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ON A CLASS OF SECOND ORDER ODE
WITH A TYPICAL DEGENERATE NONLINEARITY

A. Haraux and Q. Yan

Abstract: Global solutions of the second order ODE: u′′+u′+f(u) = 0 are studied

where f is a C1 function satisfying f(0) = 0, f(u) > 0 for all u 6= 0, f(u) = o(|u|) as

u → 0; a typical case is f(u) = c u2 or more generally f(u) = c |u|α with c > 0, α > 1.

It is shown that all global solutions u on [0,+∞) are bounded with u′ + u > 0 and

lim
t→∞

{|u(t)|+ |u′(t)|+ |u′′(t)|} = 0. Moreover if f(s) = c |s|α for some c > 0, α > 1, there

exists a unique global maximal negative solution u− ∈ C2(0,+∞) and a unique global

maximal solution u+ ∈ C2(0,+∞) such that Supt∈(0,+∞) u+ achieves its maximum value.

The set of initial data giving rise to global trajectories for t ≥ 0 is the unbounded closed

domain D enclosed by the union of the two trajectories of u+ and u− in the phase plane.

Finally it is shown that meas(D) <∞.

1 – Introduction and main results

In this paper we study the second order ODE

(1.1) u′′ + u′ + f(u) = 0 ,

where f is a function satisfying the following conditions

(1.2) f ∈ C1(R) , f(0) = 0 ,

(1.3) ∀u 6= 0 , f(u) > 0

and

f(u) = o(|u|) as u→ 0 .
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A typical case is f(u) = c u2 or more generally f(u) = c |u|α with c > 0, α > 1.

We shall first establish the following simple and general result.

Theorem 1.1. Under the hypotheses (1.2) and (1.3), let u 6≡ 0 be a global

bounded solution of (1.1) on [0,+∞). Then u satisfies the following properties

i) lim
t→∞

{

|u(t)|+ |u′(t)|+ |u′′(t)|
}

= 0.

ii) u′ + u > 0, f(u) ∈ L1(R+) and we have the formula

(1.4) ∀ t ≥ 0 , u′ + u =

∫ ∞

t
f(u(s)) ds .

iii) If for some t0 ≥ 0 we have u(t0) ≥ 0, it follows that u(t) ≥ 0, ∀ t ≥ t0.

Moreover

∀ t ≥ t0 , u(t) ≥ e−(t−to) u(t0) .

iv) If for some t0 ≥ 0 we have u′(t0) = 0, it follows that

u(t) > 0, ∀ t ≥ t0 and u′(t) < 0, ∀ t > t0 .

From Theorem 1.1 it is immediate to deduce the following

Corollary 1.2. Let u 6≡ 0 be a global bounded solution of (1.1) on [0,+∞).
Then u satisfies either of the following alternatives 1) and 2):

1) u′ > 0 on [0,+∞), and therefore u < 0 on [0,+∞).
2) There is t0 ≥ 0 such that u′ > 0 on [0, t0), u′(t0) = 0, u′(t) < 0 for all

t > t0. In addition u(t) > 0 for all t ≥ t0.

If for example f(s) = s2 it is natural to wonder whether all global solutions

of (1.1) on [0,∞) are bounded. Such a property has to do with the growth of
f at infinity, for instance if f is sublinear no blow-up can happen. Actually the

following simple result is true:

Theorem 1.3. Assume that f satisfies (1.2), (1.3) and

(1.5) ∃A > 0, ∃ a > 0, ∀ s ≥ A , f(s) ≥ a ,

(1.6) ∃T > 0, f(T ) > 0 and ∀ s ∈ (−∞,−T ], f ′(s) ≤ 0 ,

(1.7)

∫ +∞

T

ds
√

−F (−s)
< ∞
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with

F (s) :

∫ s

0
f(x) dx ≤ 0 ∀ s ≤ 0 .

Then any global solution of (1.1) on [0,+∞) is bounded.

The main result of this paper is the following

Theorem 1.4. Assume that f(s) = c |s|α for some c > 0, α > 1. Then there

exists a unique global maximal negative solution u− ∈ C2(0,+∞) of (1.1) and a

unique global maximal solution u+∈C2(0,+∞) of (1.1) such that Supt∈(0,+∞) u+

achieves its maximum value. In addition we have u+> 0 and u′+< 0 for t large,

while

lim
t→0

u±(t) = −∞ and lim
t→0

u′±(t) = +∞ .

Finally the set of initial data giving rise to global trajectories of (1.1) for t ≥ 0 is
the unbounded closed domain D enclosed by the union of the two trajectories of

u+ and u− in the phase plane.

Remark 1.5. 1) The nonlinearity f(s) = c |s|α is degenerate in the sense
that f ′ vanishes at the equilibrium point 0. For a system without degenerate

equilibria, the set of solutions tending to an equilibrium is generally either open

or lower dimensional (the “stable” manifold). Here, the attraction basin of {0, 0}
happens to be closed with nonempty interior, and in addition {0, 0} lies at the
boundary of the basin. This behavior may be typical in presence of this kind of

degeneracy.

2) Motivated by the convergence result of [2], in [3] the asymptotic behavior

of solutions to the equation

u′′ + u′ + c u (u2 −R2)2 = 0

has been investigated quite exhaustively. When for instance |u − R| ¿ 1, this

equation is very close to

v′′ + v′ + 4 cR3 v2 = 0

where v :=u−R. In [3] a set of two closed regions D± quite similar to the set D in
Theorem 1.4 appears, corresponding to the attraction basins of the two instable

solutions ±(R, 0). All solutions starting in R2\(D+ ∪ D−) converge to (0, 0).
Of course the basic difference with equation (1.1) is that here all solutions are

global for t ≥ 0, and this makes the problem much more complex.



236 A. HARAUX and Q. YAN

This paper is organised as follows: in section 2 we prove the simple general

properties of Theorem 1.1, Corollary 1.2 and Theorem 1.3. Section 3 is devoted

to the construction of small non-trivial solutions under a simple estimate on f ′.

Sections 4 and 5 are respectively devoted to the global analysis of the negative

solutions and general global solutions. With these tools at hand, in section 6 we

give the proof of Theorem 1.4. Section 7 contains a few additional facts on the

general global solutions. In the final section 8, we show that when f(u) = c |u|α
with c > 0, α > 1 such solutions are exceptional: more precisely with the notation

of Theorem 1.4 we have meas(D) <∞.

2 – General properties

Proof of Theorem 1.1:

i) If u is a bounded solution of (1.1) we have

u′′ + u′ + u = u− f(u) ∈ L∞(R+)

from which boundedness of u′ and u′′ follows at once. Then the identity

d

dt

(

1

2
u′2 + F (u)

)

= −u′2

where F stands for any primitive of f shows that Φ(u, v) := 1
2 v2 + F (u) is a

Liapunov function for (1.1) in the phase plane. It follows immediately (cf. e.g.

[1]) that as t→ +∞, we have u′(t)→ 0 and f(u(t))→ 0. Then by our hypotheses
on f we also have u(t)→ 0 and finally by the equation, u′′(t)→ 0.

ii) It is clear by integration that

∀ t ≥ 0, ∀ θ ≥ t , u′(t) + u(t) = u′(θ) + u(θ) +

∫ θ

t
f(u(s) ds .

The result then follows easily by letting t→ +∞.
iii) We have

d

dt
(etu(t)) = et

(

u′(t) + u(t)
)

≥ 0 , ∀ t ≥ t0 .

The conclusion follows by integration.

iv) We have

d

dt
(etu′(t)) = et

(

u′′(t) + u′(t)
)

= −et f(u(t)) ≤ 0 , ∀ t ≥ t0 .



ON A CLASS OF SECOND ORDER ODE 237

Assuming u 6≡ 0, by local uniqueness we have f(u(t0)) > 0 and therefore u′(t) < 0,
∀ t > t0. Finally by (1.4)

u(t) = −u′(t) +
∫ ∞

t
f(u(s) ds > 0 , ∀ t ≥ t0 .

Theorem 1.1 is completely proved.

Proof of Theorem 1.3: Let u be an unbounded global solution of (1.1) on

[0,+∞). We distinguish 2 cases
1) If u′ > 0 everywhere on [0,+∞), we clearly have u(t)→ +∞ as t→ +∞.

As a consequence of (1.5) we deduce

∃T > 0, ∀ t ≥ T , u′′(t) = −u′(t)− f(u(t)) ≤ −a < 0 .

From this inequality it follows that u′(t)→ −∞ as t→ +∞. A contradiction.
2) Assuming u′(t0) ≤ 0, as previously we find u′ < 0 everywhere in (t0,+∞),

then clearly u(t)→ −∞ as t→ +∞. If u′′ > 0 on [t0,+∞), then

u′(t) = −u′′(t)− f(u(t)) ≤ −f(u(t)) on [t0,+∞) .

In order to prove that this is impossible, first we establish

Lemma 2.1. Under the hypotheses of Theorem 1.3 we have

(2.1)

∫ +∞

T

ds

f(−s) < ∞ .

Proof: From condition (1.6) it first follows immediately that F (s) → −∞
as s→ −∞ and with C :=−F (−T ),

(2.2) ∀ s ≥ T , 0 ≤ −F (−s) ≤ s f(−s) + C .

Now let T1 be such that for all t ≥ T1, we have F (t) ≤ −2C: for any x ≥ 2T1,

we have by the non-decreasing character of f(−x)
x

2
√
x
√

f(−x)
≤
∫ x

x
2

ds√
s
√

f(−s)
≤
∫ x

x
2

ds
√

−F (−s)− C
≤

≤
√
2

∫ ∞

T

ds
√

−F (−s)
< ∞

by (1.7). In particular we find

(2.3) ∃M > 0, ∀ s ≥ 2T1 , s ≤Mf(−s) .
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Finally (2.2) and (2.3) give

(2.4) ∀ s ≥ 2T1 , 0 ≤ −F (−s) ≤M(f(−s))2 .

Then (2.1) follows immediately from (1.7).

Proof of Theorem 1.3 continued: If u′′ > 0 on [t0,+∞), letting v = −u
we find for all t large enough, as a consequence of (2.1)

d

dt

∫ ∞

v(t)

ds

f(−s) =
−v′(t)

f(−v(t)) =
u′(t)

f(u(t))
≤ −1 ,

an obvious contradiction since the integral remains nonnegative. The same con-

tradiction obviously appears if we assume the weaker condition u′′ > 0 on [θ,+∞)
for some θ > 0. On the other hand if u′′(t1) ≤ 0 for some t1 ≥ max{t0, T}, from
the hypothesis f ′ ≤ 0 on (−∞,−T ] we deduce that

u′′′ + u′′ = −f ′(u)u′ ≤ 0 on [t1,+∞)

and in particular then u′′ ≤ 0 on [t1,+∞). As a consequence, u′ is nonincreasing
and u′2 is nondecreasing. For any t ≥ t1 we consequently obtain

∫ t

t1

u′2(s) ds ≤ (t− t1)u
′2(t)

and the energy identity

1

2
u′2(t) + F (u(t)) +

∫ t

t1

u′2(s) ds =
1

2
u′2(t1) + F (u(t1))

provides the inequality

(t− t1 + 1)u
′2(t) ≥ F (u(t1))− F (u(t)) .

Because condition (1.6) obviously implies F (s) → −∞ as s → −∞, for t large

enough we find

v′ ≥ 1

2

√

−F (−v)√
t

.

Letting

G(s) =

∫ ∞

s

dσ
√

−F (−σ)
we obtain

d

dt
G(v(t)) = − v′(t)

√

−F (−v)
≤ − 1√

t

hence G(v(t)) becomes negative for t large, a conclusion which contradicts G≥0.
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3 – Special solutions for small initial values

Before we proceed to the proof of Theorem 1.4, we shall establish a sequence

of Lemmas valid under various conditions on f . In this section we start by the

construction of uniformly small, exponentially decaying solutions on R+ by means

of a fixed point argument.

Lemma 3.1. Let f ∈ C1(R) be such that f(0) = 0 and assume

(3.1) ∃ ε > 0, ∃α > 0, ∃C > 0 ∀ s ∈ R, |s| ≤ α =⇒ |f ′(s)| ≤ C |s|ε .

Then for all u0 with |u0| small enough, there exists a function u ∈ C2(R+)

satisfying

(3.2) u(0) = u0 , sup
t≥0

{

et|u(t)|
}

< α ,

(3.3) ∀ t ≥ 0 , u′ + u =

∫ ∞

t
f(u(s) ds .

Proof: If u is a solution of (3.2) and (3.3), as a consequence of (3.1) we have

the estimate

(3.4) ∀ s ∈ R+ , |f(u(s))| ≤ C |u(s)|1+ε ≤ C e−(1+ε)s |esu(s)|1+ε .

Letting z(t) := et u(t) for all t ≥ 0, we can write (3.3) in the form

(3.5)
∀ t ≥ 0 , z(t) = z(0) +

∫ t

0
er
∫ ∞

r
f(u(s) ds dr

= u0 +

∫ t

0
er
∫ ∞

r
f(e−sz(s)) ds dr .

We are therefore led to introduce the functional set

X :=Xβ =
{

ζ ∈ Cb(R+), sup
t≥0
|ζ(t)| ≤ β

}

and the nonlinear map T : X→ Cb(R+) defined by

(3.6) ∀ z ∈ X, ∀ t ≥ 0 , (T z)(t) = u0 +

∫ t

0
er
∫ ∞

r
f(e−sz(s)) ds dr .
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As a consequence of (3.4) we find immediately the estimate

∀ t ≥ 0 , |(T z)(t)| ≤ |u0| +
∫ t

0
er
∫ ∞

r
C e−(1+ε)s |z(s)|1+ε ds dr

≤ |u0| + C β1+ε

∫ t

0
er
∫ ∞

r
e−(1+ε)s ds dr

≤ |u0| +
Cβ1+ε

1 + ε

∫ t

0
e−εr dr

≤ |u0| +
C

ε(1 + ε)
β1+ε .

In particular if |u0| and β satisfy the conditions

(3.7) |u0| ≤ α , |u0|+
C

ε(1 + ε)
β1+ε ≤ β

we have

(3.8) T (X) ⊂ X .

For instance, we can select β ≤ α so that
C

ε(1 + ε)
β1+ε ≤ β

2
, which reduces to

(3.9) β ≤ min

{

α,

[

ε(1 + ε)

2C

]

1

ε

}

then we choose uo such that

(3.10) |u0| ≤ min
{

α,
β

2

}

.

Let us now show that under condition (3.9), T is in fact a contraction on X= Xβ .

Indeed for any (z, w) ∈ X, we have

∀ t ≥ 0 , |T z(t)− T w(t)| ≤
∫ t

0
er
∫ ∞

r
C e−(1+ε)s βε |z(s)− w(s)| ds dr

≤ C βε ‖z − w‖∞
∫ t

0
er
∫ ∞

r
e−(1+ε)s ds dr

≤ C βε

1 + ε
‖z − w‖∞

∫ t

0
e−εr dr

≤ C

ε (1 + ε)
βε ‖z − w‖∞ .
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Therefore if β satisfies (3.9), T is 1
2 -Lipschitz continuous on Xβ . By Banach fixed

point Theorem we obtain a solution u of (3.2)–(3.3) for any u0 satisfying (3.10).

In addition u is unique.

Lemma 3.2. The solutions u constructed in Lemma 3.1 are essentially

different for positive and negative values of u0. More precisely

1) If u0 >
C

ε(1 + ε)
β1+ε, we have u > 0 and u′ < 0 on [T,+∞) for some

T ≥ 0.

2) If u0 < − C

ε(1 + ε)
β1+ε, we have u < 0 and u′ > 0 on [0,+∞).

Proof: It follows easily from (3.5) that

∀ t ≥ 0 , |z(t)− u0| ≤
∫ t

0
er
∫ ∞

r
C e−(1+ε)s |z(s)|1+ε ds dr ≤ C

ε(1 + ε)
β1+ε .

Since z(t) = et u(t), the statement on the sign of u follows immediately. In case

2) it follows at once from (3.3) that u′ > 0 on [0,+∞). In case 1) we cannot have
u′ > 0 on [0,+∞), since u tends necessarily to 0 at infinity as a consequence of

Theorem 1.1. By Corollary 1.2 the existence of T is clear.

4 – Properties of negative solutions

In this section we show that solutions of (1.1) which are negative on some

interval [T,+∞) have very special properties.

Lemma 4.1. Let u be a bounded solution of (1.1) on [0,+∞) such that

u < 0 on [T,+∞) for some T ≥ 0. Then u < 0 and u′ > 0 on [0,+∞). Moreover

we have

(4.1) ∀ s ∈ [0,+∞), ∀ t ≥ s , es−t u(s) ≤ u(t) < 0 .

Hence

(4.2) ∀ s ∈ [0,+∞), ∀ t ≥ s , |u(t)| ≤ es−t |u(s)| .

Proof: Since u(t) < 0 for t large, by Corollary 1.2 we have alternative 1).

In addition, since
d

dt
(etu(t)) = et(u(t) + u′(t)) ≥ 0, we obtain (4.1). Then (4.2)

follows immediately.



242 A. HARAUX and Q. YAN

Proposition 4.2. Assume that f satisfies (3.1) and let u, v be two bounded

solutions of (1.1) on [0,+∞) such that u, v < 0 on [T,+∞) for some T ≥ 0 and
|v(0)| ≤ |u(0)|. Then there exists τ ≥ 0 such that

(4.3) ∀ t ∈ [0,+∞) , v(t) = u(t+ τ) .

Proof: By Lemma 4.1 we can take T = 0. Moreover it is clear that for t

large enough we have

(4.4) max
{

|u(t)|, |v(t)|
}

≤ min
{

α,
β

2

}

.

Assume first that this is satisfied on [0,+∞). Then there is τ ≥ 0 such that
v(0) = u(τ). By the uniqueness part in the proof of Lemma 3.1, it follows that

(4.3) is satisfied. When (4.4) is satisfied only for t ≥ t0, it suffices to replace u

and v by u(t0+ ·) and v(t0+ ·). Then (4.3) is obtained on [t0,+∞) for some real
number τ . By local uniqueness it extends on [0,+∞). The statement on the sign
of τ is easy to recover from the condition |v(0)| ≤ |u(0)|.

Theorem 4.3. Let u be a maximal solution of (1.1) in (T ∗,+∞) such that

u < 0. Then assuming (1.7), we have T ∗ > −∞ and

(4.5) lim
t→T ∗

u(t) = −∞ , lim
t→T ∗

u′(t) = +∞ .

Moreover if lim
s→+∞

f(−s)
s

= +∞, we have the additional property

(4.6) lim
t→T ∗

u′(t)

u(t)
= −∞ .

Proof: By translating t if necessary we may assume T ∗< 0. We set v(t) =

u(−t) for all t ∈ [0,−T ∗). Then

v′′ = v′ − f(v) = −u′ − f(v) ≤ −f(v) ≤ 0 on [0,−T ∗) .

On multiplying by 2 v′ and integrating, since v′ = −u′ ≤ 0 we obtain

v′2(t) ≥ v′2(0)− 2F (v(t)) + 2F (v(0)) .

We introduce w :=−v. From the inequality v′′ ≤ 0 we deduce that v′ is nonin-

creasing, hence w′ is nondecreasing and in particular w′ ≥ γ > 0 on [0,−T ∗). In
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particular if T ∗= −∞, we have w(t)→ +∞ as t→ +∞. In particular for t large
enough, we have

−2F (v(t)) + 2F (v(0)) ≥ −F (v(t)) .

Therefore

w′ ≥
√

−F (−w(t))

for t large enough. By (1.7) we derive a contradiction, hence T ∗ > −∞. It is
then rather easy, by using the equation, to see that both w and w′ tend to +∞
as t → −T ∗. In addition, if lim

s→+∞

f(−s)
s

= +∞, the above inequality, which is

valid for t close to −T ∗, provides (4.6).

5 – Properties of general global solutions

In this section, under relevant conditions on f we show that all non trivial

solutions of (1.1) which exist globally on some interval [T,+∞) have essentially
the same backward behavior. We start with an a priori estimate.

Proposition 5.1. Assume that f satisfies (1.2)–(1.3) and

(5.1) ∃ c > 0, ∃ ε > 0, ∀u > 0 , f(u) ≥ c u1+ε ,

and let u be any bounded solution of (1.1) on [0,+∞) such that u > 0 on [T,+∞)
for some T ≥ 0. Then we have

(5.2) ∀ t ∈ [0,+∞) , u(t) ≤M :=

(

1 + ε

c

)
1

ε

.

Proof: Without loss of generality we may assume T = 0. Indeed if u(t) ≤ 0,
(5.2) is satisfied, and it is therefore sufficient to estimate u(t) after it has become

nonnegative for the first time. Setting z(t) = et u(t), we have

z′(t) =
d

dt
(et u(t)) = et

(

u(t) + u′(t)
)

= et
∫ ∞

t
f(e−sz(s)) ds ≥

≥ c et
∫ ∞

t
e−(1+ε)s z1+ε(s) ds ≥ c et z1+ε(t)

∫ ∞

t
e−(1+ε)s ds ,

z′(t) ≥ c e−εt

1 + ε
z1+ε .
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As a consequence

d

dt
(z−ε) = −ε z′z−(1+ε) ≤ − c ε

1 + ε
e−εt .

By integrating

1

zε(t)
− 1

zε(0)
≤ − c ε

1 + ε

∫ t

0
e−εs ds =

c

1 + ε
(e−εt − 1) .

In particular
1

zε(0)
≥ c

1 + ε
(1− e−εt)

and by letting t→∞ we derive
1

zε(0)
≥ c

1 + ε
, which means

u(0) = z(0) ≤
(

1 + ε

c

)
1

ε

.

Since our time origin T = 0 can be replaced by any positive value, this estimate

is valid with 0 replaced by any t > 0. This establishes (5.2).

Theorem 5.2. Let u 6≡ 0 be any maximal solution of (1.1) on (T ∗,+∞).
Then assuming (1.7) and (5.1), we have T ∗>−∞ and u satisfies (4.5). Moreover

(5.3) lim
t→T ∗

u′(t)
√

−2F (u(t))
= 1 .

In particular if lim
s→+∞

f(−s)
s

= +∞, we have the additional property (4.6).

Proof: We proceed in 4 steps.

Step 1) It is impossible to have

(5.4) u′(t) < 0 , ∀ t ∈ (T ∗,+∞) .

Indeed in such a case we have

(5.5) 0 ≤ u(t) ≤M , ∀ t ∈ (T ∗,+∞) ,

and in particular u is bounded. If T ∗>−∞ we must have u′(t)→−∞ as t→T ∗.

Selecting a fixed number τ > −T ∗ we have

u(t)− u(τ) = −u′(t) + u′(τ) +

∫ τ

t
f(u(s)) ds ,
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therefore u(t) ≥ −u′(t)−C for some constant C ≥ 0 and consequently u(t)→ +∞
as t → T ∗. This contradicts (5.5). Thus we must have T ∗ = −∞ and since

u(t) → c > 0 as t → −∞, we have f(u(t)) ≥ 1
2 f(c) > 0 as t → −∞. Then we

have for instance

u(t) = u(0)− u′(t) + u′(0) +

∫ 0

t
f(u(s)) ds ≥ u′(0) +

∫ 0

t
f(u(s)) ds −→ +∞

as t→ −∞. This again contradicts (5.5).
Step 2) By step 1 there is t0 > T ∗ such that u′(t0) = 0 and u′ > 0 on

(T ∗, t0). Since

u′′ = −u′ − f(u) < 0 on (T ∗, t0)

we have, selecting any τ ∈ (T ∗, t0):

u′ ≥ η > 0 on (T ∗, τ ] .

In particular we cannot have u≥0 on (T ∗, t0): if T ∗=−∞ the previous inequality
implies u(t)→ −∞ as t→ −∞; If T ∗>−∞, the classical alternative on blowing
up implies u′(t) → +∞ as t → T ∗, and then u(t) ≤ −u′(t) + C tends to −∞ as

t→ T ∗, a contradiction.

Step 3) By step 1 there is t1 ∈ (T ∗, t0) such that u(t1) < 0, and of course

u′(t1) > 0. Then, considering the solution v(t) = u(t1 − t) of the backward

equation, the proof of T ∗ > −∞ and (4.5) becomes identical to the proof of

Theorem 4.3.

Step 4) As in the proof of Theorem 4.3, by translating t if necessary we may

assume T ∗<0 and u′ > 0 on (T ∗, 0]. We set w(t) = −u(−t) for all t ∈ [0,−T ∗).
Then

w′′ = w′ + f(−w) on [0,−T ∗) .

On multipying by 2w′ and integrating, we obtain

(5.6) w′2(t) + 2F (−w(t)) = w′2(s) + 2F (−w(s)) + 2
∫ t

s
w′2(r) dr .

Therefore choosing first s = T ∈ [0,−T ∗) fixed we obtain for a certain constant
C ≥ 0

w′ ≥
√

−2F (−w(t))− C

or in other terms

(5.7) u′(t) ≥
√

−2F (u(t))− C
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valid for t close to T ∗. On the other hand w′2 is nondecreasing on [0,−T ∗). In
particular (5.6) implies

w′2(t) + 2F (−w(t)) ≤ w′2(s) + 2F (−w(s)) + (−T ∗− s)w′2(t) .

Choosing now s = −T ∗ − η we deduce

(1− η)w′2(t) ≤ −2F (−w(t)) + w′2(−T ∗ − η) + 2F (−w(−T ∗− η)) ,

hence

(1− η)w′2(t) ≤ −2F (−w(t)) +D(η) , ∀ t ∈ [−T ∗− η, −T ∗) ,

or in other terms

(5.8) (1− η)u′2(t) ≤ −2F (u(t)) +D(η) , ∀ t ∈ (T ∗, T ∗+ η] .

It is perfectly clear that (5.7) and (5.8) imply (5.3).

6 – Proof of the main result

Before we go to the proof of the main result, we need two lemmata. The first

lemma concerns the shape in the phase plane of the trajectories associated to a

maximal global solution of (1.1) on (0,+∞).

Lemma 6.1. Let u be a maximal global solution of (1.1) on (0,+∞). Then
any straight line

∆a =
{

(u, v) ∈ R2, u+ v = a
}

with a > 0 intersects the curve Γ(u) =
⋃

t>0

{(u(t), u′(t)} at exactly one point.

Proof: This is an immediate consequence of the fact that u(t) + u′(t) is

decreasing, since u(t) vanishes at most once and [u(t) + u′(t)]′ = −f(u(t)) < 0

whenever u(t) 6= 0.

Lemma 6.2. Assuming (1.2), (1.3) and (5.1), let M0 := Sup{C ≥ 0, ∃u
solution of (1.1) on [0,+∞) such that u(0) = C and u′(0) = 0}. The unique local
solution u+ of (1.1) such that u+(0) = M0 and u′+(0) = 0 is global on [0,+∞)
and we have

∀ t ∈ [0,+∞) , 0 ≤ u+(t) ≤M0 .
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Proof: Let Cn ∈ [0,M0) be a sequence tending to M0 as n→∞ and let un

be the solution of (1.1) on [0,+∞) such that un(0) = Cn and u′n(0) = 0. It is

clear that

∀ t ∈ [0,+∞) , 0 ≤ un(t) ≤M0 .

Then by the equation

(etu′n)
′ = et(u′′n + u′n) = −etf(un)

is uniformly locally bounded on [0,+∞). Since u′n(0) = 0 it follows that u′n,

and then also u′′n is uniformly locally bounded on [0,+∞). Then the sequence
{un} has at least a convergent subsequence in C1([0,+∞)). This is enough to
conclude the proof since by the equation the convergence actually takes place in

C2([0,+∞)) and the limiting function u+ satisfies all the conditions.

Proof of Theorem 1.4: The curve C− = Γ(u−) cuts the halfplane

Π =
{

(u, v) ∈ R2, u+ v > 0
}

into two connected open regions Ω−− and Ω
+
−, the region Ω

+
− containing the first

quadrant (R+)2. If a solution u of (1.1) starts in Ω−−, it cannot become ≥ 0
unless it meets C− in finite time, by uniqueness this would mean that u is a time-
translate of u−, which is impossible because then the initial state would lie on

C−. Similarly, the curve C+ = Γ(u+) cuts Π into two connected open regions Ω
−
+

and Ω+
+, the region Ω

−
+ containing the halfline {(−s, s), s>0}. If a solution u of

(1.1) starts in Ω+
+, in order to be global for t ≥ 0 it has to take some positive

values. Actually the corresponding maximal trajectory, being distinct from the

trajectory of u−, must take is maximum on the axis {v = 0} and therefore, since
the maximum is less than the maximum of u+, it has to cross C+ in finite time; by
uniqueness this would mean that u is a time-translate of u+, which is impossible

because then the initial state would lie on C+. Therefore we have the following
inclusion

u global solution of (1.1) on (0,+∞) =⇒ Γ(u) ⊂ Ω−+ ∩ Ω+
− =: D .

Conversely, if a solution of u (1.1) starts in D at t = 0, either it is a time-

translate of u+ or u−, or (u(0), u
′(0)) ∈ Ω−+ ∩ Ω+

−. In the second case we notice

that u(t) + u′(t) is non increasing and on the other hand for any constant C the

region {

(u, v) ∈ D, u+ v ≤ C
}

is clearly bounded. The solution, being trapped in a bounded region, is global

for t ≥ 0. The proof of Theorem 1.4 is completed.
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7 – Additional properties of global solutions

Proposition 7.1. Let f ∈ C1(R) be such that f(0) = 0 and assume (3.1).

Then for all u0 with |u0| small enough, the unique solution u ∈ C2(R+) of (3.2)

and (3.3) is such that

(7.1) lim
t→∞

u′(t)

u(t)
= −1 .

Proof: As a consequence of (3.1) we have the estimate

(7.2) ∀ s ∈ R+ , |f(u(s))| ≤ C |u(s)|1+ε ≤ C1 e
−γs |u(s)|1+γ .

with γ := ε
2 > 0. In particular we have

∀ t ≥ 0 , 0 < u′(t) + u(t) =

∫ ∞

t
f(u(s)) ds ≤ C1

∫ ∞

t
e−γs |u(s)|1+γ ds

≤ C1 |u(t)|1+γ

∫ ∞

t
e−γs ds

≤ C2 |u(t)|1+γ with C2 :=
C1

γ
.

By Lemma 3.2 we know that u does not change sign for t large. If u > 0, dividing

through by u(t), we obtain

(7.3) ∀ t ≥ 0 , 0 <
u′(t)

u(t)
+ 1 ≤ C2 |u(t)|γ .

Then (7.1) follows by letting t → +∞ in (7.3). On the other hand if u < 0,

dividing through by u(t), we obtain

(7.3′) ∀ t ≥ 0 , 0 >
u′(t)

u(t)
+ 1 ≥ −C2 |u(t)|γ .

Then (7.1) follows by letting t→ +∞ in (7.3’).

Remark 7.2. It follows in particular from Lemma 7.1 and the results of

section 3 that the negative global solutions on [T,+∞) satisfy (7.1). The ques-
tion naturally arises whether (7.1) is also true for the global solutions which are

positive for t large. As we shall see next this is only valid for those solutions

which are time-translates of the “largest” solution u+.
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Theorem 7.3. Let f ∈ C1(R) be such that f(0) = 0 and assume (3.1).

Then actually the restriction of u+ on some interval [T,∞) is one of the positive
solutions given by Lemmata 3.1–3.2 and we have

(7.4) lim
t→∞

u′−(t)

u−(t)
= lim

t→∞

u′+(t)

u+(t)
= −1 .

On the other hand, under the conditions of Theorem1.3 if u is any solution of

(1.1) on [T,+∞) which is not a time translate of either u+ or u−, then we have

(7.5) lim
t→∞

u′(t)

u(t)
= 0 .

Proof: For u < 0 on [T,+∞) this is just Proposition 7.1. Otherwise we
proceed in 3 steps.

Step 1) For any global solution u of (1.1) on [T,+∞) we have

(7.6)
u′(t)

u(t)
> −1 , ∀ t ∈ [T,+∞) ,

and either

(7.7) lim
t→+∞

u′(t)

u(t)
= −1

or

(7.8) lim
t→+∞

u′(t)

u(t)
= 0 .

Indeed (7.6) follows from Theorem 1.1, ii). In addition, setting

∀ t ∈ [T,+∞) , p(t) :=
u′(t)

u(t)
,

we have

∀ t ∈ [T,+∞) , p′(t) =
u′′(t)

u(t)
− u′2(t)

u2(t)
= −p(t)− p2(t)− f(u(t)

u(t)
.

By our hypothesis on f we have

lim
t→+∞

f(u(t)

u(t)
= 0 .
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Given ε ∈ (0, 1), we may assume

(7.9) ∀ t ∈ [T (ε),+∞) , f(u(t))

u(t)
< ε− ε2 .

Now if (7.7) is not satisfied, there is some ε ∈ (0, 1) and a sequence tn →∞ such

that p(tn) > −ε, in particular

(7.10) ∃ τ ∈ [T (ε),+∞) , p(τ) > −ε .

We show that

(7.11) ∀ t ∈ [τ,+∞) , p(t) > −ε .

Indeed (7.11) is true for t sufficiently close to τ . Assume, by contradiction, that

(7.12) T := Sup
{

t ∈ [τ,+∞), ∀ s ∈ [τ, t], p(s) > −ε
}

< ∞ .

Then of course p(T )=−ε and as a consequence of (7.9) we derive p′(τ) > 0. This
contradiction establishes (7.11). Next by choosing for ε ∈ (0, 1) any number such
that −ε < lim sup

t→+∞
p(t) we find by the above argument

(7.13) ∀ t ∈ [τ(ε),+∞) , p(t) > −ε .

In particular there exists

lim
t→+∞

u′(t)

u(t)
= l > −1 .

Since

∀ t ∈ [T,+∞) , p′(t) = −p(t)− p2(t)− f(u(t)

u(t)
,

we have

l + l2 = − lim
t→+∞

p′(t) = 0 .

We conclude that l = 0 and step 1 is achieved.

Step 2) Let u be any solution given by Lemma 3.1 with u > 0 for t large.

By Theorem 5.2, u > 0 can be continued backwards and in particular we can, by

a suitable time translation if necessary, assume that u is defined on [0,+∞) and

0 < u(0) = max
t≥0

u(t) ≤ u+(0) =M0 .
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By Lemma 7.1 we know that u satisfies (7.1). On the other hand if for any t ≥ 0
we define θ(t) by

u(t) = u+(θ(t)) ,

clearly since u′+< 0 on (0,+∞), θ(t) is unique and θ(t)→ +∞ as t→ +∞. Now

since

u′+(θ(0)) ≤ 0 = u′(0) ,

it follows that either u is a time-translate of u+, or

∀ t ∈ [0,+∞) , u′+(θ(t)) ≤ u′(t) .

As a consequence

∀ t ∈ [0,+∞) , u′+(θ(t))

u+(θ(t))
≤ u′(t)

u(t)
,

and consequently u+ satisfies (7.1). Since By Lemma 7.1 we already know that

u− satisfies (7.1), property (7.4) follows.

Step 3) In order to establish (7.6), first we notice that if u is not a time-

translate of u−, then u > 0 for t large and by a time translation we may assume

u > 0 for t ≥ 0. Now by the same method as in the proof of Proposition 7.1 we
find that if u satisfies (7.1), first u(t) ≤ Ke−

t
2 since u′(t) + 1

2 u(t) < 0 for t large,

and then

(7.14) 0 < u′(t) + u(t) =

∫ ∞

t
f(u(s)) ds ≤ C |u(t)|1+γ with γ :=

ε

2
.

Letting z(t) := et u(t) we find successively

z′(t) ≤ C e−γt z(t)1+γ ,

[z−γ ]′(t) = −γ z(t)−(1+γ) ≥ −C γ e−γt ,

[z−γ ](t)− [z−γ ](0) ≥ −C
∫ t

0
γ e−γs ds ≥ −C

∫ ∞

0
γ e−γs ds = −C

and finally

etu(t) = z(t) ≤
(

1

[z−γ ](0)− C

)
1

γ

assuming [z−γ ](0)−C>0. Because the inequality (7.14) is preserved under time-

translation for a fixed C and we have u(t)→ 0 as t→ +∞, the above condition,
reducing to u(0) < C, can be achieved by some additional change of the time

origin. Finally we obtain

∀ t ∈ [T,+∞) , u(t) ≤ Ke−t ,
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for some positive constants T, K. By considering large values of t and a final

time-translation we conclude that u is the time-translate of one of the small

positive solutions of Lemmas 3.1–3.2. In particular this argument applies to u+

as a consequence of step 2. Therefore any solution of (1.1) on a halfline [T,+∞)
which satisfies (7.1) and is not a time-translate of u− has to be a time-translate

of u+. By step 1 the proof of Theorem 7.3 is now complete.

8 – Global solutions are exceptional

In this section, under some conditions on f we show that global solutions of

(1.1) on [0,+∞) are in fact exceptional. This will come from the structure of the
set D and the fact that the geometrical supports of the extreme solutions become
very close to each other near blowing-up. More precisely we have

Theorem 8.1. Assume that f satisfies (1.2), (1.3) and (1.5) and

(8.1) ∃C > 0, ∃ ε > 0 , lim
s→−∞

(

f ′(s)

|s|ε
)

= −C .

Then we have

(8.2) meas(D) <∞ .

Proof: We proceed in 3 steps.

Step 1) First by introducing c :=
C

1 + ε
, as s→ −∞ we have

f(s) ∼ c |s|1+ε ; F (s) ∼ − c

2 + ε
|s|2+ε ; f ′(s) ∼ −c (1 + ε) |s|ε .

For any global solution u of (1.1) on [0,+∞) we have as t tends to the blow-up
time T ∗(u)

(8.3) v(t) = u′(t) ∼
√

−2F (u(t) ∼
(

2 c

2 + ε

)
1

2

|u(t)|1+ ε
2 .

It follows in particular from (8.3) that

(8.4) lim
t→T ∗

f(u(t))

v(t)
= +∞ .
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Step 2) Let u be any solution of (1.1); for any v > 0 let us call u(v) the

value u(t) where t is the only value in [0,+∞) such that u′(t) = v. We have

du

dv
=

u′

u′′
=

v

−v − f(u)
= −1 + f(u)

v + f(u)
.

In particular if u, û are two different solutions we have

(8.5) ∀ v > 0 ,
du

dv
− dû

dv
=

f(u)

v + f(u)
− f(û)

v + f(û)
=

f(u)− f(û)

v
(

1+ f(u)
v

)(

1+ f(û)
v

) .

As a consequence of (8.4) and (8.6) we now find

(8.6) As v → +∞ ,
du

dv
− dû

dv
∼ v(f(u)− f(û))

f(u)f(û)
.

Finally by (8.3) it is clear that u(v) ∼ û(v) and then by the property (8.1) of f ′

(8.7) As v → +∞ ,
du

dv
− dû

dv
∼ v f ′(u) (u− û)

f2(u)
.

Step 3) We introduce

(8.8) G(v) = u(v)− û(v) .

By (8.7) we have

(8.9) As v → +∞ , v G′(v) ∼ v2f ′(u)

f2(u)
G(v) .

On the other hand as v → +∞,

(8.10) v2 ∼ 2 c

2 + ε
|u|2+ε ; f ′(u) ∼ −c (1 + ε) |u|ε ; f2(u) ∼ c2 |u|2+2ε .

Combining (8.9) and (8.10) we obtain

(8.11) As v → +∞ , v G′(v) ∼ −2 + 2 ε
2 + ε

G(v) .

Selecting u = u+, û = u− we have

∀ v > 0 , G(v) = u+(v)− u−(v) > 0 .

By (8.11) it is immediate to check that

(8.12) ∀α ∈
(

0,
ε

2 + ε

)

, ∃M(α), ∀ v ≥ 1 , G(v) ≤M(α) v−(1+α) .

It is clear that (8.12) implies (8.2). The proof of Theorem 8.1 is now complete.
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