subsequence $u_{nk} \to u \in \mathbb{Z}$ in C([-r,T], E). Clearly $u = \psi$ on [-r, 0]. Now

$$\mu \Big(\{ g_{n_k}(t) \colon n \ge 1 \} \Big) \le \mu \Big(\{ F(t, \tau(t) \, u_{n_k}) \colon n \ge 1 \} \Big); \quad t \in I$$

$$\le \gamma(t) \, \mu \Big(\{ (\tau(u_n))(0) \colon n \ge 1 \} \Big); \quad t \in I$$

$$= 0 \; .$$

As in the proof of Theorem 3.1, $g_{n_k} \to g$ weakly in $L^1(I, E)$. Invoking Lemma 2.1, $g(t) \in F(t, \tau(t) u)$ a.e.. Thus

$$u(t) = K(t,0) \psi(0) + \int_0^t K(t,s) g(s) \, ds \,, \quad g \in S^1_{F(\cdot,\tau(\cdot)u)}$$

This prove that Z is closed and hence $\psi \to S(\psi)$ is upper semicontinuous.

Corollary 4.1. For every $\psi \in C([-r, 0], E)$ and every $t \in I$ the attainable set $P_t(\psi) = \{u(t) : u \in S(\psi)\}$ is compact, the multifunction $(\psi, t) \to P_t(\psi)$ is jointely upper semicontinuous.

Theorem 4.3. Let Z be a compact subset of C([-r, 0], E) and let $\varphi \colon E \to \mathbb{R}$ be lower semicontinuous then the problem

$$\begin{cases} \dot{u}(t) \in A(t) u(t) + F(t, \tau(t) u), & \text{a.e. on } [0, T] \\ u = \psi \in Z \\ \text{minimise } \varphi(u(T)) \end{cases}$$

has an optimal solution, that is, there exists $\psi_0 \in Z$ and $u \in S(\psi_0)$ such that

$$\varphi(u(T)) = \inf \left\{ \varphi(v(T)) \colon v \in S(\psi), \ \psi \in Z \right\}.$$

Proof: Consider the multifunction

$$P_T \colon Z \to 2^E$$

$$P_T(\psi) = \{v(T) \colon v \in S(\psi)\}.$$

By Corollary 4.1, P_T is upper semicontinuous. Then the set $P_T(Z) = \bigcup_{\psi \in Z} P_T(\psi)$ is compact in E. Since φ is lower semicontinuous on E, there exists $\psi_0 \in Z$ such that $\varphi(\psi_0(T)) = \inf\{\varphi(v(T)): v \in \bigcup_{\psi \in Z} S(\psi)\}$.

Theorem 4.4. Let *E* be a separable Hilbert space and $G(t, \cdot)$ is w-seq uhc and $G(\cdot, g)$ has a measurable selection. Moreover, suppose that there exists a sequence $(G_n): I \times C([-r, 0], E) \to c(E)$ satisfying the following properties:

- (1) For all $n \ge 1$, G_n verifies conditions (F_1) , (F_2) and (F_4) of Theorem 3.1.
- (2) For all $(t,g) \in I \times C([-r,0],E)$ we have
 - (a) $||G_n(t,g)|| < L, \forall n \ge 1$, for some constant L > 0;
 - (b) $\lim_{n\to\infty} h(G_n(t,g), G(t,g)) = 0$, where h is the Hausdorff distance;
 - (c) $G_{n+1}(t,g) \subset G_n(t,g), \forall n \ge 1;$

(d)
$$G(t,g) = \bigcap_{n=1}^{\infty} G_n(t,g).$$

Then for each $\psi \in C([-r,0], E)$, $S_G(\psi) = \bigcap_{n=1}^{\infty} S_{G_n}(\psi)$.

Proof: From the assumptions each G_n satisfies all conditions of Theorem 3.1. Thus $S_G(\psi) \neq \emptyset$. Also from condition (2)(d) we get $S_G(\psi) \subseteq S_{G_n}(\psi), \forall n \ge 1$. Now let $u \in \bigcap_{n=1}^{\infty} S_{G_n}(\psi)$. Then for every $n \ge 1$, there exists $g_n \in L^1(I, E)$ such that

$$u(t) = K(t,0) \psi(0) + \int_0^t K(t,s) g_n(s) \, ds \,, \quad \forall t \in I \,,$$
$$g_n(t) \in G_n(t,\tau(t) \, u) \text{ a.e., } \forall n \ge 1 \,.$$

Thus, by condition 2(b), we obtain

$$g_n(t) \in G(t, \tau(t) u) + \delta_n(t) \overline{B_E}$$
 a.e.

where, for all $t \in I$, $\delta_n(t) = \lim_{n\to\infty} h(G_n(t,\tau(t)u), G(t,\tau(t)u)) \to 0$ and $\overline{B_E}$ is the closed unit ball in E. Invoking condition (2)(a), the sequence (g_n) is uniformly bounded. By extracting a subsequence, denoted again by g_n , we can passing to convex combination of $g_n(t)$, denoted by $\tilde{g}_n(t)$, we have $\tilde{g}_n(t) \to g(t)$ a.e. in Eand

$$\tilde{g}_n(t) \in \sum_{m \ge n} \alpha_m(t) \left(G(t, \tau(t) \, u) + \delta_m(t) \, \overline{B_E} \right) \quad \text{a.e.} \,,$$

where $\sum_{m\geq n} = 1$, $\alpha_m(t) \geq 0$. Since the values of G are convex, we get

$$\tilde{g}_n(t) \in G(t, \tau(t) u) + (\sup_{m \ge n} \delta_m(t)) \overline{B_E} .$$

Taking the limit as $n \to \infty$ we obtain $g(t) \in G(t, \tau(t) u)$ a.e.. Thus $u \in S_G(\psi)$.

5 - Remarks

1. Let for every $t \in I$, A(t) be a bounded linear operator on E such that the function $t \to A(t)$ is continuous in the uniform operator topology. Then for every $x \in E$ and every $s \in [0, T]$, the initial value problem

$$\begin{cases} \dot{u}(t) \in A(t) u(t), & t \in [0,T] \\ u(s) = x \end{cases}$$

has a unique strong solution. Thus the operator $K(\cdot, \cdot)$ can be defined and satisfies all conditions $(A_1)-(A_4)$ (see, Ch. 5 [19]). \square

- **2.** If we replace condition (F_4) by the condition:
- $(\mathbf{F}_4)^*$ There exists an integrably bounded multifunction $\Gamma: I \to c \, k(E)$ such that

$$F(t,u) \subset \left(1 + \|u(0)\|\right) \Gamma(t), \quad \forall (t,u) \in I \times C([-r,0],E) ,$$

then the convergence of approximated solutions (u_n) constructed in the proof of Theorem 3.1 is directly ensured.

Indeed, for all $n \ge 1$ and all $t \in I$,

$$u_n(t) \in K(t,0) \psi(0) + \int_0^t K(t,s) F(t,\tau(\theta_n(s))) f_{n\theta_n(s)-1}(\cdot,u_n(s)) ds$$

$$\subseteq K(t,0) \psi(0) + M \int_0^t \left(1 + \|u_n(s)\|\right) \Gamma(s) ds .$$

since for each $n \ge 1$, $||u_n(s)|| \le N$, $\forall t \in I$, Theorem v-15 of [4] implies that, $\int_0^t (1 + ||u_n(s)||) \Gamma(s) ds$ is in c k(E). Thus for all $t \in I$ the set $\{u_n(t) : n \ge 1\}$ is relatively compact in E. \square

REFERENCES

- CADINALI, T.; PAPAGEORGIOU, N.S. and PAPALINI On nonconvex functional evolutions involving *m*-dissipative operators, *Czechoslovak Math. Journal*, 1 (1997), 135–148.
- [2] CASTAING, C. and IBRAHIM, A.G. Functional differential inclusions on closed sets in Banach spaces, Adv. Math. Econ., 2 (2000), 12–39.
- [3] CASTAING, C. and MONTEIRO MARQUES, M.D.P. Topological properties of solution sets for sweeping processes with delay, *Portug. Math.*, 54(4) (1997), 485–507.
- [4] CASTAING, C. and VALADIER, M. Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer Verlag, 1977.
- [5] CASTAING, C.; FAIK, A. and SALVADORI, A. Evolution equations governed by *m*-accretive and subdifferential operators with delay (to appear).
- [6] CICHON, M. Differential inclusions and abstract control problems, Bull. Austral Math. Soc., 53 (1996), 109–122.
- [7] DEIMLING, K. Multivalued Differential Equations, Walter de Gruyter, Berlin, New York, 1992.
- [8] FRANKWSKA, H. A priori estimates for operational differential inclusions, J. Differential Equations, 84 (1990), 100–128.
- [9] GAVIOLI, A. and MALAGUTI, L. Viable solutions of differential inclusions with memory in Banach spaces (submitted), 1998.
- [10] HADDAD, G. Monotone viable trajectories for functional differential inclusions, J. Diff. Equation, 24 (1981), 1–24.

- [11] HADDAD, G. Topological properties of the set of solutions for functional differential inclusions, *Nonlinear Anal.*, 5 (1981), 1349–1366.
- [12] HADDAD, G. and LASRY, J.M. Periodic solutions of functional inclusions and fixed point of σ-selectional correspondence, J. Math. Anal. Appl., 96 (1993), 259–312.
- [13] IBRAHIM, A.G. On differential inclusions with memory in Banach spaces, Proc. Math. Phys. Soc. Egypt, 67 (1992), 1–26.
- [14] KISIELEWICZ, M. Differential Inclusions and Optimal Control, PWN-Polish Publishers, Kluwer Academic Publishers, Warsaw, London, 1991.
- [15] MÖNCH, H. Boundary value problems for ordinary differential equations of second order in Banach spaces, Nonl. Anal., 4 (1980), 985–999.
- [16] PAPAGEORGIOU, N.S. On multivalued evolution equation and differential inclusions in Banach space, Comment Math. Univ. Sancti., Pauli., 36 (1987), 21–39.
- [17] PAPAGEORGIOU, N.S. On the attainable set of differential inclusions with control system, J. Math. Anal. Appl., 125 (1987), 305–322.
- [18] PAPAGEORGIOU, N.S. On multivalued semilinear evaluations equations, Boll. Un. Math. Ital., B₃ (1989), 1–16.
- [19] PAZY, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, New York, Berlin Heidelberg, Springer Verlag, 1983.

A.G. Ibrahim, Department of Mathematics, Faculty of Science, Cairo University, Giza – EGYPT